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Measurement of the conductivity exponent in two-dimensional percolating networks:
Square lattice versus random-void continuum
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Using an analog simulation technique, we have studied the conductivity transition in two-dimensional
percolating networks. A computer-controlled x-y plotter scribes a percolating pattern on a sheet of alumi-

nized plastic while the resistance of the sheet is continuously monitored. With this technique, we have
measured the conductivity exponent t for two systems: site percolation on a square lattice and random-void
continuum percolation. We find t =1.29+0.03 for the lattice and t =1.34+0.G7 for the continuum, in

agreement with a recent theoretical prediction that the conductivity exponents for these two systems are the
same. We have also verified a theoretical estimate of the magnitude of conductance fluctuations due to
finite-size effects.

Near the percolation threshold, the conductance 6 of a
random metal-insulator composite obeys the power law,
G~ (p —p, )', where p is the volume fraction of the metal
component, p, is the critical volume fraction, and t is the
conductivity exponent. Until recently, the exponent t was
believed to be universal in the sense that it depends only on
the dimensionality of the system and not on its small-scale
details. In particular, t was presumed to be the same for lat-
tice and continuum systems. Experimental work, ' as well as
numerical simulation, indicates that at least some two-
dimensional (2D) continuum systems do indeed have the
same exponent t as lattice systems. Experimental work' '
on 3D continuum systems, however, often results in values
for t higher than those obtained from numerical simulation
of lattice networks.

Recently, Halperin, Feng, and Sen' (HFS) have estimat-
ed critical exponents for electrical conductivity, elastic con-
stants, and fluid permeability in a particular class of contin-
uum systems, the random-void models (also called the
"Swiss-cheese" models) in which insulating holes are locat-
ed randomly in a conducting background. They find ex-
ponents larger than those for lattice networks except for the
case of electrical conductivity in 2D, where the lattice and
continuum exponents are equal.

The value of the conductivity exponent for a random-void
system is sensitive to the distribution of the conductances of
the constrictions between voids. This distribution of bond
strengths depends on the geometry of the constrictions and
hence on the shape of the voids. If 5 is the minimum width
of the constriction between voids and g is the conductance
of the constriction, then' "g~ 5' for circular holes in 2D,
g~ 5 for parallel-oriented square holes in 2D, and g~5
for spherical holes in 3D. More generally, the random-void
models can be classified by the exponent m in the power law
g~5 . HFS and others" " have argued that the random-
void conductivity exponent t' and the corresponding lattice
exponent t are related by t'=t for m (1 and t'= t+m —1
for m & 1. The case m = 1, realized by square holes in 2D,
is thus a borderline case. (In 2D there appears to be no
void shape which corresponds to the interesting case
m &1.)

Using a simple new experimental technique, we have
studied the dc electrical conductivity transition in two-
dimensional percolating networks of metal and insulator.

We report measurements of conductance versus composi-
tion for site percolation on a square lattice and for a
random-void model of continuum percolation in which
square holes with parallel edges are located randomly (see
Fig. 1). We find that the conductivity exponents for these
two systems are identical, as predicted by HFS. We have
also verified an estimate, due to Straley, ' of the magnitude
of conductance fluctuations in the square-lattice system due
to finite sample size.

Using a computer-controlled digital x-y plotter, we cut the
percolating patterns in sheets of aluminized plastic. As a
pattern is cut, a digital ohmmeter continuously monitors the
resistance of the sheet, and the computer records the resis-
tance as a function of the number of holes cut. The entire
curve of conductance versus number of holes is obtained in
the time it takes for the plotter to draw a percolating pattern
(10.h for a 200& 200 lattice). With this technique, different
percolation problems can be studied with only a program-
ming change. Because the patterns are computer generated,
the samples are well characterized with none of the ambi-
guities sometimes inherent in experimental studies (poorly
known volume fraction and particle size distribution, possi-
ble nonrandomness, etc.).

The sample sheets are 0.005 in. thick and are made of
Mylar plastic covered with a 500-A film of aluminum. '

The sheet resistance of the samples is about 1.9 0/a and
varies by less than 0.3'/0 over a 25 x 25 cm sheet.

The pattern is cut with a little device consisting of a steel
ball bearing embedded in the tip of an aluminum rod which
contains a heating element. This hot tip is held by the pen-
holder of the plotter, and when it touches the sheet it sears
the plastic, breaking the aluminum film on top. A thin
piece of cloth, placed between the sample sheet and the bed
of the plotter, makes the surface of the sheet slightly flexi-
ble. We find that a smooth tip and a slightly springy surface
are necessary in order for the hot tip to draw a smooth, con-
tinuous line without skipping or chattering. Drawing a
square with the hot tip electrically disconnects the interior of
the square from the rest of the sheet, effectively removing
the entire square from the sample. Repeated tests of the re-
liability of complete disconnection show failure rates of less
than 1 square in 10000.

Two copper strips, clamped on opposite edges of the
sheet, form the contacts for a two-probe resistance measure-
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FIG. 1. Photographs of portions of sample sheets, showing the

square-lattice pattern (on the left) and the random-void continuum
pattern (right). The full sheets are 25x 25 cm2. Both patterns are
shown at the critical hole concentration.

ment. After a correction for the lead resistance is made,
the dominant source of error in the measurements is drift in
the ambient temperature, resulting in errors not exceeding
0.1%.

In Fig. 1 are photographs of samples showing the two per-
colating patterns. The square sites of the square lattice are
intentionally made slightly oversized to guarantee corner
contact. The uncut sites thus form a percolating network
with first-nearest-neighbor contact only. The program that
generates the square-lattice pattern locates new sites at ran-
dom but does not repeat previously drawn sites. In the con-
tinuum case, square sites are located at random with no
underlying background lattice, ' independently of previously
drawn sites. The sites are thus freely interpenetrating.

Figure 2 shows conductance data for nine samples of a

200&200 square lattice. 6 is the normalized conductance
(G = 1 for the uncut sheet), and N is the number of square
holes cut. In plotting our data, we have used the value of
the critical hole number N, known from Monte Carlo stud-
ies. ' The critical hole fraction p, established by these stud-
ies is 0.40723, yielding N, =p, &200 =16289. Our mea-
sured critical hole fraction is 0.4069+ 0.0025 (the uncertain-
ty here is one standard deviation of the mean of the nine
trials) and agrees with the known value.

Shown as the dashed vertical line in Fig. 2 is the hole
fraction at which $= L/2, where f is the correlation length
and L is the size of the system. In units of a lattice con-
stant, L is 200 and g is taken'4 to be IN, /(N, —N)]43. We
find that the conductance obeys a power law over the range
bounded by the conditions g = L/2 and (N, —N )/N, = 0.5.
At hole fractions closer to threshold, sample-to-sample fluc-
tations due to finite sample size are considerable, while for
(N, —N )/N, ) 0.5 a small deviation'8 from power-law
behavior becomes measurable, though not evident in Fig. 2.
A least-squares fit of the data in the power-law range to the
expression G~ (N, —N)' yields t =1.29+ 0.03, the uncer-
tainty being one standard deviation of the mean of the nine
trials. N, is not an adjustable parameter in this fit, but is
fixed at 16289. Our value of t agrees with the value es-
tablished by numerical simulations, ' t = 1.297 + 0.005. The
agreement between our results and those obtained by com-
puter simulation gives us confidence that our technique
contains no hidden systematic errors.

Straley' has estimated the magnitude of sample-to-
sample fluctuations in the conductance G of a square-lattice
system due to finite sample size. He finds that
(5G )/(G) = (g/L) where (5G ) is the mean-square de-
viation of G from the mean and d is the dimensionality of
the system. In Fig. 2 we have plotted (G) + (SG')'~2
versus hole fraction using d = 2, L = 200, and g = [N, /(N,
—N)]4', and we find good agreement between our data
and Straley's estimate.
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FIG. 2. Conductance vs hole-fraction data for nine trials of a
200 && 200 square lattice. N is the number of holes and N,

- (=16289) is the critical hole number. The solid curves show
Straley's estimate of the size of conductance fluctuations.

FIG. 3. Conductance data for the square-lattice system and the
random-void continuum system. The data are the averages of nine
trials. f is the hole fraction (fraction of sample area covered by
holes), and f, is the critical hole fraction.
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Figure 3 compares conductance data for the random-void
continuum and square-lattice systems. Each curve shown is
the average of nine trials. For the continuum system,
L/I =86+?, where L is the sample length (25 cm) and l is
the length of a single site; the mean critical hole number is
28440+ 230. The data are plotted as a function of the hole
fraction f defined as the fraction of the sample area covered
by holes. For the square lattice, f~ N, but for the continu-
um case, in which the squares are freely interpenetrating, f
and N are related by 0

f (N) = 1 —exp( —Na/3)

where a is the area of each site and A is the area of the
sample. For our continuum system, f„the critical hole
fraction, is 0.613+0.013, the uncertainty arising from the
spread in the measured values of N„as well as from the
uncertainty in the measured value of a/A.

A fit of the continuum data to G~ (f, —f )' yields
t =1.34+0.07. The uncertainty here is larger than in the
lattice case because of the relatively large uncertainty in f, .
We see that, within experimental uncertainties, the lattice

and the random-void continuum systems share the same ex-
ponent t.

We note that in both systems the critical regime over
which power-law behavior is observed extends over nearly
the whole curve. This wide critical regime has been seen
before in other percolation systems, ' ' but we know of
no theoretical explanation for its existence. '

In summary, we have used an automated analog simula-
tion technique to study the electrical conductivity transition
in 2D percolating networks. We have verified the recent
prediction of Halperin, Feng, and Sen that the square-lattice
system and the 2D random-void continuum system share
the same conductivity exponent, and we have verified
Straley's expression for conductance fluctuations due to fi=

nite sample size.
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