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A hydrodynamic model is used to study the magnetoplasma modes of a two-dimensional electron
fluid confined to a half-plane. In addition to the usual bulk modes, an approximate theory predicts
new localized edge modes that propagate along the boundary, with a frequency proportional to B ~!
in high magnetic fields. These modes provide a good fit to those seen in recent experiments of Mast

and Dehm.

I. INTRODUCTION

Recent experiments on electrons trapped on the surface
of liquid “He have found two sorts of two-dimensional
(2D) magnetoplasma modes.! =3 One set may be identified
with the usual bulk modes, whose squared frequency in
the presence of a perpendicular magnetic field increases
linearly with the squared cyclotron frequency. The
second (anomalous) set had not been predicted previously.
Its frequency varies inversely with the magnetic field B in
the large-field limit, which differs qualitatively from the
behavior of the bulk modes of a 2D electron fluid. This
unexpected mode has been identified as an edge mode that

propagates along the boundary of the 2D charged layer

(the analog of a surface wave in three dimensions). The
present paper describes the calculations that support this
view.

Three-dimensional (3D) surface plasmons are well
known and have been studied extensively.* The effect of a
magnetic field on these modes has been less well investi-
gated, with fewer experiments to guide the theory.
Nevertheless, calculations™® suggest the existence of two
surface magnetoplasmons that reduce to the usual surface
plasmons in the zero-field limit. For large fields, the fre-
quency of one mode increases indefinitely and the other
tends to zero inversely with the field.” In view of the
similarity to the observed behavior for the 2D electron
layer on liquid He,"? it is natural to suggest a similar ex-
planation for the recently observed anomalous modes.

For many purposes, 2D systems are simpler than 3D
ones, because the more restricted phase space often allows
exact solutions to nontrivial statistical-mechanical prob-
lems. This situation does not immediately apply to elec-
trostatic phenomena, since screening in a 2D charged sys-
tem is qualitatively different from that in 3D. In the par-
ticular case of electrons confined to a single bounded
layer, the screening is less complete, and much of the ef-
fective interaction between localized charge elements is
mediated by the fringing fields in the surrounding medi-
um.8~1° As a result, the relation between the charge den-
sity and the electrostatic potential becomes an intrinsically
nonlocal integral one. Here, the problem is formulated in
detail for the special case of a half-plane; although an ex-
act solution would become complicated, a tractable ap-
proximation'! produces a set of model equations that are
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exactly soluble.

Since the present approach relies on the comparison
with the 3D surface plasmons, in Sec. II we will review
this standard solution in some detail. In Sec. III we then
formulate the corresponding 2D problem exactly and pro-
vide an approximate solution that appears to fit the exper-
imental observations.""? The effect of additional grounded
planes above and below the charged layer is treated in Sec.
Iv.

II. BULK AND SURFACE MAGNETOPLASMONS
IN THREE DIMENSIONS

To understand the behavior of magnetoplasma modes
in the presence of boundaries, it is natural to rely first on
simple geometries, and the present work will consider only
a half-space (3D) and a half-plane (2D). In addition, I use
a hydrodynamic model of a weakly damped, compressible
charged-electron fluid placed in a rigid, neutralizing posi-
tive background.* This model includes dispersion along
with the proper Lorentz force, but it omits retardation
and the corresponding propagating electromagnetic waves.
In 3D it provides an exact model solution for the bulk and
surface modes because Poisson’s equation is explicitly lo-
cal. In 2D, however, a given point in the plane experi-
ences nonlocal electrostatic restoring forces arising from
the fields in the surrounding medium, which complicates
the situation considerably. Since the 3D problem will
serve as a basis for the approximate 2D solution, its prop-
erties will be presented in some detail.

Consider a rigid positive background with charge densi-
ty engy and a compressible electron fluid with number den-
sity ng+n, where n is a small perturbation. Conservation
of matter implies the usual linearized equation of con-
tinuity

%—?+nov-v=0, ' (1)
where v is the electron’s velocity. Euler’s equation then
specifies the dynamics:

2
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Here, 7 is an effective collision time, s2=m‘1(8p/8n)
characterizes the speed of compressional waves in the ab-
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sence of electrostatic effects, ® is the usual electrostatic
potential, and @, =eB /mc is the cyclotron frequency as-
sociated with the static magnetic field BZ. Finally,
Poisson’s equation relates the potential to the net charge
density

V2®=4en , (3)

where the dielectric constant has been set equal to 1 for
simplicity (the relevant modifications are elementary for
the present 3D case).

In the absence of boundaries, this set of equations has
plane-wave solutions of the form e/(97=%" where q is a
real three-dimensional wave vector. For the present pur-
pose it is sufficient to restrict q to the x-y plane perpen-
dicular to B, since that is the appropriate configuration
for the corresponding two-dimensional motion (Sec. III).
Direct substitution readily yields the dispersion relation
.().2 +s%q?, (4a)

(a) —w?)

where @=w+i /7 and

Q, =(4mnee?/m)'”?
is the bulk 3D plasma frequency. In the collisionless limit
(wT>>1), this equation reduces to the familiar result

* =)+l +s%q%. (4b)

In particular, the squared frequency of all bulk magneto-
plasmons with qlB increases with increasing magnetic
field, and the dispersive corrections involving s are small
in the long-wavelength limit (gs /Q, << 1).

In the absence of a magnetic field, the motion is purely
longitudinal, but a nonzero magnetic field induces a trans-
verse component through the vXB term in the Lorentz
force. The corresponding trajectory of an undamped elec-
tron becomes elliptical in the plane perpendicular to B,
with the major axis oriented along q, the ratio of semimi-
nor to semimajor axes given by w./w and the sense of ro-
tation determined by the right-hand rule. Equation (4)
shows that this motion becomes circular in the high-field
limit.

The analogous magnetoplasma modes in a half-space
are less familiar, although the limiting case of zero field
has been studied extensively. For comparison with the
behavior in two dimensions, the charged medium will be
taken to occupy the region x <0, with the magnetic field
BZ lying in the plane of the surface. Translational invari-
ance allows plane waves propagating in the y-z plane, and
only the case q=¢g¥§ will be considered here (thus the
wave and B both lie in the surface, at right angles). As a
result, all quantities take the form f(x)e!'?~%" where
the amplitudes f(x) remain to be determined.

Inside the material (x <0), Egs. (1)—(3) apply, whereas
only the potential is defined in the exterior region (x > 0).
Direct substitution yields the coupled differential equa-
tions

—ion +no(dvy +igu,)=0, (5a)

— i@y +(52/ng)dn —(e /mdP _ +w.v, =0, (5b)

—i&?vy—}—iq(sz/no)n—iq(e,/m)<b<~cocvx=0 , (5¢)

(3*—qH)® _=4men (5d)
in the interior, and the single equation
(3*—¢gH)®, =0 (6)

in the exterior, where @ denotes d,. This set must be
solved subject to the boundary conditions that ® and 3®
are continuous at x =0, and that v, vanishes there, along
with suitable bounded behavior as | x | — oo.

For x > 0, the only solution is

D, (x)=Pge %, )

which reflects the omission of retardation. For x <O the
functions may be assumed to have an exponential form,
and it is not difficult to obtain the two independent solu-
tions e? and e**, where

k=g +s "Q + w0l —52)/8] . (8)

Evidently, k depends explicitly on both g and . Here
and henceforth, it is simplest to consider a wave propa-
gating in the + y direction, so that g is intrinsically posi-
tive; on the other hand, w, can take either sign, depending
on the direction of B.

Equatlon (8) has two types of solutlons If k? is nega-
tive (= — k?, say), it becomes precisely the dispersion rela-
tion found in Eq. (4) for an unbounded medium. The cor-
responding solutions then represent propagating waves in
the x-y plane that are reflected (with a phase shift) by the
boundary at x =0. They are analogous to continuum
states in quantum mechanics and behave very much like
the bulk magnetoplasma modes. In particular, for a col-
lisionless medlum, their squared frequency increases
linearly with 2, as in Eq. (4b).

The other type of solution corresponds to positive 2, so
that the amplitudes all decay exponentially away from the
boundary at x =0; such surface modes are analogous to
bound states in quantum mechanics. In this case, the in-
terior potential has the form

D _(x)=D1e T+ Dye"™, (9a)

and the corresponding normal component of the velocity
becomes

iq O,
&d—w,

4menyv, = e +i(kd+qo. )%dhe"" . (9b)
2]

Imposing the boundary conditions leads to a set of homo-

geneous equations in the amplitudes ®; (i =0,1,2), and

the vanishing of the determinant gives the dispersion rela-

tion, which can be written in either of two equivalent

forms®

~ 2 2 ~
%QP(HK) D 2o (10)

~ =2q+K

2Akd+ g, )=
: d—ow, s

For the present work, damping will be neglected entire-
ly (@=w), which simplifies Eq. (10) considerably. In the
limit sq <<Q,, a straightforward reduction yields the
well-known relation®
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wz—wa)c—%ﬂgzo , (11

which immediately reproduces the zero-field surface
plasmon with frequency +Q,/ V2. Since the sum of the
roots of Eq. (11) is w, but the product is independent of
., the two roots shift with increasing field; in particular,
they must vary linearly and inversely with w. in the
high-field limit. It is convenient to label them as

o4 =35gno [(2Q; +0})*+ o | ], (12a)

w_=—55gno.[(29} + o) *~ |, |1, (12b)

so that |w_ | shrinks with increasing B, in contrast to all
other long-wavelength magnetoplasma modes of the
bounded electron fluid. In addition, the high-field limit
of w_ is proportional to ﬂ; and hence to the unperturbed
electron density.! These characteristic field and density
dependences will be seen to persist in the case of a 2D
electron gas; they play a central role in the experimental
detection and identification of such ‘“‘anomalous”
modes.?

It is instructive to compare these surface magneto-
plasmons with the bulk modes discussed below Eq. (4b).
Consider the electrons’ motion at a distance x (<0) from
the boundary. For general values of g, the amplitude (9b)
contains two characteristic decay lengths ¢ ~! and «~%;
the first of these diverges in the long-wavelength limit,
whereas the second remains finite but depends specifically
on the choice of mode (namely w or w_). For definite-
ness, only the limit sq <<}, will be considered. It is not
difficult to see that the motion (confined to the x-y plane)
is again elliptical, with the semimajor axis a parallel to
the surface (along §) and the semiminor axis b along the
normal X:

a=1—(w,/w)e"™, (13a)

b=1-—e"*. (13b)

These amplitudes depend explicitly on the distance x (<0)
from the surface. As expected from the boundary condi-

tion on v,, b vanishes at the surface, where the motion is.

plane-polarized. Deep in the sample, the orbit becomes
circular, but the present long-wavelength limit neglects
the eventual exponential decay with length ¢ —!. For the

+ mode in Eq. (12a), it is easy to see that the decay con- -

stant k. is given by (25)~!| w_ |, which becomes small in
the high-field limit (o, /€, >>1). Correspondingly, a also
becomes small near the surface in this limit, so that the
+ magnetoplasma surface mode will probably not couple
strongly to an external electromagnetic field. The situa-
tion is reversed for the — mode, whose second decay con-
stant becomes x_=(2s)"! |, |. This quantity increases
dramatically with increasing field, ultimately producing a
magnetic screening of length s/w,, proportional to B~
Furthermore, the ratio o, /w_ is now negative and large
for high fields, enhancing the longitudinal amplitude a
relative to the transverse one b. This behavior suggests
that an incident electromagnetic wave will couple pre-
ferentially to the — magnetoplasma surface mode.

The dispersion relation (10) can also be inverted analyti-

cally for all g to give the two roots (g > O here)
a)+(q)=%sgnmc{[2(l;+( | e | _qs)2]1/2+ |wc | +gs},
(14a)

o_(q)=—7sgno, {205 +(| o, | +¢51°1'*— | o | +gs},
(14b)

which obviously reduce to those found previously in the
long-wavelength limit. A detailed calculation shows that
Eq. (14b) yields a real positive decay constant x_ for all
positive g, so that this mode quite generally describes a
surface . magnetoplasmon whose high-field frequency
varies like w; ' In contrast, the decay constant «, for
Eq. (14a) vanishes when sqw, =le, /2; for larger values of
sqo, this branch of the magnetoplasma spectrum ceases
to represent a surface mode, merging into the continuum
of modes that propagate in the x-y plane.

The surface magnetoplasmons have the unusual feature
that the + and — modes are intrinsically different. For
definiteness, consider ¢ >0 and w,>0. The + mode
represents a wave moving in the positive direction with
phase velocity w_ /g, whereas the — mode moves in the
negative direction with a distinct phase velocity |w_ | /g.
Consequently, no linear combination of these two modes
can produce a standing wave in nonzero field, in contrast
to the bulk modes in Eq. (4). This situation is unaffected
by the inclusion of waves with g <O0; for general g, Egs.
(7)—(14) remain correct if ¢ and w, are replaced by | q |
and w,sgng. With this substitution, the + and — modes
always propagate in the positive and negative directions
with different phase velocities for any finite magnetic
field. This same behavior will be seen to occur in the 2D
geometry considered below.

III. BULK AND EDGE MAGNETOPLASMONS
IN TWO DIMENSIONS

The basic problem of interest is the self-consistent oscil-
lation of a charge-compensated 2D electron gas placed in
a perpendicular magnetic field BZ. If n and v are inter-
preted as the perturbation in the 2D number density and
the 2D velocity vector, Egs. (1) and (2) continue to apply,
with — V@ as the in-plane component of the electric field,
evaluated at the plane (z =0, say). In contrast, Poisson’s
equation involves the potential throughout all space, with
a 3D Laplacian and the full 3D charge density on the
right-hand side.

As an introduction to the difficult problem of edge
magnetoplasma modes on a half-plane, consider first the
simpler case of an unbounded 2D electron gas in a vacu-
um, where Eq. (3) is replaced by

V2D =4mend(z) . v (15)

Equations (1), (2), and (15) have plane-wave solutions with
the density n and velocity v proportional to e?(aT=9; the
potential has the same form, but the amplitude ®y(z) de-
pends on the distance from the plane as well as on the
wave vector q. Substitution into Eq. (15) yields the equa-
tion for this amplitude,
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[(d/dz)*—q*]®4(z)=4mend(z) , (16)

where ng is the corresponding amplitude for the density
perturbation. In the absence of distant boundaries, the
only allowed solution is proportional to exp(—gq |z |),
and the coefficient is easily found by integrating across
the layer

1

Dy(z)=—2meq " 'ngexp(—q |z |) . 17

For z =0 this relation determines the electrostatic poten-
tial in the plane of the charge, and a combination with
Egs. (1) and (2) immediately gives a dispersion relation of
the form in Eq. (4a), but with the bulk 3D plasma fre-
quency replaced by the bulk 2D value® ~1°

Q,=(2mnoe’q/m)'"?, (18a)

which depends explicitly on the wave vector q. In the
collisionless limit, this solution becomes!? ‘

w2=02+w§+szq2 . (18b)
Typical experimental values? are no=10% cm~2, ¢g=10
em™!, 0,=1.3X10° rad/sec, s =(kzT/m)!*=3.9x10°
cm/sec, and w,=1.8x10'" rad/sec for B =10 G; thus
the dispersion correction in Eq. (18b) is indeed negligible.
As in the corresponding 3D situation, the squared fre-
quency of all bulk 2D magnetoplasma modes increases
linearly with w?. A straightforward analysis also shows
that the electrons execute an elliptical trajectory, with the
same characteristic features as in the discussion below Eq.
4).

The differences between 2D and 3D become significant
for a bounded system. Consider a 2D electron fluid con-
fined to the half-plane x <0, and z=0. Poisson’s equa-
tion now becomes

V2P =47ed(z)O(—x) , (19a)

where © denotes the usual step function. Since the system
is translationally invariant along the boundary, the solu-
tions may be taken as plane waves of the form ellwy—ot)
but the amplitudes now depend on x (and z for the poten-
tial). It is again convenient to consider g positive, but to
let w, have either sign. In contrast to the case of an un-
bounded 2D system, Poisson’s equation is still a partial-
differential equation

2 2
Dty —q* @z —4men(x)52O(—x) ,  (19b)
X Z .

where the g dependence of the amplitudes has been
suppressed. Since the charge density —en(x) is every-
where finite, & and d®/dx are continuous, and a Fourier
transform in x yields the ordinary differential equation

[(d /dz)*—(k*+q*)]1D(k,z)

—4res(z) [ dxe~n (x)=4med(2)u(k), (20)

where 7i(k) is the Fourier transform of n(x)O(—x). This
equation has the same form as Eq. (16), and its solution in
the plane reduces to

B(k,0)=—2meri(k)(k2+q*>) 12 . (21)
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The inverse Fourier transform then gives a nonlocal in-
tegral relation? between the electrostatic potential
®(x,z=0) in the plane and the corresponding charge
density —en (x),

0
®(x,z=0)+4me [ dx'L(x —x)n(x')=0, (22a)
where

w ikx
L(x)=5 f dk £

w EW=(2#)_1KOW [x 1)

(22b)

is a particular Bessel function, obtained as the inverse
transform of L(k)=5(k2+4+¢%)~'/%

It is instructive to compare this situation with that for
the 3D half-space, where Poisson’s equation was solved
directly by considering separately the regions x <0 and
x >0. If (perversely) a Fourier transform is used, it
produces an integral relation of the form (22a), but
with a different and simpler exponential kernel
L(x)=(2g)"'exp(—q |x | ), the inverse transform of
L(k)=(k?>+g¢*~'. This nonlocality in three dimensions
is rather trivial, however, for application of the differen-
tial operator (d/dx)*—q? immediately reproduces Egs.
(5d) and (6) because this new L is just the appropriate
Green’s function. In contrast, no simple operator seems
capable of eliminating the nonlocality of Eq. (22), which
presumably reflects the fringing electric fields in the sur-
rounding vacuum.

Equation (22a) is a special form of integral equation,
one with a displacement kernel that depends only on the
difference of the variables and whose range is the half-
space. In principle, such equations can always be solved
with the Wiener-Hopf technique.!! In three dimensions
this approach reproduces the solution found in Sec. II be-
cause the appropriate kernel L(k) is a meromorphic func-
tion of k that is readily factored or decomposed with par-
tial fractions. In contrast, the 2D kernel L (k) has branch
points, which complicates the analysis. The Appendix
contains a brief discussion of this exact approach, but a
complete treatment (which would involve considerable nu-
merical work) has not been attempted.

In problems of this sort it has often proved valuable to
approximate the exact integral kernel L (x) by another
simpler one, Ly, that has the same integrated area and
second moment!! (typically L is even so that the first mo-
ment vanishes). Equivalently, the exact and approximate
Fourier transforms must have the same first two terms in
a power series about k?=0. In addition, the approximate
kernel Ly(k) should have a simpler analytic structure, and
all these conditions are satisfied by choosing

Ly(k)=q(k?>+2¢*)"", (23a)

which has poles instead of branch points. In this way, the
exact integral relation (22a) is replaced by one of the same
form, but with the approximate kernel

Lo(x)=2"32exp(—V2q |x |) . (23b)

As an added benefit, the solution of this approximate in-
tegral equation is now elementary, because L is essential-
ly the Green’s function for the differential operator
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(d /dx)*—2q>
equation becomes effectively local, with the potential
®(x) in the plane of the charge satisfying two equations
of the same form as Egs. (5d) and (6) for the 3D problem:

(3*—2¢*)® _(x)=4megn(x) (x <0),

Thus, in this approximation, Poisson’s

(24a)

(x >0).

These equations must be combined with the hydrodynam-
ic equations (5a)—(5¢) and the boundary conditions on ®
and v,. In this way, the coupled integro-differential equa-
tions are replaced by differential ones, and the same
methods used in the 3D half-space configuration will now
be seen to provide the exact solution to this approximate

(32—2¢%) @, (x)=0 (24b)

problem.
For x > 0 the solution has the form [see Eq. (7)]
@ (x)=Pexp(—V2gx) . (25)

For x <O the solutions are decaying exponentials exp(xx)
2 2

and exp(k,x), where ki and «; are the smaller and larger

roots of the quadratic equation

—[3¢q +2O.2 2 4 (02 —w?)s ~2]k?
+2¢2[q*+ 0252 (02 —0Ps~2]=0. (26)

Here and henceforth, damping has been omitted (@ =w),
and Qq is the bulk 2D plasma frequency from Eq. (18a).
If «? is positive, then the corresponding. magnetoplasma
mode is the 2D analog of the 3D surface mode and can be
called an edge mode (or, in Ref. 3, a perimeter wave).
Since the principal experimental interest is in these bound
states, the additional class of scattering states will not be
considered.

The remaining steps in obtaining the dispersion relation:
for the edge magnetoplasma modes are the same as in 3D,
and straightforward manipulations give the explicit ex-
pression

2q(Q; +5%) (V20 —w,)
=5 (k} +K1ky+K3)goV 2+ (K1 +K2)g 0w, V2

+KiKq o + KKKy +K2)w] . 27)

For fixed g (>0) and o, (of either sign), this equation
must be solved for the allowed frequencies (which appear
implicitly in the quantities x; and «,, as well as explicitly).
In general, this procedure requires numerical work, since
no simple analytic solution [compare Eq. (14)] has been
found. In the long-wavelength limit, however, the situa-
tion becomes much simpler, which will now be considered
in detail.

For the 3D surface modes the condition sq <<, de-
fined the long-wavelength limit, and a similar condition
sq <<, holds for the 2D edge modes as well. Alterna-
tively, the same condition can be considered to arise from
omitting the dispersive corrections (s =0), but it is prefer-
able not to take that limit too early in the calculation.
Apart from corrections of relative order g2, the two roots
of Eq. (26) reduce to

k1~Cqg+0(q?®) , (28a)
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where C is independent of g and given by
02 + ol —w?
C*= ————i———- (29)

204wl —w?
To leading order in g, the dispersion relation (27) becomes
220 —0,)=0(C+V2)[2+(0} —0?)/Q2],  (30)

which determines the allowed frequencies in terms of the
plasma frequency Q, and the cyclotron frequency ..
Some manipulation (including squaring both sides) yields
a quadratic equation

30?—2V200, —2Q2 =0, (31)

along with an additional set of roots w?=w?. It is clear
by inspection that w = —w, indeed satisfies Eq. (30), but
(see below) it is probably a spurious result of the approxi-
mation method. In contrast, Eq. (31) has precisely the
structure of Eq. (11) for 3D surface magnetoplasmons and
provides the approximate dispersion relation for the 2D
edge magnetoplasma modes.

For zero magnetic field, the roots are i(%)l/ Zﬂq,
which should be compared with the 3D values
+(2)7'2Q,. Evidently, the 2D modes lie closer to the
continuum and are less tightly bound. For general fields,
it is again convenient to label the modes as

(32a)
(32b)

w+=%\/§sgnwc[(3ﬂé+wf)l/2+ loe ],

1) =~%\/§sgnwc[(39,§—|—w§)‘/2— e |-

In contrast to all the other magnetoplasma modes of a 2D
electron gas, |w_ | decreases with increasing magnetic
field and ultimately varies mversely with B in the large—
field limit, when its coefficient is proport10nal to Q and
hence to the unperturbed electron density.!

It is important to consider the physical quantities asso-
ciated with each of these modes, particularly the two
long-wavelength screening constants k; and «,. For both
modes, the larger screening constant k, remains finite for
all values of the ratio (o, /Q, )2,

2 51302 +02)* 72 0, | 1*. 33)

S K%i zﬂz
As in the corresponding 3D case, k,_ increases with in-
creasing field and ultimately produces a screening length
proportional to B~!. The quantity C associated with the
smaller screening constant is more complicated. For the
— mode, it is proportional to the positive-definite quanti-
ty (wc+39.2)1/ 42|, |, so that the two independent
long- wavelength solutions of Eq. (26) indeed represent de-
caying exponentials. Direct substitution confirms that the
— mode indeed satisfies Eq. (30 ) for all magnetic fields.
For the 4+ mode, however, C? % is proportional to

(@2 +300)2~2| 0, | P,

which vanishes at (o,/Q,)*=1; thus C, has a discon-
tinuous first derivative at w.=Q,. For this field, the
long-wavelength screening constant «; vanishes, presum-
ably because the mode merges with the continuum. For
larger values of the magnetic field, it is not difficult to
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show that the + mode (32a) ceases to satisfy the original
dispersion relation in Eq. (30), even though it is a root of
Eq. (31). This latter behavior is similar to that in the 3D
case for finite g [see the discussion below Eq. (14)]; a
more accurate solution for the 2D edge mode will be need-
ed to decide whether this behavior arises from the present
approximations.

It is important to keep in mind that these solutions are
not exact, even though they do provide a very satisfactory
fit to the preliminary experimental data.? In this connec-
tion it is interesting to analyze the electron’s trajectory for
the edge modes [compare Eq. (13) for the 3D case]. For
g ~0 the same general form remains valid, but there are
additional factors of

(Co+w, )02 —o®)!.

In 3D the quantity C is identically 1, so that the corre-
sponding ratio is finite for = —w,; in the present 2D
case, however, this cancelation fails to occur, and the am-
plitudes of the motion become resonant. This behavior
arises from the additional root of Eq. (30), and it most
probably would not occur in an exact 2D solution. This
question will require further work.

IV. SCREENING BY GROUNDED PLANES

In practical experimental studies of electrons on the
surface of liquid He,!~%!° the charges are confined by
electrostatic fields instead of a uniform rigid positive
background. As a first step toward a more realistic
description, this section considers the effect of the
grounded conducting planes located above and below the
electron fluid, but I still assume that the system is neutral-
ized by a positive background. In this case the plasma
frequency for an unbounded charged layer differs from
that in Eq. (18) by a geometrical screening factor. For
simplicity I assume that the 2D electron fluid is symme-

~ trically placed a distance A from the top and bottom
grounded planes, and the square of the bulk 2D plasma
frequency is then given by!>!*

02 = _41n_0_e_2(1_

" m(l1+e)
where € is the dielectric constant of the liquid He, and

f(q) is the screening function

f(q)=tanh(qh) . (34b)

Note that f lies between 0 and 1. If the planes are far
away compared to the wavelength (gh >>1), then (,
reproduces that in Eq. (18a) apart from the trivial correc-
tion for the dielectric constant: in contrast, if the planes
are nearby (gh <<1), the 2D plasma dispersion relation
reduces to that for a compressional wave, with a propaga-
tion speed

[4mnge?h /m(1+€)]'% .

This latter limit is that used by Glattli et al.,> where they
essentially took gh—0. Although this limit is indeed ap-
propriate for long-wavelength magnetoplasmons, it fails
to treat the short-wavelength behavior correctly. This sec-

flq), (34a)

tion provides a simple model for the edge magneto-
plasmons that interpolates between the two limiting cases.
As mentioned below, this same approach has been used by
Wu et al.'® in the slightly different case of edge magneto-
plasmons in a layered electron fluid.

The only effect of the grounded planes is on Poisson’s
equation (15), which now satisfies the boundary condi-
tions that the potential vanish at z =+ (and an addition-
al modification because of the dielectric constant of the
liquid He). Equation (18b) remains correct for the magne-
toplasmons in an unbounded 2D electron fluid if Eq. (34)
is used for ;. In the case of a half-plane, Eq. (22a) again
holds, but the detailed form of the integral kernel is modi-

fied. In particular, the exact kernel has the Fourier
transform
_ f((k2+q2)1/2)
L(k)= ) (35)
(k2+q2)1/2(1+6)

where the screening function has the form given in Eq.
(34b). Evidently, an exact solution of this problem is no
easier than before, except for # —0, when L (k) reduces to
a constant, independent of k. In that special limit, treated
from a different viewpoint in Ref. 3, the inverse
transform L (x) becomes a & function.

To study the behavior for general values of gh, the ap-
proximation method used in Sec. III remains applicable'’
and will be seen to work with equal ease. Specifically,
L(k) will be approximated by a function with simple
poles in the k plane that reproduces the first two nonzero
terms in the Taylor series about the origin:

= 29f(q)
Ly(k)= . (36)
T (1t el2e? +k%(g)]
Here, g(q) is another screening function, given generally
by
glg)=1—(q/df /dq) ,

where f(q) characterizes the screening correction for bulk
plasmons [see Eq. (34)]. In the present case, an easy cal-
culation shows that

g(q)=1—2qh /sinh(2qgh) ,

so that g also lies between O and 1, with the limiting
behavior :

(37a)

(37b)

1, gh>1

37
24¢%h?, gh<«<1. (37¢)

g(q)z

As in Sec. III, Eq. (36).is readily inverted to find the
approximate kernel in position space,

Lo(x)=f(14+¢€)"'(2g)"%exp[ —q(2/g)'*|x |], (38)

which generalizes Eq. (23b). Once again, this function is
essentially a Green’s function, and the problem can be re-
duced to a pair of ordinary differential equations for the
potential in the two regions x <0 and x >0,

(3> —29%/g)® _(x)=8meq(1+¢€)~"fg~n(x) (x <0),
(39a)



7682

(32—2¢%/g)®, (x)=0 (x >0) . (39b)

The remaining steps in the solution are identical with
those in Sec. III. For x <O there are again two decaying
exponential solutions, obtained from the roots of the equa-
tion [compare Eq. (26)]

K —[(2+8)g ~'q>+205 /5’8 +5 " Hw: —0”) |
+(2¢2/8)[g%+s THQ; + 0l —0))]=0, (40)

where damping has been neglected and (2, is now the
screened plasma frequency given in Eq. (34). With minor
modifications, Eq. (27) again describes the approximate
dispersion relation of the edge magnetoplasma modes for
general wave vectors, and it is not difficult to extract the
“long-wavelength” behavior (gs <<{},) by taking the limit
s—0. This procedure gives the desired dispersion relation

(24g)w*—2(28) 00, —2Q% =0, (41)

which reproduces Eq. (31) in the unscreened limit (g =1).
Equation (41) has several interesting features. In the

absence of a magnetic field, it predicts an edge plasmon

with frequency

172

2

e 42
2+g )

=1 q

that lies below the bulk value for any nonzero g. In the
limit g =0, however, this edge plasmon merges with the
bulk 2D plasmons, in agreement with the predictions of
the model used in Ref. 3. For a given geometrical config-
uration, the edge plasmons with shorter wavelengths lie
increasingly below the bulk continuum, approaching the
unscreened limit of i(%)l/zﬂq as gh—o and g—1. In
the presence of a magnetic field, Eq. (41) has two distinct
solutions, :

o, =sgna)c1/i_’,(2+g)‘1{[(2+g)9§ +gw?l]'?

+2'% 0.}, (43a)
o_=—sgnw,V2(2+g) " {[(2+8)Q; +gwl]'?
—g?w. |}, (43b)

which clearly reduce to Eq. (32) in the unscreened limit.
A detailed study shows that the — mode is a true edge
wave for all values of the magnetic field, with the ampli-
tude decaying exponentially toward the interior. In con-
trast, the + mode is an edge wave only for a limited
range of low magnetic fields, and it merges with the bulk
continuum modes at a critical field specified by the condi-
tion

172

Q,, (44)

where the decay constant k;, vanishes. This critical
value reproduces that found previously [see the discussion
below Eq. (33)] in the unscreened limit (g =1), and it has
the striking feature that it vanishes for g—0. This last
behavior is consistent with the conclusion of Ref. 3 that
only a single edge magnetoplasma mode occurs in the ful-
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ly screened limit (gh =~0). Figure 1 illustrates these two
modes in the particular cases of (a) gh =0.5 and (b)
gh =2, which correspond, respectively, to g =0.15 and
0.85. Note the limited range of the upper ( + ) mode in
these two cases.

This method of including the effect of the grounded
planes is similar to that of Wu et al.,’® who consider a
layered electron fluid with separation a between adjacent
layers, placed in a medium with dielectric constant €. In
an unbounded system, the bulk plasmon is again given by
qu 1g34a), but with a different screening function given
by”

_ sinh(qa)
f= cosh(ga)—cos(g,a) ’ “3
and with the factor 14 € replaced by 2e. Here, g,

denotes the wave number for propagation perpendicular
to the layers. The formalism for the edge magneto-
plasmons remains valid, with a modified screening func-
tion g. In the particular case of a wave propagating
strictly in the y direction (g,=0), it has the simple form
g = 1+qa /sinh(ga), which now lies between 1 and 2. For
ga >>1 (widely separated layers), the results reduce to
those of Sec. III for a single layer; in the opposite limit
(ga << 1), they reproduce the conclusions of Sec. II for the
3D surface magnetoplasmons,'® where both the + and —
modes were true bound surface waves in the long-
wavelength limit [compare Eq. (44) as g—2]. Curve (c)
of Fig. 1 illustrates this behavior, giving the edge magne-
toplasmons for a layered electron gas with the typical
values ga =1, g,a =0, and g=1.85.

lwl/fq

!
[¢] LO 2.0
lwel /Qq

FIG. 1. Magnetic field dependence of + (upper) and —
(lower) edge magnetoplasmons, including various screening
corrections. Curves (a) and (b) refer to a single 2D charged layer
with grounded planes a distance 4 away, with gh =0.5 and 2,
respectively. In each case, the termination of the + mode is
apparent. Curve (c) describes a layered electron fluid, with
q;a=0 and ga=1. The latter upper curve terminates at
| | /R4 ~3.51.
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V. DISCUSSION

The present theoretical approach raises several ques-
tions. First, -is the basic approximation reasonable, and
can it be improved? In principle, this problem can be
solved exactly for a half-plane, as discussed in the Appen-
dix. Alternatively, the question can be treated by expand-
ing in the difference between the exact and approximate
kernels; the first correction would give an estimate of the
approximation’s validity.

A second concern is the assumption of a rigid uniform
positive background charge, when, in fact, the electrons
are held in place by applied electrostatic fields. The au-
thors of Ref. 3 have considered this effect, particularly
the question of a nonuniform unperturbed electron density
no(r). Another relevant practical point is the role of a
finite geometry, where charge conservation may be more
important than in the present semi-infinite configuration.

At present there appear to be some differences between
the models of Refs. 2 and 3; for example, I find a local-
ized 2D edge plasmon even in the absence of a magnetic
field (as in 3D), whereas Glattli et al.? apparently ascribe
the localization to the presence of a field. The discussion
in the preceding section indicates that a magnetic field is
necessary for the localization only in the limit of perfect
screening (gh =0), since otherwise the edge plasmon lies
below the bulk value (), even in zero field. In addition,
the authors of Ref. 3 suggest an analogy between the edge
magnetoplasmon and the Rayleigh wave on the surface of
an elastic continuum. This latter bound surface wave in-
volves both longitudinal and transverse displacements,®
because neither alone can satisfy the free-surface boun-
dary conditions. In contrast, the transverse component of
the localized surface or edge plasmon varies with the
external field and vanishes if B=0. Thus the detailed
dynamical motions of the two waves must differ consider-
ably.

Another generalization of interest is the possibility of
edge modes on a 2D Wigner lattice of electrons.® This
system has a nonzero shear modulus, which should affect
the dynamics of the magnetoplasmons, particularly the
transverse component of the motion.

In conclusion, this paper has presented an approximate
solution for the magnetoplasma modes of a 2D electron
fluid confined to a half-plane, stimulated by recent studies
of electrons on the surface of liquid He."? In addition to
the propagating waves that are analogous to the modes of
an unbounded system, two new edge modes have been
found whose amplitudes decay exponentially away from
the boundary. These new modes are very similar to the
surface magnetoplasmons found on a 3D electron fluid
confined to a half-space. They provide a good qualitative
fit to the anomalous modes observed in Refs. 1 and 2.
The present approximation methods also suffice for con-
sidering the screening effects of grounded planes above
and below the 2D electron fluid. The same approxima-
tions should prove useful in other contexts.
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APPENDIX

In this appendix I sketch the application of the
Wiener-Hopf technique to the problem of surface and
edge magnetoplasmons on a 3D or 2D half-space.!'! The
basic observation is that if a function vanishes for x >0
[such as the electron density n(x) or the components of
its velocity], its Fourier transform

Aek)= [ dxe"n(x) (A1)

is analytic in the upper half complex k plane. Since the
potential ®(x) can be decomposed into the sum of two
parts that vanish separately for positive and negative x,
the corresponding Fourier transforms & (k) and ®_(k)
are analytic in the upper and lower half k planes, respec-
tively.

For both the 2D and the 3D configurations, Egs.
(5a)—(5c¢) specify the dynamical equations of motion. In
contrast to the usual case of an unbounded domain, how-
ever, the present semi-infinite geometry complicates the
situation. For example, the Fourier transform of dn /dx
is ikn  (k)+n (0), where the last term is the electron den-
sity at the edge of the half-space (x =0). Thus the
Fourier transforms of Egs. (5a)—(5c) contain inhomogene-
ous terms proportional to n(0) and ®(0), as well as the
transformed quantities 7 (k) and v ,_(k) [note that v,
vanishes at x =0 so that v,(0) does not appear]. Elimina-
tion of ¥ (k) yields the following inhomogeneous relation
between 7, (k) and @ (k),

(k2 +p»a (k) —(noe /ms*)(k?4+¢*)® (k)
=i(k +igw,/&)[n(0)—(nge /ms)HP(0)], (A2)
where
pr=q*+(0/s%) 0l —&?) (A3)

is independent of the Fourier variable k.
The other basic equation is the Fourier transform of
Eq. (22a), which becomes

&, (k)+P_(k)+4meL (k)i (k)=0 .

Here, L(k) is the appropriate kernel function

=+(k24+¢%)~'2 for the 2D case and (k2+¢?2)~! for the
3D case]. A combination of Egs. (A2) and (A4) leads to
the single equation

(A4)

(k> 4+pu)®_(k)+G (kD (k)=(k +iqw,/&)AL(k) ,

. (A5)
where A is a known constant, independent of k, and

G (k)=k*+u>+(k*+¢>L(k)(4mnoe?/ms?) .  (A6)

Although G (k) does not, in general, have sim1p1e analytic
properties, standard but intricate techniques!! permit its
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factorization into the product G, (k)G _ (k), where the
first (second) factor is analytic in the upper (lower) half &
plane. Elementary manipulation then gives

G, - k+igo /s _
= A7
= rime_ AL (A7)

where the two terms on the left-hand side have simple and
obvious analyticity. The same techniques allow the
right-hand side to be decomposed additively in the form
P (k)+P_(k), and a slight rearrangement gives

k-ipg
G_

k—ip =
P
6. T rxin

S+ 3, .p
T k+ip +

(A8)

The usual arguments of the Wiener-Hopf technique'! im-
ply that each side is an entire function, which is taken to
be zero. Thus, each of the functions @ (k) and ®_(k) is
determined, with the proper analyticity. Substitution
back into Eq. (A2) finally yields the following expression
for 7, (k):

4 (k) =(k24+u®) " {(noe /ms®)(k*+¢>)® (k)
+i(k +igo, /&)
X[n(0)—(nge /ms*)®(0)]} .
(A9)

This function is analytic in the upper half k plane and:

cannot be singular at kX =iu. Thus the quantity in curly
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braces must vanish at that point, which determines the
dispersion relation for the edge or surface magneto-
plasmon:

hoe qo.

(4]

npe

ms?

(@ —pH®_ (iu)= |u+ n(0)— ®(0)

ms?
(A10)

In three dimensions this procedure is readily implement-
ed, since the function G is linear in kZ% straightforward
algebra then reproduces Eq. (10) obtained previously by
direct means. For two dimensions, in contrast, the corre-
sponding G (k) has branch points at +ig, and the subse-
quent decompositions are very complicated. Nevertheless,
the problem is thus solved in principle. It would be in-
teresting to carry out the numerical analysis in detail;
comparison with the approximate solution obtained in
Sec. III would clarify the replacement of the exact kernel
by an approximate one with simpler analytic structure.

It is evident that this exact method can also treat the
screening corrections of Sec. IV. In that case, the exact
kernel function L(k) in Eq. (35) has an infinite set of sim-
ple poles at the points given by

k = —q>—(7w/2h)*(2n +1)?

for n=0,1,... . These merge to form branch points in
the limit gh— oo, but the behavior for general gk would
require an additional investigation.
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