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The surface composition of Ni-Cu alloys has been calculated as a function of atomic layer, crystal
face, and bulk composition at a temperature of 800 K. The results show that the composition varies
nonmonotonically near the surface with the surface layer strongly enriched in Cu while the near-
surface layers are enriched in Ni. The calculations use the embedded-atom method [M. S. Daw and
M. 1. Baskes, Phys. Rev. B 29, 6443 (1984)] in conjunction with Monte Carlo computer simulations.
The embedding functions and pair interactions needed to describe Ni-Cu alloys are developed and
applied to the calculation of bulk energies, lattice constants, and short-range order. The heats of
segregation are computed for the dilute limit, and the composition profile is obtained for the (100),
(110), and (111) surfaces for a variety of bulk compositions. The results are found to be in accord

with experimental data.

I. INTRODUCTION

A detailed knowledge of the structure of alloy surfaces
is important for the understanding of many surface phe-
nomena such as corrosion and catalysis. However, the
surface composition and structure can be very different
from that in the bulk; for example, Cu is enriched in the
surface layer of Ni-Cu alloys as will be discussed below.
In applications such as catalysis, it is the surface composi-
tion that is important. In particular, the chemical reac-
tivity of catalysts can be tailored to enhance the produc-
tion of the desired products by the suitable choice of
binary alloys. This represents the variation in the relative
abundance of different configurations of the metallic
species on the surface. By varying the relative number of
different types of adsorption sites, the relative rates of the
chemical reactions catalyzed by these configurations can
be adjusted. Thus it is important to know both the overall
composition of the surface as well as the compositional
order, if any, in the surface layer. The latter affects the
availability of different atomic configurations of alloy
species on the surface. The goal of this work is to apply
the recently developed embedded-atom method (EAM) to
the determination of the composition and structure of al-
loy surfaces.

There have been numerous theoretical efforts to deter-
mine the surface composition of alloys from a knowledge
of the bulk thermodynamics.'~> The most common mi-
croscopic approach is the lattice-gas model®” (also known
as the bond-breaking model). The atoms are assumed to
sit on ideal lattice sites and interact with their nearest
neighbors only. The interaction energies between atoms
of the same species are chosen to give the correct heats of
sublimation of the bulk alloys. The interactions between
the different species are either taken to be the average of
the pure metal interactions (ideal solution) or adjusted to
approximately reproduce the variation of the enthalpy of
the bulk alloys with composition (regular solution). How-
ever, this approximation for the energetics has several de-
ficiencies. First, the interactions in real metals are longer
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ranged than first neighbors only. Also, the bond energies
for atoms on the surface need not be the same as in the
bulk due to the difference in the local environment of the
surface atoms. In fact, some models attempt to incorpo-
rate this effect empirically by adding bond-relaxation ef-
fects to the model.>° Unfortunately, this adds parameters
which cannot be determined from bulk data. Finally, the
different atomic sizes of the atoms result in strain energies
that are not included in the lattice-gas approach.!®!!

The statistical mechanics of the lattice-gas models have
generally been treated for this problem in two ways. The
simplest approach is based on mean-field ideas.~® The
entropy of the system is assumed to be just the ideal en-
tropy of mixing. The total energy of the system is ap-
proximated by assuming that the number of neighbors of
a given type is just the concentration of that species times
the number of neighboring lattice sites. For the surface
problem, these ideas are generalized by considering each
layer separately. The entropy of each layer is given by the
mixing entropy for the concentration of that layer, and
the energy is computed by taking the number of neighbors
in a given layer from the concentration in that layer. The
composition of each layer is then determined by requiring
the free energy, E — TS, to be a minimum. These approx-
imations are reasonable when there is little tendency for
the species to cluster or order, but is poor for the cases
where these ordering effects are large.

Another approach to the statistical mechanics has been
Monte Carlo simulation.’ Here a series of lattice configu-
rations are generated in accord with the Boltzmann distri-
bution appropriate to the desired temperature. This ap-
proach will give an excellent description of the equilibri-
um associated with the lattice-gas model, but the predic-
tions are still no better than the underlying approximation
for the energetics. In general, then, while the lattice-gas
techniques usually correctly predict the general trends,
they do not constitute a complete treatment of the prob-
lem.

Other treatments of the surface segregation problem
have concentrated on the strain-energy contributions to
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segregation.”!%!! The strain energy of an impurity or

solute atom in the bulk is assumed to be given by the elas-
ticity theory result for the energy of embedding a misfit-
ting sphere into the lattice, and the strain energy on the
surface is assumed to be negligible. This implies that for
large lattice constant mismatches the dilute species will al-
ways segregate to reduce the strain energy. This strain-
energy contribution has in some calculations been added
to the energetics of a lattice-gas model in order to incorp-
orate the strain contributions. Unfortunately, elasticity
theory is not appropriate for quantitatively describing the
energies of strains on an atomic scale.?

Another approach to the energetics which has been
used extensively to describe defects in metals'? is the pair
potential approximation. This approximation has been
used to compute the segregation energy to surfaces and de-
fects.!*> The advantage of this approach is that it yields
the energy as a function of the atomic separations. The

atoms can be allowed to move to their equilibrium posi-

tions and the strain energy is included naturally. Monte
Carlo simulations of alloy surfaces using Lennard-Jones
interactions have been performed by Abraham? which al-
lowed for both the variation of the composition at the sur-
face as well as the atomic scale relaxation of the atoms.
This work showed that the elasticity theory treatments of
the strain energy overestimate the effect especially for the
case where the solute has a smaller lattice constant.

While the pair potential model is useful for gaining
some qualitative insight into segregation, there are prob-
lems with using this approach to describe the energetics of
real alloy surfaces. The simplest form of the pair poten-
tial approximation writes the total energy as a sum over
pairwise interactions. This approach cannot describe the
elastic properties of metals since it must yield a vanishing
Cauchy discrepancy, Ci,—Cyy. This problem can be
corrected by adding a term to the energy which depends
on the average atomic volume. (This contribution is also
referred to as the structure-independent energy in the
pseudopotential treatments of simple metals.'*) This term
accounts for both the energy of the background electron
gas of a metal as well as the average energy of an ion in
that electron gas. This volume-dependent term, though,
presents a problem for calculations with alloy surfaces.
First, it is not clear how to treat this contribution to the
energy for atoms in the surface layer since there is no
unambiguous way to define an atomic volume. Also, it is
not clear that the contributions to the surface energy due
to the surface energy of the electron gas and the change in
the average interaction of the atom with the electron gas
can be reasonably described by simply assigning a dif-
ferent volume to the surface atoms. The need for a
volume-dependent term also presents a difficulty for
describing alloys. This term must now depend both on
the average atomic volume and the overall concentration,
but there is no clear way to determine the nature of this
dependence.

The embedded-atom method!*~!” (EAM) provides a
new framework that avoids many of the problems with
the previous approaches. This method has already been
applied to pure metals with good results. The applica-
tions in the bulk include phonon spectra,'® structure of
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liquid metals,"”” defect energies, and fracture proper-
ties.!>!® It has been applied to surfaces and shown to give
good results for the surface energy and surface relaxa-
tion.!S It also correctly predicts the (1 2) surface recon-
struction of Pt(110) surfaces.’® The EAM has also been
applied to hydrogen interactions with metals. It has
predicted the ordered structures and critical temperatures
of hydrogen adsorbed on Pd(111),2! and the influence of

‘hydrogen on fracture.!> As will be described below, the

energy of each atom is determined by the local electron
density due to the other atoms of the metal. This density
is computed by the superposition of atomic densities.
Since this density is well defined both in alloys and at sur-
faces, there are no ambiguities involved in this method.

Computationally, the EAM energy can be evaluated
with about the same amount of work as simple pair poten-
tials. Therefore, it is feasible to perform computer simu-
lations that incorporate both compositional changes and
atomic scale relaxation. Therefore the strain effects can
be incorporated automatically with the electronic or bond-
ing contributions to the energy. Thus the EAM provides
a powerful new technique for determining the composi-
tion and structure of alloy surfaces. '

The first section of this paper describes the EAM, in-
cluding the procedures used to determine the empirical
functions used in this method. This will be followed by a
discussion of the Monte Carlo simulation technique that
we will use to determine the statistical mechanics of the
system. Next, the predictions of the method for the ther-
modynamics and short-range order of the bulk Ni-Cu al-
loys will be presented and compared with experiment. Fi-
nally, the results for the surface composition profile of
Ni-Cu alloys as a function of bulk composition and crys-
tal face will be presented and compared with experimental
results.

II. THEORY

Within density-functional theory, the total electronic
energy of an arbitrary arrangement of atoms can be writ-
ten as a unique functional of the total electron density.
The starting point of the embedded-atom method is the
observation that the total electron density in the vicinity
of a given atom can be thought of as the atomic density of
the atom in question plus an electron density from the
surrounding atoms. This latter contribution to the total
electron density should be a slowly varying function of
position, and so it is reasonable to approximate this con-
tribution to the local electron density by a constant. The
energy of this atom can then be approximated by the ener-
gy associated with the electron density of the atom plus
the constant background density. This defines an embed-
ding energy as a function of the background electron den-
sity and the atomic species. There is an additional energy
contribution from the electrostatic energy due to core-core
overlap. These ideas have been developed by Daw and
Baskes,'®!7 who show that the total energy can be approx-
imately written

Ew=3 Filpni)+75 > ¢ii(R;;) . (1)
i i#j
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In this expression, pj; is the electron density at atom i
due to the remaining atoms of the system, F;(p) is the en-
ergy to embed atom i into the electron density p, and

#i;(Ry;) is the core-core pair repulsion between atoms i

and j separated by the distance R;;. The electron density
is approximated by the superposition of atomic densities,

Ph,i= 2 P?(R,-j) ’ (2)
J (i)

where pj(R) is the atomic electron density due to atom j.
With this approximation for the electron density, the ac-
tual computations using this method do not require signi-
ficantly more work than the use of pair interaction
models. Note that the embedding energy, F;(p), does not
depend on the source of the background charge density.
Thus the same embedding function would be used to cal-
culate the energy of an atom in an alloy that would be
used in the pure material. This makes this method partic-
ularly appealing for studies of alloys.

To apply this method, the embedding energies, pair
repulsions, and atomic densities must be known. The
atomic densities will be taken from Hartree-Fock calcula-
tions as discussed below. Approximate values of the
embedding energies and pair interactions can be calculated
from the formal definitions of these quantities in the
density-functional framework as described by Daw.!”
These values, though, only give qualitatively correct pre-
dictions of the material properties so it is necessary to
determine these functions empirically to obtain an accu-
rate description. The first-principles calculations do give
the following important information about the general
behavior of these functions. The embedding energy rela-
tive to the free-atom energy must go to zero at zero elec-
tron density and should have a negative slope and positive
curvature for the background electron densities found in
metals. The pair interaction term, ¢(R), should be purely
repulsive. Further, the pair interaction between atoms of
two different species, 4 and B, is accurately described by
the geometric mean of the interactions between the atoms
of the same species, i.e.,

¢ 48(R)=[44(R)$ppp(R)]'/* . o (3)

Daw and Baskes!® have shown that it is possible to ob-
tain the embedding energy and pair interactions for pure
metals empirically. They assume functional forms for
F(p) and ¢(R) which meet these general conditions and
adjust the parameters to fit the known bulk properties of
the pure materials. In particular, they fit the sublimation
energy, lattice constant, elastic constants, and vacancy
formation energy. They also obtain functions for hydro-
gen and helium. These functions cannot be used to study
binary alloys, though. The information used in their
empirical fits actually enly determines F(p) and its low
derivatives for electron densities near the average electron
density, p.g, of the bulk pure materials at equilibrium.
While this is sufficient information about F(p) for calcu-
lations of pure materials, the atoms in an alloy will gen-
erally experience rather different electron densities than in
the pure bulk material, and so we use values of the embed-
ding function which are not well determined. A main ob-
jective of this work is to develop a set of empirical param-
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etrizations which do not have this deficiency and so can
reliably describe alloys.

It is possible to obtain information about F(p) for den-
sities well away from p., through the equation of state of
the expanded or compressed metals since the electron den-
sity at each lattice site can be substantially different from
Peg- Rose et al. 22 have shown that the sublimation energy
of most metals as a function of lattice constant can be
scaled to a simple universal function,

E(L)=—E(14+a*)e™" . @)

In this expression, L is a length scale of the system which
we will take to be the fcc lattice constant, and Eg, is the
absolute value of the sublimation energy. The quantity
a* is a measure of the deviation from equilibrium,

a*=(L/Ly—1)/[Eqw/(9BQ)]'/2. (5

Here B is the bulk modulus of the material, L, is the
equilibrium lattice constant, and Q is the volume per
atom. This expression has been shown to give a good fit
to the equation of state of numerous materials over a wide
range of both expansion and compression. Further, the
only input data needed are the equilibrium density, sub-
limation energy, and bulk modulus of the material, which
are generally readily available.

Note that if the atomic densities, p° and the pair in-
teraction, ¢(R), are both known, then the embedding ener-
gy can be uniquely defined by requiring the total energy
of the system given by Eq. (1) to agree with the universal
equation of state given by Eq. (4). The problem then is to
determine the atomic densities and pair interactions. The
atomic density is assumed to be given by the free-atom
densities calculated from Hartree-Fock theory by Clemen-
ti and Roetti.3 There is one ambiguity, though, in using
these atomic densities for the bulk. While the optimum
electronic configuration is known for the free atom, it is
not clear that this configuration will be the best represen-
tation of the electron density in the solid. For a pure ma-
terial this is not a serious problem. The main effect of
changing the relative number of s and d electrons is to
simply change the electron density (for the distances that
are actually used in these calculations) by a multiplicative
factor. This represents the fact that the d-electron wave
functions are quite small at the nearest-neighbor distance.
Changing the atomic density by a constant factor, though,
does not change the properties computed for a single ele-
ment, since this change simply results in a rescaling of the
argument of the embedding function to yield the same re-
sults. For a multicomponent system, though, changing
the atomic density used for one of the components will
strongly affect the mixing energies of the alloy. Thus it is
essential that a consistent choice is made for the electronic
configurations assumed for the different metals.

The atomic densities in this work are computed from
the Hartree-Fock wave functions by

PY(R)=N.ps(R)+Nypa(R) , (6)

where N, and N, are the number of outer s and d elec-
trons, and p; and p, are the densities associated with the s
and d wave functions. (For Ni the wave functions for the
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TABLE 1. Parameters used to define the embedding functions and pair potentials. E, is the sub-
limation energy, a is the equilibrium fcc lattice constant, B is the bulk modulus, and N,, Z,, and « are

defined in the text. Energies are expressed in eV, distances in 10\, and bulk modulus in eV/;AS.

Eyy a Z, a N
Ni 4.45 3.52 1.127 10 1.195 2.0
Cu 3.54 3.615 - 1.383 11 1.513 0.76

3d®4s? configurations are used, while for Cu the wave
functions are for 3d'%s!. These are the closest configu-
rations to the values of N; that will ultimately be used for
these calculations.) The total number of s and d elec-
trons, N;+ Ny, is fixed to be 10 for Ni and 11 for Cu.
Thus the atomic density of each species depends on the
single parameter, N,. As will be discussed below, this pa-
rameter will be determined so as to give the proper heats
of solution of the bulk alloys.

The last quantity that is needed is the pair repulsion
term. The form of this function has been studied from
first principles by Daw.!” This analysis shows that the
function can be reasonably represented by a Yukawa po-
tential form, and that the pair interaction between two
different species is accurately approximated by the
geometric mean of the pair interaction for the individual
species. This leads to writing the pair interaction between
atoms of types 4 and B as

é45(R)=Z(R)Zz(R)/R , %)

where the effective charge, Z (R), is given by
Z(R)=Zje R, (8)

The value of Z, will be assumed to be given by the num-
ber of outer electrons of the atom, i.e., Z,=10 for Ni and
Zy=11 for Cu. Thus there is one parameter, a, left to
determine the pair interactions.

With the above assumptions, there are two adjustable
parameters needed to determine the pair potential, atomic
densities, and embedding functions for each material.
These have been determined. for the elements Ni and Cu
to fit the elastic constants of each material as well as the
dilute limits of the heats of solution of the binary alloy.
Note that due to the definition of the embedding function
in terms of the equation of state of the pure materials, the
equilibrium lattice constant, sublimation energy, and bulk
modulus are guaranteed to be correct for the pure materi-
als. The values of a are essentially determined by the
shear properties of the materials, and the ratio of the N,’s
is determined by the heats of mixing of the alloys. (The
N; for Ni is arbitrarily chosen to be 2. As discussed
above, the N; for a pure material is arbitrary.) The pa-
rameters used to define the functions are given in Table 1.
These values fit the elastic constants to within 10%, and
heats of mixing are fit to within 0.1 eV.

III. MONTE CARLO SIMULATION TECHNIQUE

The equilibrium alloy structure will be computed using
Monte Carlo simulation techniques with the energetics
described by the EAM. These simulations include two

different kinds of variations of the system, the composi-
tional arrangement of the atoms and the spatial relaxation
of the atomic positions. The latter feature eliminates one
of the major drawbacks of lattice-gas models, namely that
lattice strain effects are either ignored or must be added in
an ad hoc manner. Here the relative atomic positions are
allowed to adjust to the composition of their neighbors,
and therefore lattice strain energies are included naturally.

The surface simulations are performed for a slab
geometry. Periodic boundaries are applied in the direc-
tions parallel to the surface. The geometry of the periodic
cell depended on the crystal face exposed, but was chosen
so that the cell face would be approximately square. The
number of surface atoms on each face was 32 for (100)
surfaces, 24 for (110) surfaces, and 48 for (111) surfaces.
The lattice constants used to determine the periodicities of
the calculations were chosen to correspond to the lattice
constants of the bulk alloys at the same composition and
temperature. The number of atomic layers in each slab
also depended on the crystal face, 17 layers for (100) sur-
faces, 25 layers for (110) surfaces, and 15 layers for (111)
surfaces. These values produce slabs which are roughly
30 A thick. A few simulations with thicker slabs or
larger surface areas were performed and the resulting sur-
face compositions were the same as for the above sizes.
The simulations performed on bulk alloys used a periodi-
cally extended cube of material containing 500 atoms.

The simulations are performed in a grand canonical en-
semble where the volume, total number of atoms, and rel-
ative chemical potentials of the two species are held fixed.
There are two different kinds of basic steps used in the
simulations. The first is a small displacement of an atom
from its current position. This allows for both the
thermal variation in the atomic positions (i.e., vibrational
contributions to the free energy), as well as the different
equilibrium separations between atoms of different ele-
ments. The second basic Monte Carlo step is to change
the element of a given atom. This corresponds to the
thermodynamic action of taking an atom of the original
type out of the solid to a reservoir at infinity and bringing
in an atom of the new type from infinity. The inclusion
of this type of step has the advantage of greatly increasing
the speed with which the simulation converges relative to
constant number simulations, since the segregating species
does not have to diffuse to the surface. The desired bulk
composition is obtained by adjusting the relative chemical
potentials. :

The simulation proceeds as follows. First an atom is
chosen at random and a displacement and/or a new atom-
ic species for that atom is chosen. Next, the total energy
of this new arrangement of atoms is computed. The de-



cision to retain this change is made based on AP, where

P=(N N Yexp[ —(E —pu N4 —ugNg)/kpT] 9

and

AP=Pye/Pyq - (10)

Here N, and Np refer to the number of atoms of element
A and B (Ni and Cu in this case), u, and up are the
chemical potentials of the two species, E is the total ener-
gy, T is the temperature, and kp is Boltzmann’s constant.
If AP > 1, the new configuration is always retained, while
if AP <1, the new configuration is retained with the prob-
ability AP. Repeating this procedure a large number of
times (several million) results in a set of atomic configura-
tions corresponding to thermal equilibrium. The desired
quantities, such as the composition profile, are then ob-

i

P=nkyT —(n /6N)< S [F; (a0 )68 (Ry)+F; (py, )pf
ij,is<j

In this expression, the primes refer to derivatives with
respect to the argument, 7 is the total atomic number den-
sity, N is the total number of atoms, and the brackets
refer to a thermal average. The lattice constants predicted
for pure Ni and Cu at 800 K are 3.560 and 3.670 A,
respectively. These values correspond to average values of
the. linear coefficient of thermal expansion of 14.2 and
18.9 in units of 108 K~!. The corresponding experimen-
tal values® for room temperature are 12.7 and 16.7. Thus
the EAM provides a good description of the thermal ex-
pansion, and so must include reasonable values of the
anharmonicity of the interatomic interactions. In Table II
the values of the excess enthalpy of Ni-Cu alloys at 800 K
for three bulk compositions are compared with experi-
ment.?> (The excess enthalpy is the difference between the
enthalpy of the alloy and the linear interpolation of the
enthalpy between that of the two pure materials.) The
agreement between the two is good as expected since the
dilute limits of these values are used in the fitting process.
Note that the EAM produces the same asymmetry in the
excess enthalpy as is found in experiment. The deviations
of the lattice constant from Vegard’s law are also com-
pared with experiment?® in Table II. (Vegard’s law states
that the lattice constant varies linearly with composition.)

TABLE II. The excess enthalpy (AH) and deviation of the
lattice constant from Vegard’s law (Aa) as a function of compo-
sition, X¢,, for bulk Ni-Cu alloys. The experimental enthalpies
are from Ref. 25 and the experimental lattice constants are from
Ref. 26.

X, Cu AH theor AH expt Aa theor Aa £Xpt
(at. %) V) (V) (A) (A)
30.4 0.019 0.019 0.020 —0.004
50.6 0.014 0.018 0.027 —0.005
74.2 0.008 0.009 0.025 —0.003

32 CALCULATION OF THE SURFACE SEGREGATION OF Ni-Cu. ..

’(R,~,-)+¢’(R,~j)]R,~j> .

7689

tained by averaging over the resulting. configurations.
Note that in the case where the number of each species
remains the same, this condition reduces to the more com-
mon condition that the new configuration is accepted with
a probability given by a Boltzmann factor for the change
in energy.

IV. BULK ALLOYS

In order to verify that this procedure produces a
reasonable description of the bulk alloy, the excess energy
and lattice constant of the bulk alloys were computed at
T =800 K. Also, the short-range ordering of the atomic
species was determined. The lattice constants used for
these bulk simulations were adjusted so that the average
pressure is zero. The pressure can be obtained from the
quantity

v

|

Unfortunately, the agreement here between theory and ex-
periment is poor. The EAM predicts that the alloys
would have a slightly larger lattice constant then Vegard’s
law, while experiment predicts an even smaller deviation
in the opposite direction. However, this represents the de-
viation from the main trend, and so does not represent a
serious disagreement between theory and experiment, i.e.,
the lattice constants are correctly predicted to within
<0.03 A.

In order to test the predictions of the theory for short-
range compositional order, the Warren-Cowley short-
range order parameters,27 a;, have been determined. This
quantity measures the probability of finding neighboring
atoms with either the same or opposite type. It is defined
by

a;=1—(p/8/Xp), (12)

where the subscript i refers to the ith shell of neighbors,
pi'8 is the probability that a specific atom in the ith
neighbor shell around an atom of type 4 will be of type
B, and Xj is the concentration of species B. A positive
value of a indicates a tendency for atoms of the same type
to cluster. The values of a determined at T =800 K for
the first five neighbor shells are presented in Table III.
The experimental diffuse neutron-scattering results for
Ni-Cu alloys have been reviewed by Vrijen and Rade-
laar.?® There is a significant amount of spread between
the different experimental values, but a; is generally in
the range 0.08 to 0.14 for the compositions and tempera-
ture shown here. The values past first neighbors are
smaller for both experiment and theory. Thus the short-
range compositional order predicted by the EAM appears
to be reasonable.

V. Ni-Cu ALLOY SURFACES

From the macroscopic thermodynamic point of view,
surface segregation phenomena are driven by the differ-
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TABLE III. Warren-Cowley short-range-order coefficient, a;, for the bulk Ni-Cu alloys computed at

T =800 K.

Xcu (at. %) a; a, as Qay as
28.4 0.149 0.033 0.013 0.003 0.000
50.8 0.137 0.001 —0.015 —0.018 —0.017
72.2 0.085 —0.031 —0.027 —0.019 —0.014

ences in surface energy for various surface compositions.
Therefore, the surface energies of the two pure materials
“have been calculated using the EAM to verify that the
method gives reasonable values. The surface energy is
computed by minimizing the energy of a slab of atoms
with respect to all atomic positions to incorporate surface
relaxation effects. The surface energy is then the differ-
ence between the energy of the slab and that of an equal
number of atoms in the bulk. The resulting values are
1780, 1940, and 1650 ergs/crn2 for the (100), (110), and
(111) faces of Ni. The corresponding numbers for Cu are
1210, 1320, and 1100 ergs/cm?. Tyson and Miller?® quote
average surface energies extrapolated to T'=0 K of 2270
for Ni and 1790 ergs/cm? for Cu. This agreement be-
tween theory and experiment is reasonable since there is a
wide spread in the experimental values for the solid sur-
face energies and the experimental values are averages
over various surface orientations. The theoretical values
are for ideal low index faces which one would expect to
have a below average surface energy. More important for
segregation phenomena, the theory predicts the correct
relative size of the surface energies for the two materials.
The heat of segregation in the dilute limit has also been
determined. The heat of segregation is usually defined as
the difference in energy for placing an impurity or solute
atom at the surface of an otherwise pure material relative
to placing the atom in the bulk. This quantity is general-
ized here to a segregation energy for each atomic plane.
This energy is determined by computing the total energy
of slabs containing a single impurity in different atomic
planes near the surface relative to the energy of that im-
purity in the bulk. The results are presented in Table IV,
for the three low index faces. As expected, the segrega-
tion energy for Cu on Ni surfaces is negative and that for
Ni in the first layer of Cu is positive. This is in accord
with the known segregation of Cu to the surface of these
alloys.® The segregation energy for Cu in the first layer of

the Ni(100) surface has been determined experimentally
by Egelhoff*®3! using x-ray photoemission spectroscopy.
The approach is based on the equivalent-core approxima-
tion which states that an atom of nuclear charge Z is
equivalent to an atom of charge Z 4+ 1 after an inner shell
electron is ionized. The heat of segregation of element
(Z +1) in element Z can then be identified with the
difference between the core-level binding shifts of bulk
and surface atoms. His value of —0.43+0.04 eV for this
heat of segregation is in excellent agreement with the
theoretical value determined here. This further supports
the validity of the energetics described by the EAM.

The surprising feature of the results in Table IV are the
heats of segregation to the planes just below the surface.
Here the energies show that Ni is attracted to the second
or third atomic plane, or equivalently that Cu is repelled
from these planes. This oscillation of the heat of segrega-
tion suggests that the composition profile should not be
monotonic. This agrees with the experimental results of
Ng et al.3? using field ion microscopy. They observed a
depletion of Cu from the near-surface atomic planes for a
Ni-Cu (5 at. %) sample at T =800 K.

The above heats of segregation are for the extreme di-
lute limits. Since these energies are fairly large, one ex-
pects that the surface layer will be strongly enriched in Cu
for all bulk compositions. This change in local composi-
tion will affect the energetics of the atoms near the sur-
face. Therefore, the above heats of segregation cannot be
used to estimate surface compositions. It is also necessary
to incorporate the thermal effects. As discussed above,
these factors will be incorporated by performing Monte
Carlo simulations. All of the simulations have been per-
formed at a temperature of 800 K. This temperature is in
the range of the temperatures for the various experimental
studies of this system. Simulations have been performed
for the three low index faces for a variety of bulk compo-
sitions spanning the entire concentration range.

TABLE IV. The segregation energies Q;, expressed in eV, of a single Cu (Ni) impurity to the ith sur- '
face layer in a Ni (Cu) slab at T=0 K. The segregation energy is the total energy of the slab with the
impurity in the ith surface layer relative to the energy of the impurity in the bulk.

o Q2 Qs Q4
Cu in Ni(100) —0.426 0.045 0.002
Ni(110) - —0.538 —0.029 0.039 0.002
Ni(111) —0.304 0.029 0.000
Ni in Cu(100) 0.233 —0.147 —0.002
Cu(110) 0.349 —0.115 —0.092 —0.005
Cu(111) 0.160 —0.090 0.002
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TABLE V. The calculated composition profile in at. % Cu for Ni-Cu alloys at T=800 K. The sub-
scripts refer to the atomic layers.

“

Face Xbulk X] Xz X3 X, X_t,
1y 4.8 89.4 3.0 4.0 5.0 4.8
29.2 95.0 11.0 19.1 27.1 29.0
55.2 96.2 21.3 43.2 56.9 57.0
71.9 97.5 39.0 70.2 76.8 71.3
. 93.3 99.1 79.3 93.8 93.6 92.8
(100) 25.0 97.5 11.7 11.6 18.6 23.5
57.0 98.1 22.7 36.6 57.7 60.3
73.9 98.7 38.6 60.9 78.1 75.8
(110 29.1 99.1 36.8 14.1 19.8 270
55.1 99.4 439 25.4 40.3 54.0
72.0 99.7 55.8 44.3 64.8 76.3
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The layer by layer compositions computed from the
simulations are presented in Table V, and the concentra-
tion of the first three layers of the (111) surfaces are plot-
ted as a function of bulk concentration in Fig. 1. In addi-
tion, the atomic number density of each component is
plotted as a function of depth into the slab in Fig. 2 for
the (111) face of a 71 at. % Ni alloy. The trends suggest-
ed by the segregation energies in the dilute limit are re-
tained in these results. The first layer is almost pure Cu
for all the compositions studied here. Further, there is a
noticeable enrichment of Ni in the near surface atomic
layers. The results for the (100) and (111) faces are very
similar though the segregation of Cu is somewhat
stronger to the (100) surface. This agrees with the expec-
tations from simple bond-breaking arguments. On the
other hand, the enrichment of Ni in the second layer is
somewhat less pronounced for the (100) face than for the
(111) face. The strongest enrichment of Cu is found in
the top surface layer of the (110) face. For this face, the
composition profile is still nonmonotonic, but the max-
imum Ni concentration is found in the third atomic layer.

100

+ K

80 +

/

60

40

X (Layer) (at. %)

/
/

20+

0 20 40 60 80 100
Xcu(Bulk) (at. %)

FIG. 1. Calculated Cu layer concentrations as a function of
bulk composition at T =800 K for (111) face of Ni-Cu alloys.
The solid curve is the top layer, the long-dashed curve is the
second layer, and the short-dashed curve is the third layer. The
points are the experimental values for the top layer from Ref. 32
(0), Ref. 33 (X), and Ref. 38 (+).

The atomic positions of the surface atoms are similar to
those for a pure metal surface. This is not surprising
since the lattice constants of Ni and Cu are not very dif-
ferent, 3.52 and 3.62 A, respectively. The atomic densities
plotted in Fig. 2 do show an interesting feature which is
found at all compositions. The average position of the Cu
atoms is slightly above that of the Ni atoms. This is
reasonable since Cu has the larger lattice constant. This
difference is fairly small, 0.1—0.2 A, and depends on tem-
perature. The difference in height found at T =0 K from
energy minimization of a few characteristic structures
showed smaller differences in the height of the two
species. Thus this difference is in part due to the differ-
ences in the vibrations of the two species.

There have been several experimental studies of the sur-
face composition of Ni-Cu alloys using Auger-electron
spectroscopy (AES),>*~37 low-energy ion scattering®®
(LEIS), field ion microscopy*? (FIM), and sputtering.*
Although early AES studies did not find any segregation,
all the recent work indicates that there is substantial
segregation of Cu to the surface in agreement with the
present calculations. Most of these studies used polycrys-
talline samples, so detailed comparisons with the above re-

Q
-

©
24
7 e
L .
> Ni, Cuyg
g - (111) face
2 ° T=800K
o - Ni
o"‘ —Cu
e k
S -,

T T T T T L X =
00 20 40 60 80 100 120 140 160
Distance from the center of the slab (%)

FIG. 2. Calculated atomic number density of Cu (solid line)
and Ni (dotted line) averaged over planes parallel to the (111)
surface as a function of the distance from the center of the com-
putational slab. These results are for a bulk Cu concentration of
29 at. % at T=800K. °



7692 S. M. FOILES 32

sults is not possible. However, it is interesting to note
that the early segregation studies which did not show
segregation used AES with high-energy transitions where
the escape depths of the emitted electrons are several
atomic layers. Thus the compositions that were produced
represent a weighted average over the first few atomic
layers. The composition oscillations that are found here
would then explain why the average composition near the
surface found in the early experiments was close to the
bulk values. The more recent AES experiments have used
lower-energy transitions, where the emitted electrons have
much shorter escape depths and so are more sensitive to
the surface layer. Another potential experimental prob-
lem is the effect of impurities. There is evidence*>*! that
the presence of S, CO, or H on the surface will decrease
the Cu segregation. This reflects the stronger bonding of
the Ni to these impurities on the surface. Thus only ex-
periments with high surface cleanliness will yield reliable
surface compositions.

There have been three studies appropriate to single-
crystal (111) faces.>?3338 The results of these experiments
for the top-layer composition are compared with the
theoretical predictions in Fig. 1. The agreement is good.
The AES and x-ray photoemission results of Webber
et al.®® are for a temperature of 880 K. They used vari-
ous electron energies to determine the ratio of Ni to Cu
signals for different escape depths. A total composition
profile could then, in principle, be determined by using
the different attenuations appropriate for the various tran-
sitions. The top-layer composition that they determined
at bulk concentrations of 5 at. % and 50 at.% Cu are
85—100 at. % Cu and 95—100 at. % Cu, respectively, in
good agreement with our results. Their results for the
deeper layers are less clear since a range of profiles agree
with their experimental measurements. In general, the Cu
enrichment is restricted to a small layer near the surface,
and they saw some indications of oscillations in the pro-
file out to around 12 A. These conclusions are also in ac-
cord with our results. )

The FIM result of Ng et al.>? are obtained by mass
analyzing the atoms produced by field evaporation. By
analyzing only the atoms coming from the edge of a step,

. tems where the lattice mismatch is small.

a layer profile is obtained. The results show that the Cu
concentration is depleted in the second and third layers
below the surface. This depletion of Cu near the surface
is in accord with our calculations. There is a significant
difference in the compositions determined for the first
layer. This could be due to the geometry of the tip. The
experiment probes a (111) facet which only approximates
an ideal planar geometry. Since the bulk composition is
in a region where the surface composition is varying rap-
idly, this finite geometry may have a significant effect.

VI. SUMMARY

The EAM has been applied to the computation of the
surface composition of Ni-Cu alloys. The segregation en-
ergy in the dilute limit agrees with the experimental
values, and the composition profiles at finite temperature
and for the full range of compositions are in accord with
the experimental information. The method also provides
a good description of the energetics and short-range order
of the bulk alloys. Thus the EAM in conjunction with
computer simulations provides a reasonable description of
the Ni-Cu alloy system.

The advantage of this approach is that it is capable of
describing a wide range of alloy systems. The use of a
technique that allows for the spatial relaxation of the
atoms means that the method is not restricted to alloy sys-
The use of
Monte Carlo simulations allows reliable predictions to be
made for systems that show significant amounts of order-
ing or clustering. The method is also capable of determin-
ing the ordering behavior of the surface. Finally, the
EAM only requires bulk data to describe the surfaces.
Thus there is not a need for extensive surface information
about a system before it can be studied. Therefore the
EAM provides a powerful new technique for describing
the properties of alloy surfaces.
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