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Optical transmittance and reflectance and dynamic cUrrent density for thin metallic films
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Formulas for reflection and transmission coefficients R and T for electromagnetic radiation in
thin metallic films are given, where the anomalous skin effect and electron scattering at the film
boundaries are taken into account. The equations are valid in the near-infrared, visible, and ultra-
violet spectral range, and at low frequencies where the skin effect is nearly classical. The classical
size effect in the optical absorption for different values of the specularity parameters is considered.
The observed oscillatory nature of the absorptance provides a promising method for verifying the
boundary conditions for the free electrons at the film surfaces. Finally, a generalized Fuchs formula
for the dynamic current density is developed, which is valid in the same frequency ranges as R and
T.

I. INTRODUCTION

In this paper the influence of the skin effect on the op-
tical trarismission and reflection of thin films will be con-
sidered. This problem was theoretically investigated by
Reuter and Sondheimer' for the case of bulk material.
They gave an exact relation for the electric field in the
metal, assuming the free electrons to be either totally
specularly or diffusely reflected at the sample boundary
(specularity parameter p =1 or 0). Dingle has given ap-
proximate relations for the transmission and reflection
amplitudes t and r for thin films with p =0 at both boun-
daries. Hutchison and Hansen have tried to extend the
Dingle consideration for all values of the p parameter.
The same was recently done by Szczyrbowski et al.

Unfortunately, it turned out that the relation for the
current density J(co,z) given by Hutchison and Hansen
[relation (9) in that paper] is not complete. We shall see
that it represents only the special case when the speculari-
ty parameter at one of the boundaries equals zero. One of
the consequences of this limitation was the theoretically
obtained weak influence of the p parameter on the optical
properties of thin metallic films in the near infrared
(NIR).

The aim of this paper is to give approximate relations
for r and t for thin homogeneous metallic films with
values of the specularity parameters at both film boun-
daries in the range 0—1. In our solution of the wave
equation we use the method developed by Dingle. '

write the electric fieId as

t —p= E'(0), y =
COP COP

E'(d),

where E and E' are the electric field and its derivative in
the sample, p is the relative magnetic permeability, and eo
the permittivity of free space. Thus to obtain the expres-

substrate

medium 1

E3

—i (co!c)n&z i (cole)n &~El ——Ce +Pe on the left-hand side,
(1)—i (co/c)n 3zE3 ——ye on the right-hand side

in Fig. 1, where n ~, n 3 are the refractive indices of the sur-
rounding media 1,3 and t, p, and y are the amplitudes of
the incident, reflected, and transmitted field, respectively.

Explicit relations for the complex coefficients of reflec-
tion, r =pl&, and transmission, t =ylt, may be obtained
using the boundary conditions for Maxwell's equations at
each interface. They are

t+p=E(0), y =E(d),

II. SOLVING THE WAVE EQUATION

We consider a system given in Fig. 1. The sample is
limited by the surfaces z=0 and z=d. A plane elec-
tromagnetic wave is incident from the z direction (normal
incidence). Omitting the time factor throughout, one can

0 cI 2

FIG. 1. Schematic diagram for the propagation of an elec-
tromagnetic wave through a film-substrate system.
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sions for r and t one has to know the field E in the sam-
ple area which obeys the wave equation (SI units)

d E(z) co+ 2 )M(1+S)E(z)=
2

J(co,z) .E Q)P

dZ C C E'0
(3)

The quantity (1+S)=e( is the residual dielectric constant
which takes care of the displacement current, atomic po-
larization, etc. J(z) is the current density of the free elec-
trons in the sample and is given by

3

J(o),z) = —2e
h f J J v„f,dv„dV, dv, , (4)

af) uf,+
Bz mz

e dfo
Ol V BV~

where it is assumed that the distribution function f may
be written as f=fo+f) (f, «fo fp is the Fermi func-
tion, (v = 1+i(vr, and r is the relaxation time). The gen-

where m is the effective mass of an electron.
f) may be obtained from the linearized Boltzmann

transport equation

eral solution of Eq. (5) is given by Reuter and Sondhei-
mer' and f) has the form

lef )
——exp C(V)+ e afp

mv, Bv„

2
X E yexp dy , (6)

where C(v) is an arbitrary function of the velocity which
is determined by the appropriate conditions at the film
boundaries. We use the Lucas boundary conditions

fo+f)+(v„z =0)=p[f()+f( ( —v„z =0)]+6, ,

fo+f( (v„z =d) =q[fp+f) ( —v„z =d)]+G2,
(7)

where f)+ ——f, for v, &0, f) f) for v,——&0 and p and q
are the specularity parameters related to the surfaces z =0
and z=d, respectively. The magnitudes G~ and G2 are
connected with the diffuse scattering of electrons at the
film boundaries. Using (6) and (7), from (4) one obtains

J(~ z) F ds E (y)dy [pe
—w(y +z)s&(+pqe w( 1)r —z

1 2d)sll+qew(y+z 2d)sll~e ——w )y —z
I /)]s

2m(emvF)
0

where

1F=
s

1 1

s 3 1 —pqe

v~ is the Fermi velocity and / the mean-free path of an electron. Relation (8) is the same as given by Dimmich and War-
kusz for polycristalline films assuming the electron transmission through the grain boundaries to be unity. One can see
now that at q =0 Eq. (8) becomes the expression for the current density given by Hutchison and Hansen.

It is convenient for mathematical analysis to introduce dimensionless coordinates z =z// and y =y//. Emphasizing
that below also the film thickness d is measured in units of the mean-free path /, Eq. (3) then takes the form

d E(z) co /+ p(1+S)E(z) = J (co,z) .lQ)l p
(10)dz C C E

To obtain the electric field from (10) with (8) we consider first the possible solution E' '=e "w' which results in

(u —g)e " =/[K(u)e " '+A],
where

'2

(S + 1))M,
cw

I(. (u)= J F
r

+ (1—pqe ' )ds= f$ —u $+u s
1 1+ ds

s —u s+u
1

2u + (u —1)ln 1+u
u 1 —u

(12)

d (pe
—swz e uwd sw(d+z)+p—q

sw(2d——z) —uwde —sw(d —z))—
s+u

+ F ds ( e swz+ qe
—uwde —sw (d —z) +pqe

—uwde —sw (d +z) qe sw (2d z)
)

00

s —u

2'(r(em'. ) / )M/=i
6'0 A M
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Taking into account the expression for the electron concentration N=(8m. /3)(mvF/h) and the dc conductivity
cr(0) =Ne L!(mvF ) the magnitude g may be written as

2m&i P . 3 l

where 5=[2eoc /pro(T(0)]' is the classical penetration depth.

The next contribution to the electric field may be taken as E' '= gA. Setting E =E'"+E' ' into the wave equation
(10), one obtains:

(u —z))e " '=p(. (u)e " '+O(g ), (13)

where O(g ) is a term of order g . This process can be repeated to form a series in g which converges for
~ g ~

& 1. Thus,
generally, one can write

E+ E(1)+E(2)+.. . +O(gn) (14)

Since by (12) K(u) is an even function of u, there is a further solution E obtained from (14) simply by replacing u by—u. Thus the general solution of (10) with (8) may be written in the form

E(z)=E()+E++E() E
where Eo+ and Eo are constants.

III. RELATIONS FOR r AND t

In this section we assume additionally that
~ g ~

&&1 and
~ g ~

&&1. One consequence of this is that
~

u
~

&&1. This
restricts the validity of the further considerations to either low frequencies, where the skin effect is nearly classical, or
very high frequencies from the near infrared up to the ultraviolet (UV). A more detailed discussion of these assumptions
is given in the next chapter. With sufficient accuracy one may then take

(z) E e Qwz+E e Etwz
(16a)

E'(z) = [Eo+(E+)'+ED (E )'] =ED+ n (z)e " '—Eo n'(z)e""',
colp colp

where

(16b)

n~n(z)=
2

[(1 p)ezwzI e zwz+p ( 1 q)e zw (d —z)I e
4 W e

q(1 p)ezwzI ezwz (1 q)e zw(d z)I ezwz]

n'(z) = 3 co& v+-
p 4

'2
UF

[(1 p)e +wzI e zwz+p( 1 q)ezw(d —z)I e
—Swz

C

(17)

q ( 1 p)e I e ( 1 q)euw(d —z)I ezwz]

and
r

~
—Eswd

Ix ——f 3
—

5 2~ds with K=O 1 2 .
g g l pqe

The expressions Ixe +—' ' in Eqs. (17) represent an abbrevi-
ated notation and it means that the integrand of Ix is
multiplied by the appropriate exponential function. nb is
the complex refractive index of the considered medium
where the surface contribution is neglected. The appear-
ance of I in (16b) is a consequence of the dimensionless

notation of the wave equation. From (12) one obtains
K(u)=4/3 and from (13):

]./2
Sp7 E col

QW= l+5 —i p = nb
C COW C

where coF ——
¹ /(eom) is the plasma frequency. The rela-

tion (18) is the familiar expression for the dielectric con-
stant of a free-electron gas with correction for residual po-
larization.

The relations for r and t may be obtained using the in-
terference matrix M defined as '
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with

E(0) E(d)
H(0) ™H(d)

where the Fresnel amplitudes are defined as follows:

and

Pl i ) Pl iz
M=

~zi ~zz

(m11+m12n3)n1 (m12+m22n3)r=
(mll+m12n3)n1+(m12+m22 3)

n, n—(0) n1 —n '(0)

n1+n (0) ' n1+n (0)

n(d) —n3
"z3 =

n'(d)+n3 t,i ——1+r,j

2ni

(m11+m12n3)n1+ (m12+m22n3)

(19)

The matrix elements can be found from (2) and (16).
After some transformations one obtains

n1+n'(0)
U=

n1+n (0)

The measured intensity coefficients R and T for reflection
and transmission of a film on a transparent substrate are
given by

n'(d)e" +n(d)e
n'(d)+n (d)

uwd —uwd

n'(d)+n (d)
(20)

R =R'+T'
1 —R3iR"

(1—R31)T'

1 —R3iR"
m 2) ——

.

n (0)n'(d)e "~ —n'(0)n(d)e
n'(d)+ n (d)

n'(0)e " +n(0)e""
n'(d)+n (d)

where

R31
ni

n3 —n]

n3+n]

2

n(0)=

X [Io—(1—q)e " I1 qI2], —

The explicit expressions for the optical constants are
r 2

nb 3 co& 7 UF
(1—p)

p 4 w c

R" represents the reflection coefficient of the film for
light incident from the semi-infinite substrate. Because
R" is multiplied by R3~, which is much less than 1 in the
expression for it, one can practically neglect the con-
sidered skin effect. Thus in the numerical calculation we
can use the expression

2
nb 3 COp7 UF~(d)= +— (1—q)
p 4 m c

X [Io—(1—p)e" "I pI2]—
2

(21)

2
r3z+rzre

r r e
—zuwd

where r,z are the Fresnel coefficients defined as

n3 —n'(d) n'(0) n1-
n3+n(d) ' n'(0)+n1

(24)

n'(0) = nb 3 ct)p 7 UF+— (1—p)
p 4 m c IV. DISCUSSION AND CGNCI. USIGNS

X [Io (1 q)e" I1 q—I2]—, —

2
nb 3 co& v UFn'(d)= (1—q)
p 4 m c

X [Io—(1—p)e " I1 pI2] . —

Therefore Eqs. (19) reduce to the familiar expressions

Our discussion will be limited to the case of nonmag-
netic materials, i.e., we assume p = 1.

The expressions (22) are similar to those in the litera-
ture' '" for metallic or dielectric films, where the skin ef-
fect is neglected. The influence of the skin effect and the
interaction of the electrons with the film boundaries are
described by U and the new definitions of r12 and r23.

The validity of (22) is conditioned by two assumptions:
i g i &( 1 and

i q i ((1. One can consider three cases:
(i) For cow (( 1 one has

u wd-

r=—
1+r ]zr23e

(22)
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2
UF

~ g ~

=co r (S+1) .
C

The maximum value of (uF/c) for any metal is of the or-
der of 10 . Thus the second inequality ~ g ~

&&1 is al-
ways fulfilled when cur«1, but

~ g~ &&1 is true when
coze(c/uF. If we take the typical parameter values for

old (fico& —9 eV, v=2&& 10 ' sec) we obtain cozr=c/uF,
which means that for this material

~

g'
~

&& 1 is obeyed.
(ii) For cow» 1 the discussed

~

g'~ and
~
i)

~

magnitudes
may be written as

~

g'
~

=—,
'

(co&/co) (u~/c) an

~
rl

~

=(u~/c) (S+1). Thus again the second inequality
(

~
il

~
&&1) is fulfilled, while the first one is obeyed only

then when (co&/co) «(c/uF) . For materials such as Au,
Ag, and Cu both inequalities are fulfilled when fm&0. 2
eV.

(iii) For cur=1 the discussed assumptions are fulfilled
when (co~a) &&(c/uF) .

The optical constants n and n' [Eq. (21)] depend on
both the film thickness d and the specularity parameters p
'and q. For bulk material or thick films (d »1, in prac-
tice d &2) the dependence on d disappears, and in this
case only n (0) is of importance. It becomes

3 ( ci)ip r ) uF
n (0)=nb — (1 p) =nb+n-, .

w'c
(25)

The second term n, in (25) represents the surface contri-
bution resulting from the interaction of free electrons with
the sample boundary and it disappears when p = 1.

In the case of metal films, starting from the NIR region
up to the UV, the inequalities d'or» 1 and

~ g~ &&1 are
obeyed. Thus, especially from (25), the real value of n (0)
is influenced. For gold the corresponding contributions to
the refractive index are shown in Fig. 2. As we see, the
surface contribution of n at p =q =0 is of the same order

as nI, . For metals with a high electron concentration X
, f Al X =18X10 m ) the surface contribution

may be very large. The influence of n, on the reflection
spectrum of a hypothetical gold film (of thickness 500
nm) at different p values is shown in Fig. 3. As we see,
the surface contribution may lower the measured reflec-
t' b about 0.5%%uo. One can expect also that the ob-

isserved strong dependence of optical properties of meta s
on the preparation conditions is at least in part connected
with the value of the p parameter.

If d & 1 one has to use the complete relations for n and
n' [Eqs. (17)]. The plots of R and T as a function of en-
ergy for two hypothetical gold films of different thickness
at different p values are shown in Fig. 4. Firstly, one can
see that the influence of the p parameter on the reflection
spectrum is relatively larger in the low-energy region,
where the reflectivity may be several percent lower for
q=p= an o=0 than for q =p =1. The value of this effect de-
pends on d (the ratio of the thickness to the mean-free
path) and increases with decreasing d value. Comparing
our results with the conclusions made in Ref. 4 one must
say that the influence of the specularity parameters on the
reflection and transmission spectra is essentially greater
than in Ref. 4. Concluding, one can expect that the value
of p may now be determined from optical measurements.

Since m is a complex quantity, aH the integrals Iz are
periodic functions of %cord. This periodicity was theoret-
ically predicted by Dingle for p =q =0. The oscillations
should appear in the measured transmission and reflection
spectra and especially in the absorption A ==1—R —T
and its derivative. The plots of A and dA/d(irtco) as a
function of energy for different values of p =q are shown
in Figs. 5(a) and 5(b). One can see that in the thickness
range considered the absorptivity increases as the thick-
ness is decreased and for low values of p the distinct oscil-
lations of A appear. For p =q the phase of the oscillatory
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FIG. 2. Computed contributions to the real part of the re-
fractive index [n(z =0)=nb+n, ] for a hypothetical bulk gold
sample [1=30 nm, p =0, m* =m„S=7, Ace~ =7 A'm =9.0 eV
{X=5.9)& 10 m )].

FIG. 3. Reflection spectra of a hypothetical bulk gold sample
for different p values I,'0, 0.2, 0.4, 0.6, 0.8, 1.0). The other pa-
rameters are the same as in Fig. 2.
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FIG. 4. Calculated transmission and reflection spectra of a hypothetical gold film of thickness 10 nm (a) and 20 nm (b) for t~o
values of the p parameter (p =q =0 and p =q =1). The other parameters as in Fig. 2.
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FIG. 5. Computed values of the absorption A = 1 —T —R and the derivative dA /d (%co) vs energy for two gold films [thjegness 10
nm (a), 20 nm (b)] for different values of p =q (0, 0.2, 0.4, 0.6, 0.8, 1.0) and the values of the other parameters as in Fi . 2.
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FICi. 6. Plots of the derivative dA/d|'Rca) vs the energy of a 10-nm-thick gold film (the parameters are given in Fig. 2) for q =1 (a)
and q =0.S (b) with p ranging from 0 to 1.

function in A is given by co~d and at the maxima
coed =K2n.t/T, where t is the minimum time for an elec-
tron to cross the film, T is the period of radiation and
E =1,2, . . . . This oscillatory absorption is called the
classical size effect in the optical absorption. The period
length may be understood by analyzing the relations (21)
for n and n' For .

~

uwd
~

&&I and p =q the expression
in brackets in (21) may be well approximated by the Fuchs
integral [see relation (28)]. This gives

3 (Qppr) U~
n (0) nb —— (1—p)4 w'c

X
1 1 1 —e

ds
3 5 1

—slAf

The relations for the other n and n' may be written in an
analogous form. Therefore, the periodicity in A is con-
nected only with the function e ' in the integrand. On
the other hand for p =1 or q =1, instead of e ', the
magnitude e ' appears in the Fuchs integrand. Thus,
the period length of the oscillatory function in A [and
dA/d(fico)] is half that at p =q [compare Figs. 5(a) and
6(a)]. For p&1, q&1, and p&q both e ' and e
remain in the expressions for n and n'. Thus two com-
ponents of the frequency appear in the absorptivity spec-
trum [Fig. 6(b)].

Concluding, one can say that study of these oscillations
may lead to valuable information concerning the transport

parameters in thin metallic film as follows: (i) The ap-
pearance of oscillations in the absorption spectrum means
that at least one of the specularity parameters is different
from unity, (ii) the appearance of the second component
of the frequency tells us that p is different from q. It is
worth noting here that this fact cannot be simply deduced
from measurements of the dc conductivity o only. For
instance, using the Lucas formula one can show that for
three different sets of parameters (l,p =q),
(l =2l,p = l, q), and (l =21,p, q = 1) the ratio cr/ob is ex-
actly the same, thus, these three cases cannot be dis-
tinguished. From the experimental point of view this con-
clusions also remain true, if the corresponding p and q
values differ strongly, (iii) since the magnitude
coed =colUJ;d does not depend on the mean-free path of an
electron (d is measured in units of l), from the length of
the period in A, the Fermi velocity vF may be imrnediate-
ly deduced.

From an experimental point of view, care must be taken
when measuring A. Figure 5 shows that the oscillation
amplitude is about 0.001, i.e., the measurement accuracy
must be much better than 0.1%. The film surfaces should
be sufficiently smooth, otherwise the oscillations would be
smeared out. It is worth noting, however, that the surface
roughness only lowers the amplitude of the oscillations,
but does not change the length of the period.

Finally let us discuss the dynamic current density
J(co,z). In our approximation (

~ g ~
~~1) for p =q it is

given by

J(~ z) =(rb(M) ' e u — ( 1 —p) Fds(e —swz+pe —uwde —s (d+wz)+p swe(2d —z)+e uwde sw(d —z—)) .E—
1 (26)

with orb(co) =ob(0)/w, where ob(0) is the bulk dc conduc-
tivity, and

s 2 4 1 2 —2smf

The first term in (26) gives the familiar expression from
the literature for the current density in bulk material. The
second one is connected -with electron scattering at the
boundaries of the sample and is equal to zero for p =1.
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The expression for J(z =0) using the assumption d »1
may be written as

(27)

After integration one obtains

J(co)=ob(co) ' —— (1+e "~)e
—QNO 3

uwd 4 wd

For p =0 we obtain only half the conductivity compared
to that in the interior of the sample. Comparing (25) with
(27) one can conclude that the influence of the p parame-
ter on the optical constants is smaller than on the electri-
cal conductivity. Additionally one can see from (25) and
(27) that the known simple relationship between the
dynamic conductivity and the complex refractive index is
not valid here.

To compare our results for dynamic current density
with those given by Fuchs' one has to find the mean
value of J(co,z), i.e.,

] I —seed

s 1 —~e

(28)

Equation (28) is the generalized Fuchs formula, valid for
alternate current (ac) also. In the limit co~0 (tt ~0), ex
pression (28) becomes exactly the Fuchs expression.
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