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Recently there has been interest in macroscopic systems which can be described in terms of the
quantum dynamics of the same collective variables which describe their classical behavior. In par-
ticular, there has been considerable interest in the following questions: (1) Is it possible to observe
unambiguous evidence of the quantum-mechanical nature of a macroscopic collective coordinate?
(2) In what way is the quantum mechanics of a macroscopic variable different from that of a micro-
scopic variable or, in other words, what is the effect of dissipation on the dynamics of a quantum-
mechanical system? Spectroscopic evidence of the quantization of energy levels can be found by
measuring the system s response to an applied ac perturbation, exploiting the quantum-mechanical
relation between energy and frequency. The specific system studied is- a. superconducting quantum
interference device (SQUID). It is shown that a time-varying magnetic field through the supercon-
ducting loop in a rf SQUID can cause transitions between different fluxoid states. The role of dissi-

pation is discussed in detail, and it is shown that in the case that dissipation is characterized by
linear damping in the classical limit, the photon-absorption process depends critically on the ratio of
the resistance of the weak link to the fundamental unit of resistance h /e .

I. INTRODUCTION

It is well established that there are many circumstances
in which the dynamics of a macroscopic system can be
described in terms of the motion of a collective coordinate
which satisfies a classical equation of motion. That the
system actually has a very large number of microscopic
degrees of freedom is reflected solely in the fact that the
equations of motion for the collective coordinate are dissi-
pative. ' The dissipation can, in many cases, be described
by a single friction coefficient, g. One example, which
will be of prime interest to us here, is the superconducting
quantum interference device (SQUID), where the ap-
propriate collective coordinate is the magnetic flux, P,
through the superconducting ring.

It is generally expected that under suitable conditions
(e.g., at sufficiently low temperature) macroscopic systems
can be described in terms of the quantum dynamics of the
same collective variables which describe their classical
behavior. In particular, there has been considerable recent
interest in the following questions: (I) Is it possible to
observe unambiguous evidence of the quantum-
mechanical nature of a macroscopic collective coordinately
(2) In what way is the quantum mechanics of a macro-
scopic variable different from that of a microscopic vari-
able or in other words, what is the effect of dissipation on
the dynamics of a quantum-mechanical system? Naively
it might seem that this program is impractical due to the
long time scales and miniscule quantum of energy gen-
erally associated with the motion of macroscopic objects.
Thermal effects will therefore tend to swamp quantum ef-
fects. However, in current biased Josephson junctions and
rf SQUID's (and possibly other systems) where the quan-
tum energy scale is set by the Josephson plasma frequency
coJ, one can readily perform experiments at temperatures

low compared to Icos.
One possible set of experiments which could address

these questions involve observing the decay of a metasta-
ble state by quantum tunneling of the macroscopic vari-
able. While it may be the most straightforward way to
observe macroscopic quantum tunneling, this particular
approach suffers from practical problems. The decay rate
is simply a number, and hence the only way we have to
recognize that the decay is quantum is that it becomes
temperature independent. However, this is not an unam-
biguous evidence of quantum tunneling; there could, for
instance, be a temperature-independent source of noise,
external to the system, which is causing the transitions.
For this reason it is important in interpreting the experi-
ment to have a quantitative theoretical calculation (pre-
factors and all) of the decay rate to compare with experi-
ment. While this can be done for simple models of dissi-
pation, the results can only be compared to within the ac-
curacy of the model, and to the extent that the values of
all the relevant system parameters (capacitance, resistance,
critical current, etc.) are known. To some extent these
difficulties can be overcome by studying the systematic
variation of the decay rates from system to system as the
values of the relevant experimental parameters are
changed. In practice, however, this is difficult to do in a
well-controlled way.

A more direct approach is to look for. spectroscopic evi-
dence of the quantization of energy levels by measuring
the system's response to an applied ac perturbation and
exploiting the-quantum-mechanical relation between ener-

gy and frequency, b,E =fico, where b,E is the difference in
energy between the initial and final state of the macro-
scopic system, and ~ is the frequency of the applied field.
Since A appears explicitly in the relation between two
quantities which can be independently determined, such
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an experiment could provide incontravertible evidence of
the quantum nature of the transition. Moreover, as we
will see, the ability of the experimenter to vary the fre-
quency co makes possible a detailed study of the effect of
dissipation on the transition.

In most ways, this type of experiment is similar to a
host of analogous optical and infrared experiments on mi-
croscopic systems. One difference, however, is that be-
cause the system of interest to us is macroscopic, there is
one as opposed to —10 systems undergoing a transition.
Thus, we cannot observe the transition by measuring the
amount of energy absorbed from the ac field. On the oth-
er hand, if the transition occurs between macroscopically
distinguishable states, we can measure the value of the
macroscopic variable directly to determine whether or not
a transition has occurred.

In this paper we present in detail the theory of photoin-
duced macroscopic quantum tunneling in rf SQUID's. A
brief version of the present work was reported recently.
In this case the macroscopic variable is the flux through
the SQUID loop. We show explicitly that an applied mi-
crowave field can cause transitions between different flux-
oid states of the SQUID. Such a photoinduced transition,
if observed, would be striking because it involves a transi-
tion between two macroscopically distinguishable states
caused by the absorption of a single photon. Further-
more, the energy difference AE between the final and ini-
tial state can be controlled by adjusting the applied mag-
netic field through the SQUID. Thus, the explicitly
quantum-mechanical relation between AE and the thresh-
old frequency cuT at which the transitions first occur is-
amenable to experimental verification. Finally, the func-
tional dependence of the transition rate on the frequency
of the ac field is highly sensitive to the nature of the dissi-
pation. In the important special case of ohmic dissipation
(see Sec. II) the transition rate depends critically on the
normal resistance of the SQUID.

The plan of this paper is as follows. In Sec. II we dis-
cuss the Caldeira-Leggett model of a SQUID, and in Sec.
III we show how in a limited region of the parameter
space this model can be mapped onto the simpler problem
of a two-state system coupled to a heat bath. This sort of
mapping, where it is possible, is very useful as the result-
ing model is much easier to treat theoretically. In Sec. IV
the photoinduced transition rate is calculated in the pres-
ence of a general heat bath using linear-response theory,
and the range of validity of the results is delineated. In
particular, the case of ohmic dissipation is worked out in
detail. Finally Sec. V contains a discussion of spontane-
ous emission, and in Sec. VI we make some general obser-
vations and discuss some other possible processes involv-
ing photoinduced quantum transitions in macroscopic sys-
tems. (e.g. , quantum resonant activation from a single
metastable well).

II. FORMULATION OF THE PROBLEM

It has been argued by Caldeira and Leggett' that the
quantum dynamics of the collective variable, the total flux
P through a SQUID loop, can be well described by the
Hamiltonian given by

H= ,'C—P +V(P)+g —,'m (x +co x )

2

+Pgf x +P g
a a a~a

(2.1)

Here C is the capacitance of the weak link in a rf SQUID
and the set of variables I x„,x~ ) represents the degrees of
freedom of the environment whose spectral density J(co)
1S

2

J(co)=—g ma~a
5(co —~ ) . (2.2)

All information concerning the effect of the environment
on the flux dynamics is contained in J(co). It can be
shown that if J(co)~co/R as co~0 then in the classical
limit P obeys the equation of motion given by

d V(P)
R dP

(2.3)

which is precisely the widely used phenomenological
resistively-shunted-junction (RSJ) equation. We shall con-
sider a model in which J (co) =co/R up to a high-
frequency cutoff e&, . The potential energy V(P} is, in the
case of a SQUID,

2
4' —0e.t

2L

r

I ko 2~/cos2' 0o
(2.4)

Here P,„, is the applied external flux (i.e., the flux through
the loop due to the applied external magnetic field alone),
Pp

——h/2e is the flux quantum, L is the inductance of the
SQUID loop, and I, is the critical current of the weak
link. If Pz 2~LI, /Po is ——greater than 1, V(P) consists, in
general, of more than one minimum. We consider the sit-
uation in which V has two nearly degenerate minima.
This case is obtained when P,„, is biased close to —,Pp.

Now, imagine introducing a small-amplitude time-
dependent magnetic field through the superconducting
loop which produces a time-dependent external flux
P,„,~P,„,+5/, „,cosset. Thus

H~H (P —P,„,—)cos(cot)+O((5$,„,) ) .I. (2.5)

We expect that when treated quantum mechanically, the
Hamiltonian (2.5) will cause transition between flux states
of the double well. It is the purpose of this paper to cal-
culate such transition rates. In order to facilitate this cal-
culation we shall map this Hamiltonian to an effective
two-state system coupled to an infinite number of degrees
of freedom of the harmonic oscillators. This mapping is
discussed extensively in the next section. In the remaining
part of the present section we shall formulate the path in-
tegral version of the partition function corresponding to
the Hamiltonian in Eq. (2.1} in preparation for our discus-
sion in Sec. III.

The partition function Z can be expressed as

Z= fdP6(P, P), (2.6)

where
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2

G(y, y)= f~yQNx exp ——f d~ , C—j +V(y)+g , m—(x +~~ )+gpss x
a a a 2E?Z aQ)a

(2.7)

The boundary conditions which follow from the definition
of partition function as a trace over the degrees of free-
dom are P(0) =P(PA) and x (PA') =x (0). The environ-
ment degrees of freedom are not of primary interest, but
their effect in perturbing the system described by P is.
The environment degrees of freedom will therefore be in-
tegrated out leaving us with a clear-cut problem involving
the system variable only. This operation leads to

Z =ZoZ[41 (2.&)

where Zo is the partition function of the environment
alone and is independent of P. The expectation value of
any operator which depends on the system variable alone
can equally well be calculated with the help of Z[P].
More accurately such an expectation value is to be inter-
preted as the expectation value of the operator acting on
the system and simultaneously the unit operator acting on
the environment. The integration of the environment de-
grees of freedom, although completely straightforward in
the context of Feynman path integral, is extremely diffi-
cult to carry out in the context of Schrodinger equation.
This is why a path-integral formulation is used in the
present context.

+ Pgf~x (2.9)

The calculation is a standard one and we briefly outline
the procedure. Exploiting the boundary conditions on
P(~) and x (~), one can develop them in terms of Fourier
series:

n=+
P(r)= g P„e (2.10)

n=+ oo

x (r)= g x„e (2.11)

where co„=2vrn /pe, n being an integer. This allows us to
write

To integrate out the environment degrees of freedom we
need to calculate the following path integral:

g= f+Wx exp ——f dr g —,'m (x +~~')
0

f d~ g —,'m (x +co x )+Pelf x = g [I (co+co ) Ix „ I
+2f Px „]

a a a, n

2

gm (co~+co„)
I

x'„
I

—pAg I p„ I
(2.12)

where the new variable xan is given by

I+ an +an+
a nI~ (col~+ CO„)

(2.13)

The Gaussian path integral Q is now easily evaluated. We obtain for G (P,P)
p(pfi) =p PA

G(p, p)= f &p(r) exp ——f d~[ ,
'

Cp + V(p)] —p—g
I p„ I

K(co„) (2.14)

we obtain

K(co„)=ci)„g
a 2ma~a ~a+~n IC (cu„)=

2& 1+
I ~.

I
i~. (2.17)

2
~n ~ 1 J(co)

dM
'TT 0 Q7 Q) +Q)n

&f we assume that J(co) is given by

CO —co/mJ(~)=—e
R

(2.15)

(2.16)

However, we must emphasize that as far as the high-
frequency part is concerned there is nothing sacrosanct
about the form of J(co) given in Eq. (2.16). The low-
frequency part is, however, essential in order to obtain the
correct RSJ behavior of the classical equation of motion
as discussed earlier. As far as the high-frequency part is
concerned, it would make no difference to choose other
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forms of J(co), such as (co/R)6(co, —co) (where e is the
usual unit step function). Now K(r) =— 1

2&P& sin (eral/3A')

Thus for G (P,P) we obtain

(2.19)

K (r) =gK (co„)e
n

(2.18)

(2.20)

can easily be calculated, and in the limit co,~ oo, it is the
following: where

(2.21)

III. MAPPING OF THE CONTINUOUS
DOUBLE-WELL PROBLEM TO AN EFFECTIVE

TWO-STATE SYSTEM

In this section we discuss how one can map a continu-
ous double-well problem to an effective two-state sys-
tem. ' This mapping facilitates our subsequent calcula-
tion of the photoinduced transition rate. It is clear at the
very outset that the mapping cannot be an exact one; it is
therefore important to stress what we really mean by a
mapping, and what are its limits of applicability. We
shall show that provided certain conditions are satisfied, a
one-to-one correspondence between the partition functions
of the continuous double-well problem and an effective
two-state system can be set up. The limits of the applica-
bility of such a procedure shall emerge naturally as we
continue our discussion.

Consider the path-integral representation of the parti-
tion function of the continuous double-well problem dis-
cussed in the preceding section, i.e.,

Z= fdPG($, $),
where

p(pfi) =p
G(P, P) = f &P(r) expI S,rr[$(r)]/A—I,
and

(3.1)

(3.2)

pA

S,ff[p( )r=]f dr[ ,'Cp + V(p)]-
ph pAf dr f dr'K(r r')—

4~R
X [P(r) —P(r')]' .

(3.3)

We shall now evaluate Z by summing over important
paths in the low-temperature limit, /jfi +oo', the relevan—t
ideas are borrowed from the work of Feynman. " In the
subsequent discussion we shall refer to ~ as the time; in
reality it is not. Thus the paths do not represent the real
motion of the particle; it is simply a formal description of
the expression for the partition function. As stressed by
Feynman, the true motion of the particle may have some
analogy to the motion as a function of ~, but such an
analogy need not be drawn. The reason to continue to call
r and Pfi "time" is to help to make the arguments as pic-
turesque as possible so that intuition is most effective. At
time zero the initial coordinate of the particle is P; as time
proceeds it moves about in such a way that at time PR it

L

]

has the same position P. Each type of motion is weighted
by the negative exponential S, r/rA'; the sum is taken over
all such motions. Finally an integral is taken over all pos-
sible initial positions P. It is therefore clear that paths
which make S,rrlfi large will contribute very little to the
sum. For the same reason, the initial positions which are
not close to the minima +P of the double well will also
contribute very little to the sum. The approximation is to
keep carefully those contributions which dominate the to-
tal sum. In the process we shall see that there exists a set
(infinite) of paths for which S,rr/A' is close (slightly
larger) to the path which gives the lowest value for S,rrlfi;
however, as I3R~ oo the multiplicity of these near
minimum paths make their contribution dominant.

Let us now enumerate the important paths. It is clear
that the contribution of a path which is independent of
time to S,rr/fi is simply —P V(P ). In the high-
ternperature limit, the static paths would dominate, since
in the limit P~O any path which depends on ~ will in-
crease S,rrlfi by a large amount due to both the kinetic
energy term and the nonlocal term. For static paths there
is no path integral to be done and only the ordinary in-
tegral over P remain. This is essentially the classical par-
tition function except for a normalization constant which,
however, is dependent on I3. As we lower the temperature,
the nonstatic paths begin to make significant contribution
to the partition function, since at low temperatures their
contribution to S, /Arrmay not be significantly larger (see
below) than the static paths which sit at the bottom of the
wells; furthermore, the "volume in path space" over
which we sum is increased due to their inclusion. Particu-
larly unruly paths are still ruled out because the volume
gained in the path space can be offset by their large value
of S,rrlfi. So, what kind of nonstatic paths are the most
important ones in the limit f3A~ co? Consider the paths
which stay in one minimum or the other for a long period
of time but hop to the other in a short time ro. This infre-
quent hopping can take place back and forth between the
two wells. Furthermore, there is no reason for the hops to
be equally spaced in time, and so by placing them at all
separations (even for a fixed number of hops) we gain
enormously large volume in the path space. Since most of
the time they sit at the absolute minima, their potential
energy is almost the same as the potential energy of the
static paths which sit forever at the absolute minima of
V(P). The hops, however, make a positive contribution
to both the kinetic and the nonlocal terms. Of course, to
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get quantitative results, we must generalize the class of
hopping or tunneling paths by adding quadratic fluctua-
tions about these simple paths. We now turn to a more
quantitative formulation of the ideas discussed in this
paragraph.

A. Case of zero dissipation: an approximate method

Consider a simple quantum-mechanical problem of a
particle in an asymmetric double well [Fig. 1(a)). The

minima are at P =+/ and the value of the potential at
the minima are, respectively, V(+P~ ) =+a. We want to
examine the low-lying eigenstates using a simple approxi-
mate method which we shall find very useful for the dis-
cussion of the dissipative case. En the limit PA'~oo it is
sufficient to approximate Z [Eq. (3.1)] by
G(+P~, +P )+G( —P, —P ) for reasons mentioned
above. Let us first calculate G(+P, +P~) which is
given by

P(Ph) =+/ 1 PgG(+P, +P )=f, , exp ——f [—,
'

CP + V(P)]dr (3.4)

Let us now assume that 6 is entirely dominated by the
tunneling paths [Fig. 1(b)] in the hmit /3A +~. W— e will
approximate these paths by straight line flips of duration
vp as shown in the figure. This is not the optimal choice
of path; it results in an underestimate of Z. However, the
errors produced by adopting this extremely simple ansatz
will prove to be rather small and qualitatively unimpor-
tant. For a path consisting of 2n flips [n =2 in Fig. 1(b)],
it is easy to show that

Given the value of rp from Eq. (3.7), we now have for a
path consisting of 2n flips

—' f'"[-,' Cj'+ V(y)]d

g( —1)'(t;+,—t;)— f V(P)dg .

(3.8)

, Cf—Pdr=C(2$ /rp)(2n),

and that

(3 5) By defining a quantity V given by

V= f V(P)dg, (3.9)

Ph 2'

f, dr V(P)= eg( —1)'(t;+,—t;)
i=0

+ 2n f V($)df .
2$ —

&m
(3.6)

we can write

Pfi
—,C +V

2n
= ——g( —1)'(t;+, t;) (2P—)(2—mV)'~'.

i=p
The exponent of the integrand in the functional integral,
Eq. (3.4), is therefore minimized by (3.10)

70 2 ( Cy )
1 r'2 V( )d

1/2
(3.7)

Now summing over all possible 2n number of flips, and
integrating over their positions over available phase space
we obtain

(3.11)

r

1 t2n l t2 ] &
2n6(+P, +P )= g y "f dt2„f dt2„, — . f—dt& —exp ——g( —1)'(t;+& t;)—

Vp i=0

where

—(2y yO)V'2CVy=e (3.12)

is easily identified to be an approximation to the WKB
barrier penetration factor. The factors of ~p in the in-
tegrand of Eq. (3.11) are introduced simply for dimension-
al reasons, since the partition function Z has to be dimen-
sionless, and since there are no other scales in the problem

(given our restriction to the tunneling paths [Fig. 1(b)])
having the dimension of time save ~o. Of course Gaussian
fluctuation around the tunneling paths can change this
scale factor by a multiplicative constant of the order unity
(see below). The error implicit in ignoring this can be
viewed as a small (and quite unimportant) multiplicative
error in the computed value of y. It is equally easy to
compute G( —P~, —P~ ), and hence the approximation to
the tunneling paths leads to the result (f3A'~ oo)

Z=G(+P, +P )+G( —P, —P )

2'=2+ p'"f dt,„f"dt,—„,—.f dt, —cosh —Z( —1)'(t, +, —t,. )
p Tp 0 7p 0 l+1

=2cosh[13(e +b,p)'i ], (3.13)
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V(f) The barrier height b, V is given by Vog and the small os-
cillation frequency coo at the bottom of the wells is given
by coo ——2P (2VO/C)'~ . From Eqs. (3.7), (3.12), and
(3.14) we obtain

2A'
55=260 ——

+0

=2%coo( —„)'~ exp[ —16(—„)' (hV/ficoo)]

=2(iricoo/ir)exp[ —5.84(D, V/ih'coo)] . (3.20)

0 'i' o
I

(b)
FIG. 1. (a) Asymmetric double-well potential; (b) hopping

paths.

ao = (iii/&o)y (3.14)

Consider, on the other hand, a pseudospin Hamiltonian
given by

~s = —e'crz ~oox ~ (3.15)

where cr's are the usual Pauli matrices. The partition
function of this spin Hamiltonian is easily calculated to be

Z, (p)=2coshf p[(e') +(bo) ]'i
I . (3.16)

V(4 ) = Vo(0' cpm
)' . — (3.17)

As discussed in the Appendix, this potential is an accurate
representation of the physically relevant problem, i.e., a
SQUID for which $,„,=$0/2. The tunnel splitting M, is
given by'

M =260=4~36'coo(SO/2irh')'~ e

where

(3.18)

So/A'=
3 (b, V/iii'coo) =5.33(b, V/iricoo) . (3.19)

Identifying Eqs. (3.16) and (3.13) we arrive at the con-
clusion that in the limit Pfi~ao, the partition function
and hence the low-lying levels of the continuous asym-
metric double-well problem are identical to those of the
pseudospin Hamiltonian [Eq. (3.15)] provided we set

e, and ao =so.
Let us now examine how good an approximation it is to

consider the tunneling paths made out of straight line seg-
ments [Fig. 1(b)] with only one variational parameter ro as
we have considered above. For a quantitative estimate let
us examine the symmetric (i.e., e=0) double-well poten-
tial:

cd(r ) P(i.')—
4 0 0

(3.21)

In the case of a SQUID, i) =1/R, where R is the resis-
tance of the weak link, and P-Po, where Po

——h/2e is the
flux quantum. Thus the strength of the nonlocal term, if
we denote it by g, is given by

2
1 1 h 1(h/e) (3.22)
fz 4m.R 2e 8 R

3227 Q

The error in the exponent is 9.6% (i.e., 5.84 instead of
5.33). The prefactor is close to the naive WBK result
(1/ir-0. 32, whereas v'2/15-0. 36) and not the correct
prefactor given in Eq. (3.18). Note that the approximate
result, Eq. (3.20), underestimates the tunnel splitting; both
the prefactor and the exponent are smaller.

Within this scheme of dominant paths two improve-
ments can be made. ' (a) Instead of considering straight-
line paths which interpolate between the two minima as in
Fig. 1(b), one can, in principle, introduce paths which are
smoother, i.e., paths which do not have discontinuity in
their derivatives. (b) It is also possible to take into ac-
count quadratic fluctuations at the bottom of the minima
which would improve the prefactor in Eq. (3.20). It is not
our intention here to carry out such improvements, but to
simply note that the whole point of such a simple tech-
nique of dominant paths made out of a particularly sim-
ple class of straight-line paths is threefold: (1) It is a sem-
iquantitative method which can in principle be improved;
(2) it leads to the correct structure of the low-lying energy
spectrum; and (3) the method is so simple that it can be
readily applied to more complicated problems involving
dissipation as discussed in the next subsection. It is pre-
cisely this simplicity that allows us to obtain the correct
structure of the problem of mapping even in a case which
is plagued with infrared divergences.

B. Finite dissipation

We proceed along the same lines as discussed in Sec.
IIIA, i.e., we evaluate G(+p~, +p~) of Eq. (3.2) by
making use of the tunneling paths shown in Fig. 1(b).
Part of S,ff/A has already been evaluated in Sec. III A; we
simply need to evaluate the last term in Eq. (3.3) (i.e., the
nonlocal part of the action). As before we shall be in-
terested only in the limit piii~ op. We shall first concen-
trate on the problem of ohmic dissipation; subsequently
we shall discuss the nonohmic case. The nonlocal term in
Eq. (3.3) is therefore given by
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At first sight, it would seem that a perturbative theory in
terms of g would be meaningful if the resistance R is
much larger than the fundamental unit of resistance
h/e . This, however, is not necessarily true. The nature
of the perturbation theory depends strongly on the nature
of V(P). This is not surprising since V(P) dictates both
the local and the global behavior of the important paths
contributing to the partition function, and since the
evaluation of the path integral depends both on the local
as well as the global behavior of the paths. For example,
if V(P) has a simple quadratic minimum such as
V(P) = —,Ceno/, the effect of the nonlocal term is some-
what innocuous. ' However, if V(P) consists of a double
well (it is irrelevant whether it is symmetric or not) the
perturbation theory in g is doomed to fail due to infrared
divergences as was first pointed out by one of us and in-
dependently by Bray and Moore, ' and subsequently
rederived or rediscussed by a number of authors' using a
variety of different techniques. Given the simplified
form, Eq. (3.21), in the limit PA' —+ oo, it is clear that this
term is scale invariant; we have lost all information of the
microscopic scale co, which served as a cutoff for J(co).
This should not be a cause for great concern since, as we
shall see, S,rrlfi has a natural frequency scale I/ro which
is considerably smaller than ~, . Even if we explicitly
kept track of cu„we would find that for the low-energy,
low-temperature behavior (i.e., for temperatures lower
than A'/kz times the natural frequency) the smaller of the
two frequency scales is dominant. On the other hand, if
S,ff/R were such that it did not have any natural, intrinsic
frequency scale, it would make no sense to rid ourselves of
the co, of the environment.

With the help of two integration by parts we can reex-
press Eq. (3.21) as

P(r) P(r')—
di- di-'

4~

where

(3.24)

and

'9 +.+'TP 7 ~ +7Q ~

~2 =
2 $f d'r f dr'P(r)P(r')In

(3.25)

Assuming that the hops in Fig. 1(b) are rare and conse-
quently widely separated, we can evaluate T&.

2"g—( —I )'+Jin
~
r, —r, ~ f

i,J

g(2P ) g( —I)'+Jin~r, —r, ~

.
2 ~J

(3.26)

g(2$ )
T2 ——— (2n)(lnro ——', ),

2&

where 2n is the total number of flips. Thus

(3.27)

T] +T2— ( —1)'+Jln

From Eq. (3.26) it is clear that T, is Uery insensitiue to the
shape of the hops in Fig. 1(b). The evaluation of T2,
however, depends to some extent on the shape of the
paths. We adhere to the straight-line path as shown in
Fig. 1(b). It is not difficult to show that

Ph Ph
di- di-' i- i-' ln2'

+3n (2P ) (3.28)

Tl + T2
(3.23)

We can now follow the method described in Sec. III A to
obtain

6(+P, +P )= gy "f dr2„—f diaz„
n=0

2
—

TQ 7i PJ
X f dr~ exp u g ( —1)'+~In

io i+J 7 p

——$(—' I )'(r; q )
—r; ) (3.29)

where

(2P )'
2aAR

(3.30)
i 0

and, as before,

2
2

1/22' V

C Cy' C ' (3.32)

/2 —2%p V/4
y

—CX (3.31) V= f V(P)d(5 . (3.33)
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It is worth pointing out that the cutoff prescription
chosen in Eq. (3.29) (two successive hops are not allowed
to be within ~0) is not unique and is simply a matter of
convenience. We strongly believe that any other cutoff
prescription would not change the essential structure of
G(+P~, +P ). For example, it is possible to use a cut-
off prescription such that the factor ln

~

(r; —r~)/~o
~

is
replaced by ln(1+

~
r; —rJ ~

/ro) and the integral

0 Tp

As before, let us now consider a two-state system cou-
pled to an environment; the Hamiltonian is given by

0= ecr,—b,cr„—+gfico„(b„bn + —,
'

)

+0 a.gf. 2&i ~ co~
(b. +b„) . (3.34)

Here b„'s (b„'s) are boson annihilation (creation) operators
and the spectral density of the environment is given by

2

J(co)=—g 5(co —co„) .
2 tPl ~ CL)~

(3.35)

2 —1

0 70

It is now a textbook exercise' to show that for this two-
state system, coupled to an environment of harmonic os-
cillators,

00 Ph 212 —1

G(y I)= g(b/A)'"f dr,. «2n —I

X f dr~exp a g( —I)'+Jln(1+co,
~

&; —&z ~
) — g( —1) ('r'+i

0 l

(3.36)

In deriving Eq. (3.38), we have carried out the trace over
the harmonic oscillator degrees of freedom, and have de-
liberately used a spectral density J(co) given by

J(co)=gene (3.37)

and

—2' V/RS=—y= —e- 'e
70 70

(3.38)

to emphasize the ambiguity in the cutoff prescription dis-
cussed earlier. Any other J(co) with a different high-
frequency cutoff prescription such as J(co)=gene(co, —co)
should be physically equivalent. The phenomena that we
are concerned with depend on the behavior of J(co) at low

frequencies and not at frequencies comparable to the cut-
off frequency. Equations. (3.29) and (3.36) are now term
by term identical (barring the different but irrelevant
choices of the cutoff prescription) provided we identify

quency greater than 1/~p serve only to renormalize the
tunnel splitting 5; they do not appear in the two-state
Hamiltonian. The resu1t is a two-state system with a re-
normalized tunneling matrix element 6, coupled as before
to the heat bath which, however, has a new upper cutoff
frequency co, = 1/~p. Finally, it goes without saying that
the mapping to the two-state problem is valid only if the
conditions ~p ~~A, e are met.

IV. PHOTOINDUCED TRANSITIONS
IN A T%'0-STATE SYSTEM

In this section we calculate the photoinduced transition
rate of a two-level system which is coupled to a heat bath
consisting of noninteracting bosons with spectral weight
J(co). The Hamiltonian of the two-level system plus the
heat bath is given in Eq. (3.34) and, as is clear from Eq.
(2.5), the coupling to the electromagnetic field is

toe =
70

60,„,= P cr, cos(cot) .ext (4.1)

o. and e have the same meaning as before. This completes
our mapping of the continuous double-well problem to an
effective two-state system. All the difficulties due to in-
frared divergences are still buried in Eq. (3.36). It is
worth emphasizing that the specific problem of mapping
does not require one to solve the problem.

Finally, we note that the same procedure can be carried
out with other types of heat baths. The mapping must be
done carefully in each case. In each case, there will be a
tunneling time, ~p, which is itself renormalized by the
coupling to the heat bath. All heat-bath modes with fre-

Problems of this sort are quite standard. We therefore
simply quote familiar results. We will not bother to treat
the problem in full generality, although this can in princi-
ple be done. We will consider the case in which the exter-
nal ac field is sufficiently small that we can calculate a
transition rate using second-order perturbation theory in
5g,„„which is simply Fermi s golden rule. Equivalently,
we will calculate the linear response of the system to an ac
field. Since 5 is typically small compared to all other en-
ergies, we will also specialize to the case in which 5 ~&2m.
Thus, we can expand the wave functions in powers of
6/2e. To zeroth order, the system is entirely localized in
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g (co 2e/fi)—2A

one well or the other; there is no tunneling. The zeroth-
order Hamiltonian can be exactly diagonalized. Depend-
ing on which well the two-state system occupies, the heat
bath bosons are shifted, but their frequencies remain the
same. Transitions between wells occur when the first-
order corrections to the wave functions are included. We
shall see that these make a contribution to the transition
rate which is second order in A. Shifts in the energy of
the system occur first in second order in 6, and hence can
readily be seen to make contributions to the transition rate
that are fourth order and higher.

We can consider two photoinduced processes: either we
can prepare the system in the lower well and compute the
transition rate v, to the upper well, or the reverse process
in which the system starts in the upper well and makes a
transition to the lower well v, . In either case we must
thermally average over initial states of the heat bath (sub-
ject to the constraint that the system is in the specified
well) and sum over final states of the heat bath. The re-
sulting expression for the up transition rate as a function
of the frequency ~ of the external ac field is

'2 22' 4m ~Next
v, (co) =

g(co) =e~ g( —co), (4.8)

which is a consequence of microreversibility.
So far the results we have obtained are valid regardless

of the form of the spectral function J(co). If the heat
bath does not have too much spectral density at small co,

g (co) will generally consist of two parts,

irig(co) =5(co)e ' '+Agbs(co), (4.9)

where the part proportional to 5(co) is the recoilless piece,
which is analogous to the Mossbauer line, and a smooth
background piece gbs(co) whose shape depends on the
spectral function J(co). Oscillator strength is apportioned
between the recoilless and background parts in such a way
that the sum rule Eq. (4.7) is satisfied. A necessary and
sufficient condition for the existence of a recoilless piece
to g(co) is that X(0) be finite. For an ohmic heat bath,
X(t) diverges as t~0, even at zero temperature. [Note
that for J(co)-i)co, X(t) diverges at finite temperature
for v & 2, and at zero temperature for v & 1.]

We shall now present the results for an ohmic heat bath
in which J(co) is given by Eq. (3.37). At T =0, g(co) is
given by the expression

g(co) =[iitco, I (2a)] '(co, /co)' exp( —co/co, )6(co),

+O((A/fico) ),

where

dt
g (co)= f exp[itco —X(t)],—~ 2~6

(2 )'
X(t) = f dco [ [I+X(co)](1—e ' ')

+E(co)(1—e' ') ),

(4.2)

(4.3)

(4.4)

(4.10)

where 0 is the step function, and I (a) is the gamma
function. Thus the transition rate at the threshold
diverges as a power law if a & —,

' or vanishes as a power
law if o. ~ —,

' . lf we believe that the model of the
harmonic-oscillator heat bath is reasonable for the pur-
pose of calculating the transition rate at finite tempera-
tures (or at least for low temperatures), it is not difficult
to calculate an expression for g(co) at finite temperatures
as well:

and N(co) is the boson occupation factor

X(co)=(e~ —1) (4.5)

Notice that conservation of energy implies that the initial
and final states of the entire system must differ in energy
by precisely Ace. At zero temperature, when the system
cannot absorb any energy from the heat bath, v„(co) must
be equal to zero for Aco&2e. The corresponding expres-
sion for the induced down transition rate is

g (co —2e/A) = Re dt e"'"
o

crt /Pk
X (1+ico, t)sinh(irt /PA)

2(x

To obtain the threshold behavior at finite temperatures,
the integrand can be approximated by its large-t limit and
one obtains

2A
g (2e/A' —co )

'Aco

2 22' 4m ~Next
v, (co) =

1 —2a

(4.1 1)

+O((hlfuu) ) . (4.6)

fif dcog(co) = 1, (4.7)

which is a consequence of the conservation of probability.
The second is that

There are two useful properties of g(co) that are worth
mentioning here. The first is that g(co) satisfies a sum
rule

To order (13iiico, )
' this expression is valid for all a greater

than zero. For values of co —2e, the behavior of g(co) is
insensitive to any details of the high-frequency behavior
of J(co); it depends only on the magnitude of the cutoff
frequency, co, . It is always symptomatic of a problem in-
volving an infrared divergence that all scales up to a
high-frequency cutoff contribute.

V. SPONTANEOUS EMISSION
Until now we have treated the flux through the SQUID

as a classical external perturbation and have computed the
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Acu
dI(co) =%(co) den .

& C
(5.2)

The condition of detailed balance implies that in thermal
equilibrium the rate of emission and absorption of pho-
tons with energy Ace are equal and hence

n[d (vm)+dv, (co)]=nddv, (co), (5.3)

where dv is the thermally averaged photoinduced transi-
tion rate and dv, (co) is the rate of spontaneous emission
of photons with frequencies in the range (co, co+dc@).
From Eqs. (5.2), (5.3), and the symmetry relation for
g(co), Eq. (4.8), an expression for the spontaneous decay
rate can be derived

dv, (co) =vog (2e/A' —co)
Ado dco

COC

where
r 2

co, 4S 6
3ch I Ac

(5.4)

(5.5)

The total spontaneous decay rate can be obtained by in-
tegrating Eq. (5.4) with respect to co,

v, =vo den g(2e/fi co) . —
cue

(5.6)

At zero temperature, only the range of frequencies from 0
to 2e/A contributes to the integral; that is only photons
with energy less than 2e can be emitted. For the case of
ohmic dissipation, the integral can be evaluated approxi-
rnately with the result that

Vp 26
I (2a+ 2) A'co,

2a+ 1

(5.7)

induced transition rates v, and v, . However, we know
that quantum fluctuations of the electromagnetic field
produce an additional process, namely spontaneous emis-
sion; if the system starts initially in the upper well, it is
possible for it to decay to the lower well by spontaneously
emitting a photon. The rate of spontaneous emission
could be calculated by semiclassical quantization of the
electromagnetic field. Equivalently and more simply it
can be computed from the induced transition rate by use
of the Einstein relation, which is merely the condition of
detailed balance.

We consider an ensemble of SQUID's interacting with a
photon field. The intensity of light with frequencies in
the range (co, co+de) and all polarizations we denote by
dI(co). If the wavelength A, =c/co is large compared to
the dimensions of the SQUID, then (5$„„) can be ex-
pressed in terms of dI (co) (c is the velocity of light)

2mSp
(&P„t)'= ( —,

'
) dI(~), (5 1)

c

where So is the cross-sectional area of the SQUID and the
factor of —,

' comes from the average over polarizations. In
thermal equilibrium, a fraction nd ——(1+e ~') ' of the
SQUID's will be in the lower well, a fraction n„=e 'nd
in the upper well, and there will be a black body distribu-
tion of photons such that

VI. DISCUSSION AND CONCLUSION

We have shown in this paper that the phenomenon of
photon-assisted tunneling, which is familiar from many
studies of microscopic systems, ' can also occur in a mac-
roscopic system, namely a SQUID. To do this we first
showed that, so long as

A/wp &&2e,k (6.1)

it is possible to map the original two-well system into an
equivalent two-state system. Here 2A is the tunnel split-
ting, 2e is the asymmetry between the two wells, and ~p is
the tunneling time defined in Eq. (3.34) which is greater
than, but typically of order ~p '. We then solved the
two-state problem, in the limit 6«2e, using standard
methods. A similar strategy can be employed profitably
to study a host of other dynamical problems of macro-
scopic quantum mechanics. For instance, it has been used
to study the process of quantum resonant activation in
SQUID's and Josephson junctions. ' In addition, the
model of a two-state system coupled to an ohmic heat
bath has been used to study problems of macroscopic
quantum coherence. Thus, although it was explored in
detail in the text, it seems worthwhile to conclude with a
few comments about the mapping.

Let us first consider the conditions on the validity of
our mapping. It is intuitively clear that we can truncate
the problem by including only one state localized in each
well only if the splitting between levels in the well is large
compared to the other energies in the problem. Thus, it is
clear that %cup&~2@ and 6 is a necessary condition. The
slightly more restrictive condition in (6.1) arises from the
requirement that the typical separation (in imaginary
time) between hops, which is determined by the greater of
2e and 6, be large compared to the hop width, wp. This is
necessary since in the two-level system. , the hop width is
effectively zero. This is also the reason that the heat-bath
modes with frequencies co~ & 1/ro cannot appear explicitly
in the two-state model; they merely contribute to the re-
normalization of the value of the hop fugacity, y, and
hence of 4. In this limit we were able to show that there
is a one-to-one correspondence between the terms in the
partition functions of the two systems. We believe, al-
though we have not proven, that this implies that the two
systems will have the same dynamical behavior. If the
condition h /~p ~~ 2e is violated, the mapping breaks
down. Even then, we do not expect the nature of the pho-
toinduced transitions to be qualitatively different from
what we have calculated. However, we cannot, at present,
support this assertion.

Finally, let us consider the accuracy of our calculations.
We have chosen a rather simple straight line ansatz for
the tunneling path, and have. made only the crudest argu-
ments concerning the effects of Gaussian fluctuations
about these paths. From comparison with a careful calcu-
lation in the dissipationless case, we estimated that these
crude approximations result in a 10% error in the com-
puted exponent of h. Two points should be stressed con-
cerning this error. The first is that it would not be hard
to substantially improve the accuracy of our calculation
by improving our choice of tunneling path. However, the
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errors made by our choice of path are purely quantitative.
The second point is that it is rarely true that the value of
the potential, V, and the capacitance, C, are known
a priori to better than 10% accuracy. Thus, there is at
present nothing to be gained by doing a more accurate cal-
culation. It is our feeling that 6 should be treated as a
phenomenological parameter whose value can be estimat-
ed theoretically.

u (P) = V(P) —V(P ) = Vo(P —P ) (A 1)

Vog = V(0) —V((5 ) . (A2)

Once P and Vo are determined, the small oscillation fre-
quency in the wells is given by

where +P~ are the actual locations of the minima of
V(P ) and Vo is given by

ACKNOWLEDGMENTS
fuoo ficoJ(——2&2/0 )[1—(0 /2pL +cos0~)]'~2, (A3)

We would like to thank C. N. Archie and J. E. Lukens
for many interesting discussions. This work was support-
ed by grants from the National Science Foundation, No.
DMR-83-01510 and No. DMR-83-18051. In addition,
both of us would like to thank Alfred P. Sloan Founda-
tion for partial financial support.

APPENDIX

0
=sinO (A4)

where 0 =2rrp /$0 and coJ (2~I——, /$0C)'~ is the plas-
ma frequency. For each Pl, 0 can be determined nu-
meri. cally, by a simple iterative procedure, from the equa-
tion

When p,„,= —,$0, and pL & 1, it is convenient to use a
quartic fit to the potential V(P) given in Eq. (2.4). First
it is useful to define a shifted variable P=P ——,$0. It is
now easy to fit V(P) to a quadratic plus a quartic poten-
tial. The fit that we shall describe is global, i.e., we do not
expand V(P ) locally around P =0 and determine the coef-
ficients of the quadratic and the quartic terms, but rather
fit it in such a way that the actual locations of the minima
of V(P) are also the minima of the fitted potential, and
also the actual barrier height of V(P) is also the barrier
height of the fitted potential. We have checked that for
all cases under consideration this procedure is more accu-
rate than the other one mentioned above. We therefore
write

1/2

(A5)

1/2
3.76
0 c

[1—(0 /2/3I +cos0~ )]'~ K, (A6)

and

6 V=23.86i, [1—(0 /2pI +cos0 )]K .

The quantities entering in Eq. (3.18) can be expressed in
terms of a convenient set of units as follows. Let us de-
fine C=c&10 ' F, I, =i, )&10 3, then
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