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Spectral analysis of adsorbate induced field-emission flicker noise
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Spectral analysis of field-emission flicker noise is developed for a probe current originating from a
portion of a single (hkl) plane of the emitter. The current noise is related to equilibrium absorbate
density Auctuations in the probed region with the total number of net plane adatoms constant. The
noise spectrum factors as S(co)=S„(cu)+S~(co) when the finite size of the net plane is accounted
for. The spectrum due to unbounded diffusion S„(co) is proportional to one derived in Burgess s
model of semiconductor contact noise. The boundary-effect contribution Sz(co) increases
dS(co)/de at low frequency, whereas anisotropic diffusion decreases it.

INTRODUCTION

Numerous mechanisms have been proposed to explain
flicker (1/f) noise. Theories have developed spectral-
density functions from nonstationary processes, ' motion
in a random potential, and diffusion-mediated two-site
switching. ' Investigations of contact noise in semicon-
ductors by Richardson, MacFarlane, and van der Ziel"
led to the development of flicker spectra from diffusion
processes. These analyses were, in turn, based on
Smoluchowski's theory of density fluctuations. ' Since
then, many studies have developed autocorrelation func-
tions that are proportional to Smoluchowski's probability
after-effect factor

P, =l —A~
' f dr& f„dr26(r&, t;r~),

P P

where the density or temperature is taken as the random
variable, G(r~, t;r2) is the Green function for the dif-
fusion equation, and Az is the probed region. ' These
theories implicitly assume fluctuations occur at equilibri-
um and are linear and time reversible on a microscopic
scale.

The present study develops the spectral analysis of
field-emission flicker noise associated with adsorbate dif-
fusion over a single (hkl) plane of the emitter, including
the effect of net plane boundaries and anisotropic dif-
fusion. Because equilibrium density fluctuations induce
the observed current noise, this analysis has close connec-
tions with the above-mentioned studies based on a dif-
fusion mechanism. These systems belong to a canonical
ensemble, here meaning they are closed with respect to the
number of net plane adatoms. Only totally reflecting
boundaries are consistent with the assumption of equili-
brium density fluctuations occurring on a finite-size net
(hkl) plane. To maintain equilibrium with absorbing or
partially reflecting boundaries requires additional sources
in the diffusion equation. Introducing these fundamental-
ly changes the processes assumed to cause the noise, e.g.,
an additional mechanism such as evaporation-
condensation mould then have to be included. Such modi-
fications are not considered here.

Factors related to the Fowler-Nordheim (FN) equation,

and thus specific to the field-emission process, are con-
sidered in Sec. II, where an integral equation for R (t) is
developed similar to ones derived by Lax' and by van
Vliet and Fassett. ' The system is assumed not to be
dominated by critical fluctuations, and thus the noise
spectrum S(co) can be evaluated using G(r~, t;r2) and a
simplified version of the pair covariance C(r~, r2). In this
regime interactions affect diffusivity but do not alter the
time dependence of G(r~, t;r2). Therefore, a dimension-
less expression for S(co) can be written that is not expli-
citly dependent on the interactions.

The influence of probe —net plane geometry on the
structure of R(t) and S(co) is investigated in Sec. III.
Certain geometries simplify the expressions for R (t) and
S(co) and also determine the form the total noise power
takes. In general, finding the explicit representation is
difficult. A closed solution is derived for S(co) including
the effect of the finite size of the net ( hkl) plane when the
probed and net plane regions are concentric circles. When
a square net plane and probe geometry is assumed, R (t)
reduces to an expression derived by Gomer and co-
workers. ' ' It is shown in Sec. IV that the total noise
power must vanish when the probe and net (hkl) areas are
equal independent of their particular geometries. This
condition is characteristic of the canonical ensemble.

In the absence of net plane boundaries the autocorrela-
tion functions for both circular and square probe
geometries are reduced to one proportional to the after-
effect factor P, . The solution for P, was originally stated
by Smoluchowski for the case of a circular probed re-
gion. An explicit derivation of I', is provided in Sec. V
to eliminate confusion resulting from a misstated formula
given by Chandrasekhar that was later adopted by
MacFarlane in his analysis of the corresponding S„(co).
MacFarlane's S (co) has also been used by Saitou et al.
in their study of field-emission noise. ' Excluding the
prefactor specific to the field-emission process, the correct
spectrum for unbounded diffusion, S (co), is similar to
one stated by Burgess' and subsequently used in the
study of Timm and van der Ziel. " The S (co) derived in
the present work corresponds precisely to the autocorrela-
tion function employed by Gomer and co-workers in their
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study of the diffusion coefficient. '

The expression for S(a3), including the boundary effect,
is derived in Sec. VI. Its functional form eliminates criti-
cisms that the diffusion process is inadequate for describ-
ing flicker noise of certain adsorbate systems. "' lt is
noted, however, that early experiments have not provided
a stringent test of the theory. More recent spectral-
density measurements of K/W(111) using the probe-hole
method corroborate the diffusion mechanism.

Anisotropic diffusion is considered in Sec. VII. Here
the limiting case of purely one-dimensional motion is
solved analytically and found to increase the low-
frequency portion of S (a) ).

II. THE FIELD-EMISSION AUTOCORRELATION
FUNCTION

Kleint's adsorption-desorption theory attempted to
explain the early experimental measurements of field-
emission flicker noise by Kleint and Gasse. However,
Tim and van der Ziel provided the first spectral analysis
of adsorbate induced noise that included the FN equa-
tion. " They considered diffusive adsorbate motion over
an infinite planar surface with site-exclusion interactions
only. The use of a probe technique to detect adsorbate
density fluctuations on a single (hkl) plane along with a
more precise analysis of the FN equation and field-
emission noise in the time domain has since been carried
out by Gomer and Chen. ' ' Mazenko, Banavar, and Go-
mer extended the fluctuation theory to include fully in-
teracting systems. ' Their study demonstrated that a
density-dependent surface-diffusion coefficient D (n) is
derivable from the field-emission —current auto-
correlation-function, R(t), measurement of equilibrium
density fluctuations.

We begin by deriving a general integral equation for the
field-emission —current autocorrelation. The field-emis-
sion —current density j (amps/cm ) is described by the
Fowler-Nordheim equation

r

j =BF exp
—6.8)& 10 U 3/2

where E is the electric field in V/cm, u an image-
correction term, P the work function in eV,

B =6.2X10 (p/P)'/'/u'(P+p),

and p the Fermi level. The factor 8 is insensitive to
work-function fluctuations compared to the exponential
term, and henceforth is considered constant.

From Eq. (1) the current fluctuation 5i (t)—:i (t) —&i ) is
given by

5/=5(()„+c 5n,
where c =2m aF, the relative current fluctuation

ci+c2(BQ/Bn)
5)V

P

(5)

(6)

follows from Eq. (2) with ci ——c c2, c2 ———,'a(P)', and
5$„=(BJ/()n)5n. By using Eq. (6) the relative field-
emission —current autocorrelation

(5i (t)5i(0) )Rt=
&i)

~ 2

becomes

ci+cz(B /dn)
& (t) = (5N(t)5N(0) ),

Ap
(7)

where 5N(t) is the equilibrium fluctuation in particle
number of the probed area A~ at time t.

Several comments are necessary about the term BP/Bn.
Cromer has noted that since field emission is governed by
the potential to -5.0 A from the surface, it is possible to
have an adatom outside the probed region influence emis-
sion within it. ' This effect can be approximated by

5(b = [wh (n ) +c ]5n, (8)

where the factor R is the average contribution per adparti-
cle to the potential energy -5.0 A above the probed re-
gion and

~

h (n)
~

& 1 is a dimensionless function describ-
ing dipole depolarization. In Gomer's analysis R appears
inside the particle-number autocorrelation (N (t)N (0) )
because it is really a function of position within the
probed area Az. If density fluctuations outside Az do not
affect the probed current, then R can be written in the
simple form, w=23rp, where (M is the permanent dipole
moment of the adatom. The approximation becomes ex-
act when the probed radius rz »5.0 A (Ref. 12) or when
the permanent dipole moment is small, in which case the
polarizability term dominates. This happens for a phy-
sisorbed system such as Xe/W. -

In general, w influences the value of D (n) by increasing
the effective probed radius rz, but does not change the
time dependence of the autocorrelation. ' Therefore,
keeping in mind that a systematic error may exist in the
estimation of D (n), Eq. (7) can be written

R (t)= Cp~(5N(t)5N(0)), (9)

P„ is the zero-field work function, and u is the polariza-
bility per adatom.

With the work-function fluctuation 5$—:P —(P), Eq.
(2) is approximated to first order as

.
' =-,'a&y)'/25',

assuming 5$ « (P ). Noting from Eq. (3) that

where (i ) = (j )A~ is the equilibrium current and
a = —6. 8&& 10 u/F. The work function P =P(F,n) is
dependent on the field F and adatom density n =N/Az,
N is the number of adatoms in probed area Az ——~rz,

where

c i +2vrph (n)c2
2

$=$„+2vraFn, For a fixed value of adsorbate density, h (n) is constant
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and does not influence the spectral analysis. Several
models relate mutual depolarization to work function, and
so an expression for h(n) could be included in Eq.
(8). ' Although the density dependence of the auto-
correlation function as expressed through h (n) is not of
primary importance here, it does induce one notable noise
effect. For a chemisorbed system, e.g., an alkali-metal ad-
sorbate on a refractory-metal substrate, P(n), exhibits a
distinct minimum, i.e., BPIBn

~ ~
——0 and h(n;„)=0.

Under this condition Eq. (7) implies

=c ((5n) )

The relative mean-square current fluctuation is often
greatly reduced since the polarizability term c~ is usually
much smaller than the other term involving the dipole
moment. An example of this reduction in noise power at
the work-function minimum can be found in a study of
K/W (Fig. 1 of Ref. 30).

The particle number in the probed area Az, expressed in
terms of the local density n (r, t), is

N(t) = f n(r, t)dr . (10)

Hence, Eq. (9) becomes

R (t) =CFN f„ f„(5n(ri, t)5n(rz, O) )dridrz, (11)
P P

where the integrand of Eq. (11) is the two-point (pair) au-
tocovariance of the density fIuctuation. The classical ex-
pression is

(5n (ri, t)5n(rz, O) ) = dr36(li t I3)C(rz, r3), (12)
A~

where G(ri, t;r3) is the Green function for the diffusion
equation, the integration is over the net plane area Az,
and

C(rz, r3) = (5n(rz)5n(r3) & (13)

III. KARHUNEN-LOEVE EXPANSION

In this section we evaluate R (t), as expressed by Eq.
(14), in terms of its properties as an integral equation.
The analysis will show that, excluding critical fluctua-
tions, a correlationless pair covariance always exists. This
simplifies the form of R(t), although in practice it is
often difficult to find the proper linear transformation.
However, a specific example is given in Sec. VI which
yields a closed solution for the spectrum S(~). The ex-
pressions for R (t) and the total noise power are dependent
on system geometry.

Consider the following homogeneous Fredholm equa-
tion of the second kind,

P„(ri)= f„drzC(ri, rz)P„(rz), (15)

is the pair-covariance function. ' ' Combining Eqs. (11)
and (12) leads to the following general form of the field-
emission autocorrelation function:

R(t)=C» f, dri f„drz f dr36(ri t 13)C(rzr3) .
P P T

(14)

and note that the kernel C(r„rz) as defined by Eq. (13) is
real-valued and symmetric, i.e.,

C(ri, rz)=C(rz, ri) . (16)

((5n) ) =(n) kT~r/A~,

one can find a constant

c =(&n &zkTar/Aran)'",

such that for all 5n (ri),

/
T[5n(ri)]

/
(c//5n(ri)/[,

where the norm is defined
' 1/2

~~5n(ri)~~—:f„drz&(5n) &

(17)

(18)

=[A ((5n) )]' '

and ar is the isothermal compressibility. Equation (18)
demonstrates that T is bounded as long as ~z is finite.
Using the theorem that boundedness and continuity are
equivalent for linear functionals ensures that C(ri, rz) is
continuous.

The kernel is nondegenerate as it is not expressible as a
finite sum of separable functions

C(ri, rz)&g ct;(ri)P;(rz) .
i=]

The multivariable density function implicit in
(5n(ri)5n(rz)) is not of this form because for bounded
regions r& is statistically dependent on r2 even in the ab-
sence of critical fluctuations.

The following theorem can then be applied to the kernel
C(ri, rz): "Every continuous, symmetric kernel that
does not vanish identically possesses eigenvalues and
eigenfunctions; their number is denumerably infinite if
and only if the kernel is nondegenerate. All eigenvalues of
a real symmetric kernel are real. " Therefore, the set IP„ I
exists, is denumerably infinite, and can serve as a basis for
functions defined over the area Ar. Given the existence
of a basis set [P„I over Az the Green function in Eq. (14)
can be expanded as

G(ri, t;r3)= g a„P„(r3) .
n=l

(19)

Substituting Eq. (19) into (14) leads to

R(t)=CFN((5N)z&A~ ' f dr, f„drzG(ri, t;rz) . (20)
P P

Given that the system is not at the critical point, C(ri, rz)
is continuous. To prove continuity the inequality

((5n)z) & C(ri rz)

is used, which is a general property of stationary or homo-
geneous random functions. ' By considering C(ri, rz) to
be a linear functional T[5n(ri)], with parameter ri, on
5n(rz),

T [5n(ri)] = (5n(ri)5n(rz) ),
and noting the thermodynamic-fluctuation-theory result
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C(r, r)= g ~(t„(t) i'.
n=1

(22)

The kernel C(ri, rz) satisfies Mercer's theorem, which
states "If C(ri, rz) is a definite continuous kernel then
the expansion given by Eq. (22) is valid and converges ab-
solutely and uniformly. " This theorem ensures the con-
vergence of Eq. (21).

This proves that a reduction of the integral equation for
R(t) occurs with a special representation of G(ri, t;rz).
The existence and completeness of the basis set I P„ I cor-
responding to this representation is demonstrated by
recognizing C(ri, rz) to be a nondegenerate symmetric
kernel of a homogeneous Fredholm integral equation.
Representing G(r„t;rz) by this particular basis is
equivalent to a KL expansion of the density fluctuation
5n(r). This induces a linear transformation that yields a
correlationless pair covariance.

Excluding the constant CFN, Eq. (20) is analogous to
Eq. (4) of van Vliet and Chenette, although they as-
sumed that a sufficient condition for its derivation occurs
when there is zero correlation for

i ri —rz i »p, where p
is the correlation length. ' The above development shows
that an additional requirement is that the eigenfunctions
used in Eq. (19) correspond to a basis set of a KL expan-
sion of the density, Eq. (21). However, their original
analysis remains valid because a circular probe was as-
sumed, and Sec. VI shows that the conditions leading to
Eq. (20) are satisfied for this geometry. Note that for
square geometries a natural decomposition of G(ri, t;rz)
as a KL series does not occur. This modifies the integral
equation involving R (t). These geometry-dependent
modifications in R(t) are required to account for the
probe-area dependence of the noise power as clari'fied in
the following section. Specifically, the noise power must
be zero when the probed and net plane areas are equal.
This condition is independent of probe —net plane
geometry and characteristic of a closed system.

I

This decomposition is equivalent to a Karhunen-Loeve
(KL) expansion ' ' of 5n (rz) as shown by writing

5n(rz)= g b„(ti„(rz) . (21)
n=1

The random coefficients b„have the properties &b„)=0
and & ib„ i ) =1. They are orthogonal since solutions

IP„I exist which satisfy Eq. (15). ' The right-hand side
of Eq. (21) converges in the mean-square sense to 5n(rz) if
the kernel is of the form '

IV. CORRELATION EFFECTS

The influence of net plane boundaries and critical fluc-
tuations on the pair covariance C(ri, rz) is now con-
sidered, assuming reflecting boundaries exist on the per-
imeter of the net plane and that they exert a negligible af-
fect on the critical fluctuations. The pair covariance is
then written

C( ri, rz) =Cti+ C&,

where

(23)

C~=a &(M )') [5(r, —r, ) —&T ] (24)

is the correlation boundary effect. ' Critical fluctuations
are excluded from the present study, which iin plies

Cz ——0. To find the condition under which this assump-
tion is valid, the Fourier transform of the two-
dimensional density fluctuation

5n(r) =g e'"'5n(k)
k

(25)

& i
5n(k) i') =(di+dzk')

Equations (17) and (27) yield

di ——&n ) kTi(T/A~ .

The Fourier transform of Eq. (27) is

Cz(R) =(2irdz) 'Ep(R/p),

(27)

(2g)

(29)

where the area is assumed large enough to replace summa-
tion by integration, R =

i ri —rz
~

Kp is the zero-order
modified Bessel function, and p=(dz/di)' . The asymp-
totic expansion of Eq. (29) is

lim C —(p/R )
' ePR/P —+ 00

Thus, critical fluctuations are negligible when Az »p .
Assuming this holds, then Cz ——0 and substitution of Eq.
(24) into (14) yields

and the probability density function for the Fourier com-
ponent 5n(k) in mean-field approximation3

(k)] d
—(d|+dzk )

i
Bn(k)

i
/2

are used, where dp is a normalization constant and di, dz
are coefficients resulting from the density-fluctuation ex-
pansion of the thermodynamic potential. Use of the de-
fining relation for the k-space covariance of the density
fluctuation and Eq. (26) leads to

(30)

(32)

T

R(t)=CFNA~ '&(5Ã) ) f„dri f„drz G(ri, t;rz) —Az
' f„dr3G(Ii t I3)

P P "T
If the net plane, with reflecting boundary, and probed regions are squares of area 4b and 4a, respectively, and cen-

tered at the origin, then the Careen function is

2 00
2

G(ri I rz)= + g e 'y, (x i)y, (xz) (31)
i =1 n=0

where A, =(i'/b), y„(x)=(e„/2b)'i cos(mnx/b), and e„—:1(2) if n =0 (n&0) is the Neumann factor Combinin. g
Eqs. (31) and (30) results in

R (t)= CFN&(5N) ) Aq
' f f„G(ri,t;rz)dridrz —Aq/AT

P P
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Equation (32) is equal to the autocorrelation function Cxo-

mer and co-workers obtained by other means. ' ' '
The factor Ap/AT is a result of the boundary effect.

Its physical significance is clarified by considering the rel-
ative noise power P = S (f)df, which is also given by

0

P =2R(0) . (33)

V. UNBOUNDED DIFFUSION SPECTRUM

Using Eqs. (32) and (33) the relative field-emission
flicker-noise power becomes

P =2CpN((5N) )(1—Aq/AT) .

Thus, in the limit A&~AT, the noise power approaches
zero. The reason is that fluctuations occur in this system
only when particles diffuse in or out of the probed region
A&, which is impossible when Az

——AT. This condition
holds whenever adsorbate induced flicker noise occurs in a
closed system and will be used in Sec. VI to check the va-
lidity of the spectral density derived for the case of a cir-
cular net plane. The autocorrelation function derived by
Reed and Ehrlich does not have this property. That the
autocorrelation functions given by Eqs. (20) and (32) are
not equivalent is due to the system geometry. The yn(x)
in Eq. (31) constitute a Fourier series, which do not form
a basis in a Karhunen-Loeve expansion. ' Thus, one can- .

not substitute Eq. (31) into (20) and obtain the proper ex-
pression for the noise power, Eq. (34), since the factor
Ap/AT would be missing.

It is also noted in passing that the total field-emission
noise power is really a sum of Eq. (34) and the shot-noise
term 2eIbfb~, where bfb~ is the bandwidth of the spec-
trum analyzer. However, this last term will be dropped
from further discussion.

for an otherwise noninteracting adsorbate lattice gas.
Also, another method is suggested for deriving D (n) from
S(to) for a fully interacting adsorbate system.

In the limit AT~ go, Eqs. (20) s,'nd (32) become identi-
cal and are related to Smoluchowski's probability after-
effect factor since

e'J (2v xz ) =(xz) g [I (n +a+1)] 'L„(x)z", (38)
n=0

casts Eq. (37) in the form
ao

( a2 )tt

P, =g, f, dxe "L„(x) .n+1! a' (39)

R (t) =CpN ((5N) ) [1 P, (t—)] .

Specifically,

CpN((5N) ) —!r, r, j'—/4DtR(t)=
A

dr]
A

dr2e
't

'

Ap4mDt ~p

(35)

Equation (35) can be evaluated in closed form by
transforming to polar coordinates. The factor P, becomes

P, (t) = f, dx e "f dw e Io(2&xw ), (36)

where a =rz/4Dt and Ic is the zeroth-order modified
Bessel function. The integrand of Eq. (36) can be ex-
pressed as the Bessel function Jo, hence,

P, = f dx f dwe '"+ 'Jo(2v'x( —w)) . (37)
~2 ~2 0

Expanding the ath-order Bessel function as a sum of
Laguerre polynomials,

The noise spectrum S(tt~) is now developed in the ab-
sence of net plane boundaries. First, an explicit derivation
of the after-effect factor P, is provided to eliminate con-
fusion over several erroneous formulations. ' ' ' Then, the
correct form of S(co) is given when site exclusion occurs

I

The integral in Eq. (39) is given by

f e rL„(y)dy =e "[L„(x)—L„)(x)].

Combining Eqs. (40) and (39) leads to

(40)

( a2)n
P, =e 1+x+ g [(n+1)L„(x)+nL„&(x)+(x—n)L„(x)]n+1! (41)

With the aid of the recursion relation

xLn'(x) =nL„,(x)+(x —n)L„(x),

Eq. (41) becomes

ao
( a2)tt ao

( a2)n
P, =e g L„(a )+a g, L„'(a )

(42)

Substituting Eq. (38) into (43) yields

P, =e [Io(2a )+I)(2a )] .

As noted in the Introduction, the value of the argument a has been the source of confusion, although Eq. (44) was first
stated long ago by Smoluchowski.

Using Eq. (44) the field-emission —current autocorrelation, Eq. (35), can be written

R(t)=CpN((5N) ) I 1 —e [Io(2a )+I)(2a )]j . (45)
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The asymptotic expansion of Eq. (45) is

lim R(t)-CpN((5N) )(rp/4Dt) .
f~ce

This expansion, also derivable directly from Eq. (35), determines D (n) when noise measurements are made in the time
domain. '2' ' Using the Wiener-Khinchin (WK) theorem, the spectral density corresponding to Eq. (45) is

8' ber&(up )'~ kepi(uz )'~ +hei&(up )' keri(uz )'
S (co)=CpN((5N) ) (46)

P

The subscript oo is a reminder that the diffusive motion is
unbounded, up =corp/D, and beri, beii, kei&, ker& are Kelvin
functions. The term in curly braces was first given by
Burgess' and later by van Vliet and Chenette. The Eq.
(46) spectrum also corresponds to the field-
emission —current autocorrelation function developed by
Mazenko, Banavar, and Gomer. '

If the adsorbate is represented as a noninteracting lat-
tice gas with site exclusion, then

00

G ( ri, ~,rz) = G (ri, t;rz)e' 'dt .
0

To prove that the representation of G(ri, co;rz) yields a
correlationless C(ri, rz), it is sufficient to show

Re dr3G(ri, co;r3) =0 . (51)
Ag

Then the spectrum derived from Eq. (30) will be equal to
that obtained. from Eq. (20). The function G(r&, t;rz) sat-
isfies

((5N) ) = (n )Ap(1 —A), (47)

where A,
—=nao and ao is the lattice constant. Note that

limp 0((5N) ) = (N ), which is characteristic of ideal-gas
behavior. In this case Eq. (46) yields a spectrum similar
to that of Timm and van der Ziel, "except they mistaken-
ly inserted an additional factor of X into Eq. (47).

The low- and high-frequency limits of Eq. (46) are,
respectively,

DV G—(ri, t;rz) =5(ri —rz)5(t),

and G(ri, co;rz) solves

(V +k )G (r&,co;rz) = ——5(r, —rz),2 2

with the Neumann boundary condition

(52)

(53)

lim S (co)=CpN((5N) )r&D 'ln(D/rico)
60~0

(48) a
G (r, ,co;rz) =0,

n
(54)

and

lim S (co)=2' CpN((5N) )D' (49)
where k = iso/D and—8/Bn is the normal derivative
evaluated at the boundary. Expanding G(ri, co;rz) as

Recent measurements of K/W(111) show a good fit to Eq.
(46). Comparison of the theoretical and experimental
curves allows'a value of D (n) to be obtained in two ways.
The most direct method is to compare abscissas, which,
assuming rp is known, leads directly to D (n); The second
method is to compare ordinates and introduce a value for
CpN((5N) ), which is obtainable by a measurement of
the total noise power P. This determines D(n) as it is the
only remaining variable.

G(ri to r2) y pk (ri r2)e
I {m) ™P)—$2)

2m

and then substituting Eq. (55) into (53) leads to

1
" tm(y, y, ) ~ —pk 1 dpk

(m) (m)

2
k2 (m)

Pk

(55)

VI. BOUNDED DIFFUSION SPECTRUM

In this section a closed-form solution for the spectral-
density function including the boundary effect is derived.
The net plane and probed region are taken to be concen-
tric circles with radii r, and r~, respectively. Physically,
the bounded area plane corresponds to the chosen (hkl)
plane of the emitter. For this geometry, the form of the
Green function is shown to be equivalent to a KL expan-
sion of 5n The spectra. l density will then be found by ap-
plying the WK theorem to Eq. (20):

S(co)=4CpN((5N) )Ap 'Re f„ f G(r&, c0;rz)dr&drz,
P P

r2)5((t'1 (t'2)
(56)

Dr(

where z1 ——kr
&

and z2 ——kr2, results in
r1, m —1

p "+ p'+ 1—,p = 5(ri —rz).
Zi Z i Dkz]

(57)

—in (p& —iI|2)
Operating on Eq. (56) with f dPe ' ' and defin-

0
1ng

pm(zl~zz) pk ( l, rzr) ~

(m)

where

(50) Here the single and double primes represent 8/Bz and
8 /Bz, respectively, and p satisfies Bessel's equation.
The Eq. (55) expansion must also be substituted into the
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Eq. (54) boundary condition, which yields

pm(zl z2)m =0. (58)

The reciprocity relation for the Green function requires
that the solution to Eq. (57) be written

—1
p (z~,zq)= y&(kr& )y2(kr& ), (59)

where r& (r& ) is the lesser (greater) of r& and r2. The
Wronskian W(y&,yz) is evaluated at rq ——rz, and y~ and
yz must satisfy the boundary conditions at r& ——0 and
r & r, . T——he finiteness of G at r &

——0 implies

The %'ronskian is then equal to

W(y &,y2) =2iBlmr. . (63)

The function y2 must be bounded as r &
—+ ao, which re-

quires r2 to have the form

y2(kr& )=AJ~(kr& )+BH~"(kr& ), (61)

where H'" is the mth-order Hankel function of the first
kind. A and B are determined by the boundary condition
(c)/c)r)yz(r)

~
„„=0,and so

kH'" ~(kr, )—(m lr, )H"'(kr, )

kJ )(kr, ) (ml—r, )J (kr, )

y~ J(kr——&) . (60) Equation (59) becomes

I

kH~ '
&
(kr, ) (m l—r, )H~ (kr, )

p~(kr~, kr2)= J~(kr& )H (kr& )—J~(kr& )J (kr& ) (64)

Combining Eqs. (55) and (64) leads to

dr3G(r~, co;r3)=calico . (65)
AT

Thus, Eq. (51) holds, which proves that the expression for G (r&,co;rz), as given by Eqs. (55) and (64), does correspond
to a Karhunen-Loeve expansion of 5n (r). Substituting Eqs. (55) and (64) into (50) leads to the following expression for
the spectral density,

S(co)=S (co)+Sg(co),

where

Sn. CFN((5N) )S (co)= Re i f dr r &H&c"(kr )f&dr&r& Jc(kr&)
ATD p & ) p

and

SmCFN((5N) ). iHI '(kr, ) "~ ")
Sg(co) = Re

' f dr&r&JO(kr&) f dr&r&JO(kr&) .
ATD

(66)

(67)

(68)

Evaluation of Eq. (67) leads to Eq. (46). Equation (68) describes the S(co) boundary effect. The Eq. (66) factorization is
a general result independent of the net plane geometry, which arises from the possibility of separating the Green function
into a source and a boundary term. Performing the integrations in Eq. (68) yields

4mrpCFN(, (5. N) )
S~(co)= Re

iH'&" (kr, )

J)(kr, )

J)(kryo)

kryo

A check on S~(co) is obtained by noting

lim Sg(co)=0.
r, oo

Equation 69 reduces to( )

S~(co)=[SCFN((5N) )rzuz 'D '][ber&(u, )' +beif(u, )' ]
&& I [her~(uz)'~ —bei&(u~)' ][kei&(u, )' ber&(u, )' —ker&(u, )'~ bei&(u, )'~ ]

+2[ber&(uz)'~ bei, (uz)'~ ][ker&(u, )'~ ber&(u, )'~ +kei&(u, )' bei&(u, )' ]J,

(70)

lim S(co)=0 . (72)

where u,:cor, ID. Comparing E—qs. (46) and (71) shows
that for all frequencies

(73)

As discussed earlier with regards to the total noise power,
Eq. (72) is a necessary condition that must be obeyed by a
closed diffusive system. Furthermore,

lim Sz(co)=CFN((5N) )r&D '1nuT .
co—+0
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Combining Eqs. (48), (66), and (73) results in

lim S(co)=2CpN((5N) )r»D 'ln(r, /rz) .
CiP —+0

(74)

Equation (74) shows that in the low-frequency limit the
spectrum for a bounded net plane is constant. This con-
clusion has also been arrived at by different means for the
case of one-dimensional diffusion by van Vliet and
Fassett' and by van Vliet and van der Ziel, who argued
within the general framework of Richardson's theory that
a constant low-frequency spectrum would result from
placing a lower bound on vectors in k space.

The presence of the boundary removes the low-
frequency logarithmic divergence of S(co). This negates
the argument that a diffusion process cannot produce a
constant low-frequency spectrum as is found experimen-
tally for K/W. ' However, it must be noted that a clear
refutation of the model was never really provided by these
experiments as they did not conform to the assumptions
of the theory. Neither study probed a portion of a single-
crystal plane, and in one case the adsorbate was in equili-
brium with its vapor, which requires analysis using a
grand-canonical ensemble.

With the aid of Fqs. (49) and (66), the asymptotic ex-
pansion of Eq. (71) yields

lim S(a))=2 D' CpN((5N) }

for the unbounded system. Physically, this is because ap-
preciable adatom interaction with the boundary is not al-
lowed on such a small timescale.

Figure 1 graphs the spectra S (co) and S(co) given,
respectively, by Eqs. (46) and (66). S(co) is plotted for
several different r'atios of the net plane to probed-area
radii r, /rz ——1.5, 2, 3, and 10. The presence of the
boundary reduces the noise power in the low-frequency re-
gime.

VII. ANISOTROPIC DIFFUSION

The preceding sections assume two-dimensional adsor-
bate diffusion is isotropic. However, certain substrate sys-
tems exist, e.g., bcc (211) planes, that are known to induce
anisotropy in the diffusive adatom motion. The relation
between a diffusion tensor and the field-emission auto-
correlation function has been worked out by Bowman
et aI. ' This section considers what influence such
behavior has on the unbounded spectral density.

If a square region of the net plane is probed, the Eq.
(35) autocorrelation can be factored as

R (t) =R" (t)R» (r) .

The superscript C3 is a reminder that a square probe is
used,

3/2 l r, r)+2'/D )— —
p

P

When up »1/2(1 —r, /rz), then S(co)—+S (co), i.e., Eq.
(75) reduces to a co / dependence equivalent to Eq. (49)

R'„(t)= C„((5N)'&
l 4+a, t

Io 0
SCV

A

4Q
V
z'
~ io'

CO

C)

CO

IO-2

I I I I I III) I I I I I Ills

1D

QO

I I I I l Ills I I I I I I I4.
and /; is the length of the probed region in the ith direc-
tion (i =x,y). D; denotes the corresponding diffusion
coefficient. The spectrum is then

S (co)=S" (co) e S» (co),

where e denotes the convolution product and S' (co) is
the spectrum corresponding to the one-dimensional
R' (t). In general, this results in a complicated expres-
sion for S (co). By treating the limit of one-dimensional
(1D) diffusion, i.e., D»/D„=O, with no boundaries, the ef-
fect of channeled motion on the noise can be demonstrat-
ed. Restricting adatom motion to the x direction reduces
Eq. (76) to

R' (t)=[CpN((5N) )]' R" (t) .

The superscript 1D shows that the spectrum results from
one-dimensional motion. Application of the Wiener-
Khinchin theorem yields

lOo

u&=~a& /02
io( lo2 S'„(Q)=CpN((5N) )I„D 'Q [1—e (cosQ+sinQ)],

FKx. 1. Graph of the normahzed spectra for unbounded dif-
fusion S„{u~ ) with probe radius r~, bounded diffusion
S(u~; r, /r~=1. 5,2, 3, 10) with net plane radius r„and un-
bounded one-dimensional diffusion S' (uz ) with a square probe
of length 1„. The latter quantity is plotted assuming lz Kpp.
See Eqs. (46), (66), (71), and (78) for the functional forms.

and Q=i (~/2D)'/2. The frequency dependence due to
one-dimensional diffusion has been given previously by.
Burgess'0 and Voss and Clarke. ' Equation (78) is
graphed in Fig. 1 assuming I„=mrp. This results in
equality of the scaled noise power P/((5N) ) for circular
and square probed regions. The normalization allows for



32 SPECTRAL ANALYSIS OF ADSORBATE INDUCED FIELD-. . . 7711

((5N) }l„
lim S' (co)=4CFN

o
" 3(Dr))'~

(79)

' 1/2

lim S'„(co)=CFN((5N)'}
N~ ce l~ co

possible anisotropy in ((5N) },which has been observed
by measuring R (0) with a narrow rectangular probe.

To compare one- and two-dimensional motion using
S' and S„,respectively, it is necessary to show that the
probe geometry has a negligible effect on the frequency
dependence of .S, because in the latter case a circular
probe was assumed for the calculation. The ambiguity is
removed by first noting

Comparison of Eqs. (49) and (80) yields

S (co)
1)m

m~~ S (~)

Thus, excluding a numerical factor, the high-frequency
dependence of the flicker noise is of probe geometry. This
is a characteristic property of diffusion processes. ' The
high-frequency noise component is one dimensional in na-
ture.

It is now shown that the low-frequency limit of Eq.
(77}, i.e., the spectrum corresponding to a square probe, is
the same as that obtained in Eq. (48) for the case of a cir-
cular probe. For a square probe Az

——l„and Eq. (77) be-
comes

CFN((5N) ) 8 &»» '»
S (co)= f "dx f dz f "dy f du. ker([co(z +u )/D]'~ } .

P

Equation (82) can be written

CFN ((5N) } 16 '» '» tan —'(y/»)S (co)= dx dy de dv r ker(ar),
o o o 0

(82)

(83)

where a=v'co/D and r—:(z +u )'~. For low frequen-
cies Eq. (83) becomes

S„(co)D 1 4
lim 2

———ln— (84)
0 8CFN((5N) }r 4 ~ d'or

Comparing of Eqs. (48) and (84) coupled with Eq. (81)
demonstrates that probe geometry has a negligible effect
on the spectra, and therefore one can use SP and S to
represent the limiting cases of one- and two-dimensional
diffusion. Figure 1 illustrates that one-dimensional
motion increases the noise power in the low-frequency
band of the spectrum.

VIII. SUMMARY

The aim of this paper has been to analyze the spectrum
of field-emission flicker noise induced by equilibrium ad-
sorbate density fluctuations in a canonical ensemble. The
relative field-emission —current autocorrelation function
R (t) is a product of two factors. One contains terms re-
lated to the Fowler-Nordheim equation, CFN, and the
second is the autocorrelation of the total adparticle num-
ber within the probed region, (5N(t)5N(0) },Eq. (9). A
general expression for R (t) has been derived that contains
the Crreen function for the diffusion equation G(r~, t;r2)
and the pair covariance of the density fluctuations
C(r~, rz), Eq. (14). This expression is simplified using
several results from the theory of integral equations,

where C(r&, r2) is taken as the kernel. The procedure is
equivalent to a Karhunen-l. oeve expansion of the density
fluctuation 5n(r), Sec. III. The presence of boundaries
and critical fluctuations on C(r~, rz) has also been dis-
cussed, although subsequent analysis assumes the system
is not influenced by critical fluctuations, Sec. IV. A form
of R (t) studied by Gomer was obtained by considering a
square probed region on a square net plane, Eq. (32).
This formulation yields an expression for the flicker-noise
power that is a product of the constant CFN, the mean-
square particle-number fluctuation ((5N) } within the
probed region, and the factor 1 —Az/Ar. The latter term
relates the noise power to the ratio of the probed to net
plane area, Eq. (34). For unbounded diffusion the auto-
correlation function is proportional to Smoluchowski's
probability after-effect factor, Eq. (35), and the spectral-
density function S (co) is analogous to one derived by
Burgess for contact noise in semiconductors, Eq. (46). A
closed expression was found for diffusion on a circular net
plane with a circular probe. The form of S(co) explains
several characteristics of field-emission —noise measure-
ments. It was shown that the existence of finite net plane
area produces a flat low-frequency spectrum, Eq. (74).
The effect of anisotropic diffusion on S(co) in the limit of
one-dimensional motion was considered in Sec. VII. The
qualitative result of such motion is to increase the noise
power in the low-frequency band in contrast to the
boundary effect, which decreases it. The high-frequency
dependence of S(co) is affected by neither the finite size of
the net plane nor by anisotropic motion.
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