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Finite-temperature aspects of the quantum Hall effect: A Boltzmann-equation approach
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A quantum Boltzmann equation developed previously [M. Charbonneau et al. , J. Math. Phys. 23,
318 (1982)] is employed to evaluate the dc electrical conductivity in two dimensions in the presence
of very strong magnetic fields. The resulting formulas for the conductivity components o.

~ and o~
are very simple and valid for all temperatures. o~„ is independent of any scattering potentials in the
first Born approximation; besides, it shows analytically the inadequacy of the independent-electron
theory to account for the fractional Hall effect. The quantization becomes obvious whenever the
Fermi level lies in an energy gap. For an integer Landau level filling factor v, good agreement is ob-
tained with the experimental results for the plateau values, for the deviation from the integer plateau
values as a function of temperature, magnetic field, effective mass, and position of the Fermi level,
and for the temperature dependence of the plateau widths. Besides, we indicate that the formalism
can incorporate electron-electron interaction necessary for the fractional Hall effect (v & 1).

I. INTRODUCTION

Since its discovery' the quantum Hall effect of a two-
dimensional electron gas in a strong magnetic field has
been the subject of numerous theoretical investiga-
tions. ' At present the theoretical interest has been
shifted to the fractional quantum Hall effect, ' and the
normal (or integer) effect is supposed to be well under-
stood. There are, however, important questions left in the
normal case, some of which have been recently discussed
by Joynt and Prange. ' In this paper following a new ap-
proach, which is closer to the spirit of traditional trans-
port theory, we discuss some finite-temperature aspects of
the normal case, such as accuracy of the plateau values in

oz„, deviations from the values ie /h, i integer, and the
temperature dependence of the plateau widths. At the
same time we will indicate how the formalism can deal
with electron-electron interaction necessary for the frac-
tional Hall effect.

The new approach consists in using a quantum
Boltzmann equation derived previously' for the evalua-
tion of the dc electrical conductivities. This equation has

I

been derived as follows. Applying Zwanzig's projection
operator technique to the von Neumann equation for the
density operator, Van Vliet' derived in the context of
linear response theory, and within the Van Hove limit
(equivalent to the first Born approximation), two inhomo-
geneous master equations for the diagonal and nondiago-
nal parts of the density operator. Then with the method
of moments the diagonal, ' nondiagonal, ' and total
Boltzmann' equations have been derived. The Hamil-
tonian used in the von Neumann equation was

H=H +A, V AF(t) . —

In (1.1), H is the largest part of H which can be diago-
nalized, A, V is the interaction, assumed nondiagonal (the
diagonal part is to be incorporated in H ), and —AF(t) is
the external field Hamiltonian, with F(t) being a general-
ized force and A the conjugate operator.

The total (diagonal plus nondiagonal) Boltzmann equa-
tion derived in this way for fermion-boson interaction
(e.g., electron-phonon or electron-impurity interaction)
reads (in second-quantization language)

B&cg cg )t F(t)—
Bt Cg —

Kg
&ng, &.,(1—&ng, &.,)(021~ I 01)

—f3F(t)&ng, &.q(1 —&ng, &.q) y I[(r I
~

I
0') —(0l I

~
I 01)i[top, ,g(1 —&ng &.q)+~gg, &ng &.qiI&g, g,

= g [to&&, &n& ),(1—&nr ), ) —to&, & &n& ),(1—&n& ), )]5~,g,
—(i/fi)(sg, E~, )&c~,cc, ), .— (1.2)

Further,

H = g nyet+ g N+q,

(g",g"
I

AU
I
g', g')c~g-cg btq-b„. , (1.4)

y&=
I In, I, IX„$&=

I InI)e I IXI & . (I.S)

In these expressions
I y ) are the many-body eigenstates of

H, I I g)},I I g)I denote the sets of one-particle states
for fermions and bosons with eipenvalues sg and E„,
respectively. ng ——cpg and N„=b qbq are the occupation
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number operators with eigenvalues ng, X&, while the c's
and b's are the creation and annihilation operators for fer-
mions and bosons, respectively. The fermion transition
rates ~~~ are given by

cp~g = g Q(g", rl";g', rl')(Nz-(1+N„) &,q

by [see (2.83) and Sec. 7 of Ref. 15]
2

Xtpgg(R g
—R g)R c,

= g Q(g",71";g',rl')(Nq-&, q(1+(Nq &,q) . (1.6)
R~=(g

~

(r—r")
~
g) .

(1.9)

p =x,y, z (1.7)

where the quantity Ag(nt &, is given by the first term on
the right-hand side of the diagonal part of (1.2). The first
term of (1.7) has been termed "collisional" current, since
it represents the many-body contribution of collisions to
the current (A~(n~ &, is the collision integral); the second
term is the usual ponderomotive current. The full pon-
deromotive current is, of course, given by

. & J, &pa.d=p po y
spin

(1.8)

If there is only collisional current the dc conductivity re-
sulting from (1.7) and the diagonal part of (1.2) is given

I

As usual, it has been assumed that the bosons remain at
equilibrium (eq). The latter equality is based on a trunca-
tion rule and the Q's are the binary transition rates (see
Ref. 15). Further, @=1/kT, T is the temperature, k is
Boltzmann's constant, and A. is the interaction constant.

In the case of an externally applied electric field E(t),
F(t) =qE(t), and A =g,.(r; —(r; &,q) =g,.a;, where q is

the charge of the carriers (fermions), r; their positions,
and (r; &,q their positions before switching on the electric
field. The electrical current Sehrcidinger operator is

J=qglv& /Vp where Vp is the volume of the system

(v; =a;).
Before proceeding to the calculations we write a few re-

sults from Refs. 15 and 17. In the Van Hove limit Q,~O,
tab oo, At=finit, e) the average current coming from the
diagonal part of (1.2) is given by (p( stands for diagonal,

0i =02=0

We further note that the total dc conductivity tensor
cr& (0) is given by

o„(0)=o„„(0)+cr„"„(0), (1.10)

where nd stands for nondiagonal, i.e., the contribution
from the nondiagonal part of (1.2).

In the next section we will evaluate the components

oy„,cr~ using (1.2). In Sec. III we will discuss the zero
temperature limit of the results and the deviations from it
for finite temperatures; further, we will discuss the validi-

ty of the first Born approximation for the interaction A, V.

We will finish with some remarks and conclusions.

h =(p+eA) /2m', A=(0,8x,O),

~
g) =

~

N ky ) =P~(x + l ky )e y /Ly

Eg
——(N + —,

'
)ficop, N =0, 1,2, . . .

(2.1)

(2.2)

(2.3)

where cop eB!m* is th——e cyclotron frequency, m* is the
effective mass, and 1=(A/m*cpp)' is the radius of the
orbit. N denotes the various Landau levels, A is the vec-
tor potential, and Ao ——I.~I.~ is the area. %'e set
x p —.l ky In the representation (2.2) the matrix elements,
necessary for the evaluation of the components oy„,o.~,
are

II. THE QUANTUM HALL EFFECT

%'e consider a two-dimensional electron gas, such as
realized in the inversion layer of a MOSFET (metal-

. oxide-semiconductor field-effect transistor), in a very
strong magnetic field 8 perpendicular to the surface and
pointing in the z direction. In the Landau gauge, the
one-particle Hamiltonian, states, and eigenvalues read

(4 Ix I
0')=xp4x4, k, +l'«N+14", ~+i vN&x. ~ i)4—k

(P ~X ~

P')=(Ly/2)4x&k k P~NN '~k k,

(g
~
a~ )

g)=~l'( —&N+15x,x+i+v N4, x —i)8k„k,

(g
~ ay ~ g ) —l (&N+1&~,~+i+~&&x,n i)4,k,

(2.4)

(2.5)

(2.6)

(2.7)

where l'= I/W2.
The last two equations show that there is no diagonal

ponderomotive current neither in the x nor in the y direc-
tion [cf. (1.7), (1.8)]. We are thus left as far as diagonal
contributions are concerned with the first term of (1.7),
i.e., we have only collisional current. Returning now to

I

Eq. (1.9) we see immediately that cry„(0)=0 since, by
(2.5), (g

~
(y —Y'q)

~
g) =0. Now, Eq. (2.4) indicates that in

the absence of an external electric fie1d there are stable or-
bits, with center xp. Since, however, by (2.4)
(g

~
(x —x' )

~

g') is nonzero in its diagonal and nondiago-
nal forms it is seen from (1.9) that. cr„„(0)does not vanish.
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In this way we are led to evaluate the components

o»x —=o»x(0» o~ =—o."'(0»

o"—:o„„(0).
Assuming, however (see below), that the Fermi energy lies
in an energy gap or region of localized states it is obvious

I

that no energy can be absorbed from the small electric
field (to be taken in the x direction) and so the longitudi-
nal current cr„„ is zero' (it will be shown later that o„"~
vanishes identically). Thus, we will not evaluate cr„"„but
only o»„",cr„"„with the help of the nondiagonal Boltzmann
equation, i.e., the nondiagonal part of (1.2). The equation
for that part reads

B(c~) ~, ), 1+eE,(t)
P(Eg —

Eg )
1 2

Eg —
Cg

(n~ ),q(1 —(ng ),q)($2 I
a

I
g))= —'(—e~ e—

~ )( cg, cg )r, (2.9)

Note that the interaction A, V does not appear in (2.9).
Now the solution of (2.9) upon making the initial random-phase assumption (c~,c~ ), p

——0 is

(c~,cg, &, =e f dt'E (t')e ' " '' "
(n~, &,q(1 —(n~, &,q)((2 I

a
I g)), b, =eg, —e~, . (2.10)

Combining (2.10) with (1.8) gives an expression for the
current density which, upon comparing with the linear-
response formula

dt' t —t' E t'

gives an expression for the response function P(t) The.
Laplace transform of P(t) gives the conductivity o„"„(co),
whose dc limit is easily obtained:

2 l —ep~

p~~
SPIII

&&(k
I
~

I 4) )(4i I ~). I
4) .

This result satisfies o."„=—o."„,as can be easily seen
from (2.6) and (2.7). It has also been obtained for the
three-dimensional case (Ap~ Vp, e~~E&+A' k, /2m ')
from the solution of the nondiagonal master equation. ' '
At high temperatures it led to the ordinary Hall effect'
and at very low temperatures to the oscillatory Hall ef-
fect. ' The most important features of (2.11) are the fol-
lowing:

(i) It is valid for all temperatures.
(ii) It is independent of the interaction A, V.
(iii) g~, g2 label different Landau levels. . (g»gq [cf.

(2.9)]; actually for g)
——gq the matrix element (g I

ci
I g)

vanishes [cf. (2.6) and (2.7)]; so there is no diagonal con-
ductivity associated with (2.11)). The second point needs
some clarification since in (2.11) the nearly-free-electron
energies appear [m* is the effective mass; cf. (2.3)]. In
fact, Eqs. (1.2) and (2.9) are the result of taking the trace
of the corresponding master equations, and that was taken
in the subdynarnics of H which contains the periodic
part of the interaction expressed by the effective mass.
The fact that the interaction A, Vdoes not appear is due to
the Van Hove limit (A,—+0, t~ao, A. t=finite) in which
Eq. (2.9) contains terms proportional to A, . Thus, provid-
ed that the Van Hove limit (or the first Born approxima-
tion) applies, the interaction A, V does not have to be speci-
fied further (see the Introduction); the only additional as-

sumption is that the Fermi energy lies in a gap as a result
of this interaction.

Proceeding now to the explicit evaluation of (2.11), we
remark that due to (2.3), (2.6), and (2.7), the quantity b. in
(2.11) is given by

tI), =eg —Eg =(l))r2 —X()ficop +Acop . —— (2.12)

Since
I g) =

I
%,k») there will be one summation over k»

which, with periodic boundary conditions for kz, will give

L„/212 Apg- ' f ",dk, = (2.13)—L /21 2m.l

since the functions P~(x +l k») oscillate around the point
xp ——l k». In (2.13) it has been assumed that only one spin
state is occupied; if both spin states are occupied then
gk ~Apl@1 . In the following we set (n~),q=f& and

E=Pf p.

—&tv(I —fx-))(I —e )] . (2.14)

In the second term we change %~X+I; the result is

2

o»„—— g (%+1)[f)v(1 f~+, )(1 —e )—
N

f~~((1 f~)(1—e—)] . —(2.15)

If we now use the equilibrium Fermi-Dirac expression for
f& and (2.3), we easily find that

f~(I f~+~)(1—e ) = f~+~(—1 f~)(l —e —) . —
(2.16)

A. Evaluation of a~„

' Using (2.11), (2.6), (2.7), and the relations just stated for
5, gk, ( &)n, aqnd E, we easily find for p=y, v=x the

expl esslon
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Thus (2.15) becomes 2

lim cd„——(N +1), N =0, 1,2, . . .
T—+0 h

' (3.1)

(2.17)

This is the final result, valid for all temperatures. Since
the diagonal contribution o~„vanishes (see above), (2.17)
is the result for the total o.» but we stress the fact that
this is not a nearly-free-electron result [in (2.17) only the
effective mass appears]; simply the part due to the in-
teraction other than the periodic one vanishes identically.
For ellipsoidal energy surfaces (2.17) remains unaltered
except that m' is replaced by m*=(m&m2)', where m

&

and mz are the effective masses in the x and y directions,
respectively.

B. Evaluation of g„"„

Similar to (2.15) we find
~ 2

X(N+1)lfN(1 —&s+i)(1—e ')
2h

(2.18)

due to (2.16). Thus, as stated previously, this contribution
vanishes identically.

III. ZERO TEMPERATURE LIMIT,
FINITE TEMPERATURE DEVIATIONS

In the presence of the interaction A, V the density of
states N(a), which in its absence was a series of 5 func-
tions, becomes ' a series of broadened 5 functions; this is
shown schematically in Fig. 1, where the center of the
broadened level is assumed to consist of extended states
and the tails of localized states (for a justification of this
band structure see Refs. 2 and 7).

Our main result (2.17) makes the quantization apparent
whenever the Fermi level lies in the region of localized
states. In fact, it is obvious that for a& &aF &a&+& (see
Fig. 1)

since only the ¹hterm contributes (the terms N'&N do
not contribute due to the factor 1 f~+—&). Note that we
have arrived at this result without further assumptions
about the density of states and the scattering, in contrast
with Streda, for example. Note also that if both spin
states are occupied, the result (3.1) is multiplied by 2.

For finite temperatures the deviations from the result
(3.1) can easily be obtained. Assuming e =5«1 and
setting 0& b =(eF—e~)/%coo&1 we find, upon expanding
the exponential of the factors fN, 1 f~+—&, the following
result:

2

(N + 1)(1 5b 51 6+5—2b+52(I b)+. —. . )px

5,5' «1,Ex &EF &Ex+i . (3.2)

Thus the deviation 5o.= —5 —5' +5 +5 " ' from
the integer value (at zero temperature) (e /h)(N+1) de-

pends on b exponentially. The quantities appearing in b
are the effective mass m*, the magnetic field 8, the tem-
perature T, and the position of the Fermi level with
respect to c~. The corresponding behavior of the Hall
coefficient RH 1/oyer has been observed experimentally
and deduced theoretically but in a less explicit fashion by
means of percolation arguments. It is of course possible
that other finite temperature factors neglected here (e.g. ,
hopping between localized states) modify 5o quantitative-
ly. The plateau values in o~„obtained, for finite tempera-
tures, from direct numerical evaluation of (2.17) com-
pared well with the experimental' ' ' values; they were
correct to the nth decimal place with 5&n &n', n') 8.
The accuracy was found to vary from sample to sample
and to be limited, for T—+0 from the machine s efficiency
(too-large ab numbers). The most important factor in
determining the deviation 5o, as (2.17) stands, was the
temperature, whereas the position of the Fermi level,
within the shaded region in Fig. 1, almost did not matter
at all. (If, however, the Fermi level for each value of 8 is
determined from the free-particle density, i.e., without
level broadening, in the manner

II

i,Ii,~'iit

(5u) g 2)

FIG. 1. Density of states of broadened Landau levels.
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Xp
np ——

Ap

1 1
N —0, 1,2, . . .

2&l ~ e X F +
(3.3)

e 2tanh(E/2) ~
Oyx = Z, N+1

2 2 7
h ~P ~ (e~ —e~) +r~

(3 5)

I f~+i-f+(1 fN+1) fN(1 fN)
1 fx—

&(e~ —sF) 1 f~+i—
P

(3.4)

for the very low temperatures of interest here. Using (3.4)
and a Lorentzian for the 5 function (for simplicity of zero
shift), we find

then this results for the plateau corresponding to lower 8
fields to roughly up to two decimal places loss in the ac-
curacy [since the interaction A, V is absent from (3.3) the
Fermi level is shifted downwards in energy and the as-
signment of an integer N for values of the magnetic field
8 at the edges becomes dubious]. ) In agreement also with
(3.2) it was found that the accuracy of the plateau values
became poorer as 8 decreased. This is of course related to
the validity of the Born approximation which we now dis-
cuss.

If we assume that the electrons interact with uniformly
distributed ionized impurities, the approximation implies
that the magnetic length l is much smaller than the aver-
age impurity separation d. This condition, however, is
met only for high magnetic fields roughly higher than
10T whereas for most of the experiments 8 is smaller
than 10T and I is of the order of d (the best agreement be-
tween this theory and the experiment was obtained with
the higher 8 values of Ref. 24). This casts doubt on the
still reasonable agreement of our formulas with the exper-
iment for the 8 values, for which the condition 1 «d is
not met.

This restriction, however, can be relaxed by the follow-
ing reasoning. We can include the diagonal part Vd of the
interaction A, V in H thus weakening the strength of A, V.
Using projection . operators' Vd can be written as
Vd ——g ( y)(y

~ (y ~
Vd

~
y) and the matrix element can

be expressed, e.g., in the symmetric gauge, in terms of
definite integrals involving Laguerre polynomials. This
will modify slightly the eigenvalues eg (ag~e~+be~), but
the eigenfunctions

~
g) will remain the same. Since

6' =e~, +keg,
—e~, —6 e~, =eg, —e~, =b„ the result (2.11)

will be affected only through the factors (n~ ),q, (n~ ),q.

This, in turn, may affect the accuracy of the result (2.17)
for finite temperatures but will not change (2.18) [(2.11)
evaluated in the symmetric gauge with hag ——0 leads to the
same results ].

A similar reasoning can be applied to electron-electron
interaction if one works in the relative frame of Ref. 28.
For an exact treatment at zero temperature, see Ref. 7.

Before closing this section we note that the result (2.17)
can be cast into a collision broadened version as follows:
%'e write

where I ~ is the width of the level c~. In contrast to
(2.17), however, (3.5) reproduces poorly, as far as accuracy
is concerned, the zero temperature limit (3.1) for I"& pro-
portional to kT. Whereas in (2.17) the terms N'&N do
not contribute at all, in (3.5) they do. For example, setting
sz —E& ——bI"z leads, for ez in the middle of the gap, to a
ratio roughly 10(N+ 1), for b & 2, between the ¹hand
the (N —1)th terms. This indicates that the Lorentzian
approximation of the 5 function and the replacement of
Ez by Ez in the factor (1 f&+~)l—(I f~) are—only ap-
proximately correct.

The temperature behavior of the plateau widths can
be deduced directly from the exact result (2.17). At
T =0, we have the sharp steps expressed by (3.1); as the
temperature increases, provided that e « 1, fz+ &

—0
and the terms X' &X do not contribute, the plateaus be-
tween the various levels increase due to the "washing-out"
of the Fermi step function fz', see also Ref. 22 for per-
colation arguments.

IV. FURTHER REMARKS AND CONCLUSIONS

In order to arrive at (3.1) and (3.2) it was sufficient to
assume that the Fermi level lies in a region of localized
states without discussing how, if at all, the assumed weak
interaction potentials A, V do pin it there; this has been dis-
cussed recently by Joynt and Prange, ' whose estimates
show that the potentials A, V are close to being weak;
a posteriori evidence for that is, of course, the fact that
the effect has been observed in good (i.e., elean) samples
but not in poor ones.

We have also assumed that one or both spin states of a
Landau level were fully occupied; this is equivalent to say-
ing that the occupation fraction v=2mnol is an integer.
If, however, the Fermi level lies within, say, the lower
spin level, then v& 1, and the above analysis does not ap-
ply; this is the case of the fractional quantum Hall ef-
fect."

The physical reason is that the Landau levels are (high-
ly) degenerate and h=c~ —E~ in (2.11) vanishes, if g~, g2

refer to the same Landau level. This degeneracy, associat-
ed with zero conductivity, as given by (2.11), must be lift-
ed before one hopes to account for transport effects when
v&1, or else independent electron theories cannot deal
with the case v&1.

As is well known, ' electron-electron correlations and
many-body effects can account quite well for the fraction-
al Hall effect (v & 1).

Now the Boltzmann equation misses the correlations
between particles although it contains a many-body effect
(collision integral). These correlations can be treated to
first order by a transport equation for (ng, ,n~ )„g~&g2
[cf. Eq. (1.2)] involving electron-electron interaction ex-
plicitly; its derivation is a straightforward extension of
previous work. ' %'e plan to use this equation for the
fractional Hall effect; work is in progress.
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In summary, using a quantum Boltzmann equation, we
have arrived at an exact result for the conductivity o.„~ in
two dimensions, valid for all temperatures and indepen-
dent of the interaction potentials. The zero temperature
limit and the finite temperature deviations have been easi-
ly evaluated and are in reasonable agreement with experi-
ment for an integer Landau level filling factor A, . We ex-
pect that the formalism will also work for v & l.
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of the eigenfunctions, that o.

yz os 0, which implies
cr~„=O, as previously [see Eq. (2.5)].
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