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Application of sum rules to the response of small metal particles
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Sum rules for the response of small spherical systems are derived and compared to the response
calculated in the time-dependent local-density approximation by Ekardt. The e sum rule, which
can be expressed in closed form, is useful as a supplement to the polarizability sum in locating the
plasmon. Explicit formulas are obtained for the shifts in the plasmon frequency resulting from the
diffusivity of the charge density and from the potential field of the ground state. %'e show on quite
general grounds that the plasmon in a jellium model is red-shifted from the Mie frequency.

The electric response of small metal particles has been
the object of recent experimental' and theoretical
research. The most complete theory available is the
time-dependent local-density approximation (TDLDA),
which we expect to be quite adequate for regions of fre-
quency considered in this work. However, the theory re-
quires large scale numerical calculations, ' ' so it is of in-
terest to see whether simpler approaches can reproduce
the main physical results of the theory. In light of this,
we investigate the application of sum rules to the deter-
mination of the response. This is partly motivated by the
results in nuclear physics, where sum rules have proved to
be very useful in treating the nuclear response. '

The sum rules are integrals over the response weighted
with some power of the frequency. The easiest one to
evaluate is the linear frequency-weighted sum, the well-
known Thomas-Reiche-Kuhn (TRK) sum rule. Whenever
two independent sum rules are available, an estimate for
the plasmon frequency can be made by assuming that the
state exhausts the sum rules. The polarizability sum,
equivalent to the inverse frequency weighted response, has
been shown to be useful in the description of the plasinon
frequency. Unfortunately, there is no closed formula for
the polarizability, and so one cannot see explicitly the
dependence of the plasmon on the ground-state density
distribution. In this work, we will concentrate on the rule
weighted by the cube of the frequency. This sum has the
advantage that it can be evaluated as an expectation value
over the ground state, just like the linear sum rule.

We will apply the co sum rule to derive a formula for
the plasmon in finite spherical metal particles. This sum
rule has previously only been applied to dielectric proper-
ties of insulators. " Our main result is to exhibit devia-
tions of the plasmon frequency from the Mie limit. We
could also combine information from the three sums to
estimate the sharpness of the plasmon as a function of
multipolarity. However, in this work we will only study
the long-wavelength plasmon in detail, deferring higher

multipolarities to a later paper.
The formula for the plasmon will only involve integrals

over ground-state quantities. This is possible because the
TDLDA assumes that the same exchange-correlation
functional that describes the ground state may be used for
all frequencies. If the interaction were frequency depen-
dent, no simple closed formula could be made. On the
other hand, the result is nice from the point of view of
density-functional theory, which provides a description of
the many-particle system in terms of the ground-state
density. On a rigorous level the theory only proves the ex-
istence of an interaction functional for the ground state.
Practical theory extrapolates from the rigorous domain of
the density-functional method by assuming locality and
frequency independence in the exchange-correlation func-
tional.

We first define some notation and derive the co sum.
Let f (r) be a function of position representing the exter-
nal field acting on the system, and let s„be the energies of
the eigenstates n. Then the sums are defined by

S =g(0
I f I

n) (s„—so)

The linear frequency-weighted sum rule is equal to the
double-commutator expectation value,

where H is the Hamiltonian of the systein. The usual
TRK expression is obtained with the field f ( r) =z,

with N being the number of particles in the system. We
now consider the co sum, which is well defined in
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Here, the TDLDA Hamiltonian H has the form of a
density-dependent single-particle Hamiltonian,

H' =g—
2

Vg + V(»;,p)
2m

We first evaluate the innermost commutator, which only
has a contribution from the kinetic energy operator in
~LD

N
[H",f]=g F;=—

r

V u; +u; V (6)

TDI.DA theory, although it may be divergent in general.
The sum can be expressed in the quadruple commutator,

Si ———,
'

&0
I [[H,f], [H D, [H",f]]]I

0& . (4)

5 V(»') e (3) —+ -+»+U„,(p)5 (r —r') .

The general formula for the kinetic contribution to the
co sum may be found in Ref. 12. It is rather cumbersome
so we shall not display it in full here but only for the re-
stricted cases of pure multipole fields,

fg(»)=» &gM(r) . (12)

The Laplacian of the multipole field vanishes, eliminating
many terms in the commutators. The first commutator
of the kinetic energy with F; is

[——,
'

m ' V;,F;]= g(V„u„)V„V
p, v

(13)

The expectation value of the final commutator can then
be expressed in the form

where u; = Vf (»; ). Physically, the vector field u;
represents a displacement field associated with the impul-
sive perturbation potential f The o.perator F; then gives
the effect of the field on the ground-state density,

&i I[0«) F]li&=——I:V u14'«) I'+u V f4 «) I']

&i
I [F;, [——,'m 'V;, F ]] li &

where

f d» g (Vqui )(V„ui)~p„,
m p, v~A,

(14)

1 V.(up;) .
m

Our next task is to evaluate the commutator of H
with F;. We first derive the contribution from the poten-
tial field V and then consider the more cumbersome kinet-
ic contribution. The commutator of the potential of parti-
cle j with I"; is

[V(»j,p), F;]= u;. V V(»j,p) .
m

The potential field depends on particle i explicitly when
i =j and implicitly through the p dependence on particle
i, whether or not i =j. In the first case, the commutator
is a single-particle operator on particle i, involving the
gradient of the LDA static potential. The remaining
commutator in Eq. (4) is nonzero only for the operator F;,
and the expectation value is

&i l[F;,m 'u; VV]li&

=m f d»[V (up)]u VV. (9)

When i&j the expression in Eq. (8) is a two-body opera-
tor and the final commutator is nonzero only for F . The
expectation of this may be expressed as

& ij
I
[F [«»J p»F ]l Iij &

5Vf d» f d»'[V (upj)], . (u Vp,. ), .
m 5p»

(10)

The functional derivative of the potential with respect to
density in the above equation is nothing more than the
two-particle interaction, which will have a Coulomb part
and a zero range I.DA part to account for exchange and
correlations,

P; (»)( V V)„—( V —V )„P;(») (15)

S3
~sud =

S1
&ol[[H" f] [H', [H",fll]lo&

&o
I [f, [H",f]l I

o&

(16)

This estimate may be interpreted as a sudden limit be-
cause the frequency is that associated with the short-time
restoring force following an impulsive perturbation. This
is in contrast to the formula based on the polarizability
sum~

S1
CO~d =

S (17)

which is an adiabatic estimate in the sense that the long-
time behavior of the system governs the restoring force.
As is clear from the derivation, the commutator ratio Eq.
(16) must equal the ratio of integrals over the TDLDA
response function if appropriate self-consistent potentials
and densities are used to evaluate the ground-state expec-
tation values. Equation (16) will be a good estimate of the
plasmon peak frequency if the sum rules are exhausted at
frequencies near the peak. We will now examine how well
this is fulfilled in the case of the long-wavelength
plasmon, where we set f=z. Then the kinetic contribu-
tion to S3 vanishes completely. Physically, the oscillation
is a pure translation of the electrons, which does not
change their kinetic energy. From Eqs. (3), (4), (9), (10),
and (16), we obtain the following formula for the
plasm on:

(18a)3m'

is the momentum flux tensor associated with the state i
We can now construct an estimate for a collective oscil-

lation such as the plasmon by the ratio of sum rules,
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where

e' f "d« f "dr (r ~) "P "~ P (18b)

To see this, we separate the self-consistent potential into
an electronic part and the remainder from the background
charge. The derivative of the electronic potential is
evaluated by functional differention

2

I„,= dr r u„,(p),dp
0

(18c)
dV 5V dp
dr 5p dr

zdp dV
dr dr

(18d)

The first thing to check with Eq. (18) is that the Mie for-
mula emerges when we neglect all terms except for the
Coulomb interaction, and approximate the density distri-
bution by that of a uniform sphere. We define the radius
of the sphere as R, and the electron density as no Th. en
the transition density is

dp 3N=n05(r —R) = 5(r —R)
4mR

'
and the Coulomb contribution to Eq. (18a) is evaluated as

I, =ID —— e noRc (2O)

to obtain the Mie formula for the surface plasmon,

4m
CO = Io ——

3mN

4mnoe
(21)

In more realistic models there are three corrections to the
Mie formula, arising from the two integrals that were
neglected and from the smoothing out of the sharp densi-
ty distribution in the Coulomb integral. From the general
structure of the integrals we can infer that the jellium
model will predict a red-shift of the plasmon frequency.

R —r
p(r) =noerf

a
(22)

dp no (r R)
exp

dr adam. a' (23)

where a is our surface thickness parameter. It is only
necessary to expand all integrals in powers of 1/R, keep-
ing the lowest term.

For example, the integral over the Coulomb field is

We obtain two terms, arising from the Coulomb interac-
tion and the LDA exchange interaction, which contribute
to I„ to just cancel the integrals I, and I„.The net con-
tribution is just the force from the background charge.
Since this is the field of a uniformly charged sphere, the
maximum force is at r =R, and the integral is largest if
dp/dr is concentrated at R, as in the classical case. In
the realistic case the average force weighted by dp/dr will
be lower.

Before displaying the results of numerical evaluation of
the above integrals it is useful to derive analytic approxi-
mations to see the functional dependencies of the correc-
tions. For this purpose the error function provides a con-
venient parametrization of the ground-state density, be-
cause p' is then a Gaussian. Specifically, we choose p and
p' to be

2

I,=f dr r f dr'(r')
z exp

(r R) +(r' R) r—& 4w z-
e

a r2 3

2

=2f dr f dr'(r')
z exp

(r R) +(r' R) 4m—z—
2 3' (24)

J

This integral may be approximately evaluated by transforming variables to x = (1/v 2)(r —r') and

y = (1/v 2)(r +r —2R) and extending the limits of integration to infinity,

I~=2 f dy f dx R+ . (y —x) exp — y ez
—00 0 an. a

2
R3 —3R a +O(R) 4~

v'2n. 3
(25)

Ic 3a~]
Ip &2m.R (26)

Thus, the finite surface thickness lowers the Coulomb in-
tegral by the following amount:

We next consider the exchange integral, which is surface
peaked due to the presence of (dp/dr) in the integrand.
The function u„,(p) is slowly varying so we may replace it
by u„,(no/2) without serious error. The integral is then
evaluated to give



7662 G. BERTSCH AND W. EKARDT 32

2
co no

dr r exp
0 a m

2(r —R)
U„,(no/2)

a

noR
U„,(no/2)

Q 27T
(27)

The ratio of the exchange integral to the Coulomb is given
by the following expression to lowest order in 1/8:

I 3U (no/2)
Io 4m~2m aR

(28)

This also produces a red-shift of the plasmon, because the
exchange interaction is attractive. Notice that the correc-
tion increases with the sharpness of the surface and in fact
diverges for an infinitely sharp surface. This may seem
unphysical, but it must be remembered that the sum rule
is based on a self-consistent ground state as an input den-
sity. If such a density becomes very sharp, it must be as a
consequence of the potential becoming singular, and then
the contribution (28) may not be evaluated separately
from the contribution due to the static potential.

The last term in (18), the potential contribution, is pro-
portional to the overlap of the transition density and the
gradient of the static potential. We can estimate this us-
ing the same kind of parametrization for dV/dr that we
used for dp/dr. We define a new surface thickness pa-
rameter a', and a parameter b. for the displacement of the
half-potential radius from the half-density radius. Then
the potential integral is

r r1/2
Q2

exp
a +a' (29)I„=npR V(0)

m(a +a' )

and the ratio to the Coulomb integral is
1/2I„3V(0) 1

4~noRe m.(a +a' )
exp — . (30)

a +a'

TABLE I. Surface-plasmon frequency in sodium clusters
( r, =4), extracted from the TDLDA response for various parti-
cle numbers N. Frequencies are given as a fraction of the Mie
value, co~/3=0. 2497 Ry=3.4 eV.

Note that this contribution always results in a blue-shift
to the plasmon. Also, we see that all three corrections to
the Mie formula are proportional to 1/R. The Mie for-
mula will become exact for large spherical clusters.

We now apply these estimates to the plasmon in small
sodium clusters. The self-consistent LDA theory of
spherical sodium clusters with a jellium Hamiltonian is
given in Ref. 13. We shall follow that work, using densi-
ties and potentials shown in Fig. 3 of Ref. 13. The jellium
Hamiltonian is chosen with a background charge parame-
ter r, =4, which corresponds to an asymptotic electron
density no ——0.003 73 in units of inverse Bohr radius

TABLE II. Contributions to the shift in surface-plasmon fre-
quency. The integrals in Eqs. (18a)—(18c) are given for various
size clusters, expressed as a percentage of the classical Coulomb
integral, Eq. (20). The values obtained from the analytic expres-
sions Eqs. (26), (28), and (30) for N =198 are shown in the last
row in parentheses.

Ic—Ip

Ip

I„,
Ip

I„
Ip

cubed, i.e., (0.0529 nm) . At this density the classical
Mie resonance occurs at a frequency co~ /3 =0.2497
Ry=3.398 eV. The TDLDA theory of the response for
this Hamiltonian is reported in Ref. 4. In general, the
TDLDA response shows a strong peak in the vicinity of
the Mie frequency, but somewhat red-shifted from it. We
quote in Table I the numerical values of the peak frequen-
cy for clusters of 20, 92, and 198 atoms. In the second
and third columns of the table are given the sum-rule ra-
tios calculated directly from the TDLDA response curves.
The adiabatic frequency is necessarily lower than the sud-
den frequency, but both are quite close together. This
shows that the dipolar surface plasmon is rather well lo-
calized in frequency. Although the sudden frequency is
higher than the adiabatic, it still is red-shifted from the
Mie frequency, as required by our earlier argument. The
adiabatic frequency is the closer of the two estimates.
The TDLDA response also shows a broad hump around
the position of the volume plasmon in the larger systems,
which can only acquire transition strength by coupling to
the surface plasmon. The sudden estimate is much more
sensitive to this higher frequency component, and thus
produces a less accurate estimate of the surface-plasmon
peak. It should be possible within the sum-rule approach
to explicitly derive the coupling between the plasmons,
but we shall not attempt that here.

We next evaluate the various integrals over the ground-
state densities to calculate the sudden frequency. Using
the ground-state data from Ref. 12, we evaluated Eqs.
(18a)—(18c) for the same clusters. The results are shown
in Table II. It may be seen that the corrections are largest
for the smallest cluster, and scale approximately as 1/R.
Also note that there is a strong cancellation between the
potential contribution and the finite surface thickness
correction to the Coulomb integral. At a qualitative level,
it may be said that the corrections are of opposite sign in
the jellium model, leaving only a small residual effect.
For a detailed discussion of the various competing effects
in locating the surface plasmon the interested reader is re-
ferred to Ref. 4. It should also be noted as a consistency
check on all of the computations, that the sudden frequen-
cy as calculated explicitly from the response agrees with
the integral formula to l%%uo, which is the limit of our nu-
merical accuracy. '

Finally, we shall apply the error-function approxima-
tion to the density to make approximate estimates of the

20
92

198

co (peak)

0.885
0.893
0.893

co (adiabatic)

0.877
0.922
0.915

co (sudden)

0.940
0.964
0.951

20
92-

198

—18%%uo

—10
—9

( —11)

—15%
—9
—7

( —5)

+ 18%
+11
+8

(+ 9)
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integrals. A good fit dp/dr for N =198 is obtained with
the function Eq. (20) having a surface thickness a =2.14
a.u. For the potential, we fit the peak region of dV/dr,
using the following parameters in Eq. (30): V=0.29 Ry,
a'=1.66 a.u. and 5=1.2 a.u. Finally, we mention that
the value of the LDA interaction to be used in Eq. (28} is
v„,(no/2) =52 Ry/a. u. The analytic approximations
Eqs. (26), (28), and (30) then give values for the integrals
quoted in parentheses in Table II. We see- that the esti-
mates are quite close, so it should be possible to treat the
dipolar collective features of other systems (other particle

numbers and r, values; ellipsoidal distortions, etc.) just us-

ing simple properties of the density and potential that can
be subsumed in a few parameters.
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