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Finite-size behavior of the d > 4 Ising model with free boundary conditions is studied by a novel tech-
nique of expanding the order parameter in standing-wave modes. Results are reported for the behavior of
the susceptibility in various temperature regimes near the bulk critical point. A large ‘‘nonscaling’’ tem-
perature shift is needed to describe the scaling properties.

The critical behavior of the infinite Ising model in d > 4
dimensions is asymptotically mean-field-like and thus, in a
sense, trivial. Finite-size behavior, however, poses some
interesting theoretical challenges.!"® For one thing, hyper-
scaling is known not to hold for the Ising model above four
dimensions, which entails a breakdown of the single-
length-scale (correlation length) domination of critical fluc-
tuations on approach to criticality.? It is then not obvious, a
priori, what length (or lengths) should be used to ‘‘scale’
the system size L in writing finite-size scaling relations.

For systems with periodic boundary conditions, the issue
has been resolved recently.>%¢ We will summarize some
of the results, which were confirmed by numerical stud-
ies,>* later.

In this Rapid Communication we consider the case of free
boundary conditions. We will concentrate on the susceptibili-
ty X. Hyperscaling and finite-size scaling predict’ the fol-
lowing power-law divergence for X at the bulk critical point
as a characteristic linear dimension L of the finite system
goes to infinity:

X(L)e LY . 1

The quantities y and v are the bulk critical exponents for
the susceptibility and correlation length, respectively. This
relationship is known to be violated in the case of an Ising
model with periodic boundary conditions in more than four
dimensions. There one has y=1 and v= -i—, while at the

bulk critical point!-¢
X(L)e LU 2

The above result cannot hold for free boundary condi-
tions, because it lies above a strict upper bound?® established
with the use of fluctuation-response relations and Griffiths
inequalities: In a finite Ising model with free boundary con-
ditions the susceptibility at the bulk critical . point cannot
diverge more rapidly than L or, in more than four dimen-
sions, than L2. Because (2) applies to a system with period-
ic rather than free boundary conditions, one is left with the
clear implication that the effects of boundary conditions on
the critical behavior of a finite system can be considerable.

The mechanism by which relation (1) and the hyperscal-
ing are violated in the periodic case has been elucidated in
Refs. 2 and 3. The critical contribution to the free energy
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of a finite Ising model has the following form, consistent
with the renormalization group, when d > 4:

F(s).__ G(th,hL(d+2)/2,uL4_d) , 3)

where ¢t [=(T—T,)/T.] is the reduced bulk temperature
(without a size-dependent shift’), 4 is the ordering field,
and the quantity u is the leading irrelevant variable. Hyper-
scaling fails because u is a dangerous irrelevant variable;? it
cannot always be set equal to zero. In the case of the zero-
field susceptibility,

= — VU2 F9/3n) =0 ;

where V= L9 we have, from (3),
X==L2X(¢L%,0,uL*"9) . 4
When ¢ =0, the function X (0, 0,s;) behaves as s; /2. Thus
Xymo~ LY (uL4= )2 = y=V2Ld2 (5)

and the result (2) is recovered.

We assess the effects of boundary conditions by calculat-
ing the leading contribution to the susceptibility of a finite
Ising model in more than four dimensions (subject to free
boundary conditions). We find that X indeed grows as L? at
the bulk critical point and discuss its dependence on size
and temperature when 7 > T.. Calculations on this system
when T < T, are significantly more difficult than is the case
for periodic boundary conditions, in which the leading con-
tributions to X can be obtained®3 3¢ by performing a single
integral. A straightforward calculational strategy exists,
however, that allows one to treat the case of free boundary
conditions.

An important difference between the Ising models with
periodic and free boundary conditions is in the modes used
in the expansion of the Landau-Ginzburg-Wilson effective
Hamiltonian of the systems. One uses complex-exponential
plane waves for periodic boundary conditions, while free
boundary conditions, which are essentially the same as
those for a (coarse-grained) system whose order parameter
vanishes at the boundaries, require the use of standing

waves. For a d-dimensional rectangular sample located at
0=sx=<1L, (j=1,2,...,d the standing waves have the
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following spatial dependence:

d
P(x) =TT (2/L)V?sin(k;x)) (6)
j=1
where
kj'-—"nﬂr/Lj N (7)

J
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the n’s being positive integers. Expanding the order

parameter o (x) in these modes, i.e.,

O'(X)=2Aklllk(x) s (8)
k

we have for the effective Hamiltonian

BHIo(x)] =de"x (3rle )P+ $IVox) 2+ ulo(x) 14— ho (x))

_;_ (—1)a+B+rg

atab+Bc+yd -
a= ilﬁ= i‘l‘y-—_— +1

d
2 AkAquAl H Aggq pil; ©
kapl j=1 AT

(10)

The sum 2° is only over k’s associated with odd values of all n;’s. The bulk critical point is at 4 = r=0.
Neglecting for the time being the quartic term in (9), we calculate the zero-field susceptibility in the Gaussian approxima-

tion,

d
X= V'l(az/ahz)ln[fDo- exp{ —BH[U(X)]]] =843 (r+ k)1 IT (kL) 2
k Jj=1

d
= i 20 1
72| € ngn} - nd r+(a/L)n¢ +

The limit » =0 can be taken in (11) and the result for X at
the bulk critical point is, in this Gaussian approximation,

(mny -+ - ng)~

d
8 | L?
Xemo= || £ 3o , 12
=0 [WZ] 72 Y nf+ni+ - +nd (12)

where we have taken Ly=Ly= --- =L;=L. The sum in
(12) is convergent and can be evaluated numerically in any
dimensionality. The values of 2;’, for d=5, 6, 7, and 8
are, respectively, 0.2651(1), 0.2446(1), 0.2344(1), and
0.2312(1). Furthermore, we expect (12) to apply as an ex-
act leading order result in more than four dimensions. Thus,
we find that X indeed goes like L? at the bulk critical tem-
perature when d > 4 and free boundary conditions are im-
posed.

To investigate in more detail the temperature dependence
of the susceptibility, we split the region » <0 into three
parts. They are the following: (1) rg > 0 and rg = O(L~2);
() lrrl=0(L=%2); (3) rr <0 and rg=0(L~2). Here

o+ (w/Ly)? . (13)

Note that the region 2 about rg =0 is much narrower in the
limit of large L than regions 1 and 3 when d > 4. Before
proceeding, note that the mean-field parameter r is just the
inverse of the bulk high-temperature susceptiblity. Thus, if

r=r+(w/L)*+

X(L=o0o,T—T.+)=Ct"! , (14)

where C has dimensions of (}ength)z, we can define the
shifted reduced temperature ¢ corresponding to the shift
(13), via

t=t+C i (m/L)? . (15)
J=1

1

<o+ (m/Ly)nd an

We now consider the behavior of the susceptibility of a fi-
nite system in the three regions defined above.

Region 1. Here expression (11) yields the leading-order
contribution to X. In this region X« L2;,, where L, is the
smallest L;. The susceptibility is given by (11) in the scal-
ing form

X=LY(zL?) , (16)

which is consistent with the general relation (4). (We omit
the explicit dependence on the shape ratios L/L;.) Thus
one can set ¥ =0 in (4) when 7L2>=0(1).

Region 2. Here the contribution of the lowest-lying stand-
ing wave, with all n;=1, must be evaluated separately. Oth-
er modes contribute only corrections to the leading
behavior. Since the lowest-lying mode becomes unstable as
rg— 0+ in the harmonic approximation, we retain terms
quartic in the amplitude of that mode, which we denote as
Ay, in the effective Hamiltonian (9). The contribution of
this mode to the susceptibility is

-8
x—[w,_

=y~ V2L Z (y~V2gLa?) an

—rpA2/2=(3%/29) 44
"fA(%e R40 044,

f e~rR,402/2—(3du/2dnAgdAo

where the latter scaling form is obtained by a standard
change in the integration variable.235¢ Note that all the
shape dependence here comes through Z which is scaled by
L4?= pV2_ Inspection of (17) reveals that X varies signifi-
cantly in the narrow range of 1= O(L~%2). The behavior
of the leading order contribution to X in region 2 is essen-
tially identical to that of systems with periodic boundary
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conditions in the region = O (L~%2); see Refs. 3-6 for de-
tails. Indeed, by using (17) one can show that

d

Xperiodic(r_' rr, U— (%‘)dll) 18)

8
Xfree = | —
free { 2

in region 2, up to ‘‘corrections to scaling.’’'® It is also clear
that the scaling form of (17) is consistent with (4); howev-
er, the uL*~ 9 dependence is singular.

Let us stress that our analysis of the scaling forms ap-
propriate to regions 1 and 2 does not cover the crossover
between the limiting behaviors. Indeed, on the borderline,
anharmonic couplings, e.g., A2A¢, etc., become non-
negligible. Thus, one faces an intrinsically multimode
(“‘many-body’’) problem.!!

Region 3. Here also the leading order contribution comes
entirely from the lowest-lying mode. A complication
develops, however. In addition to acquiring a sizable ampli-
tude, the mode starts to distort, developing the spatial
dependence of the order-parameter profile in the low-
temperature phase that satisfies the appropriate boundary
conditions. To properly treat this distortion, it is necessary
to abandon the expansion in standing waves and adopt a
Ginzburg-Landau-type approach.!? One solves the mean-
field equation )

- VM (x)+rM(x) +4ulM(x)1*=0 (19)

for the order-parameter profile subject to the condition
M (x) =0 on the boundary. A nonzero solution for M (x)
will build up in region 3. The leading order contribution to
the susceptibility is of O (L9 and is given by?

([, moasd s . 20)

It is known? that this leading contribution is consistent with
the finite-size scaling relation (4). Further progress within
the single-mode-type analysis can be achieved by approxi-
mating the path integral in (9) by an integration over a fam-
ily of profiles. The smallest amplitude profiles must be

nearly sinusoidal, while the larger amplitude ones must
mimic the M solutions of (19). This type of analysis is
needed to describe a crossover between regions 2 and 3.

We have thus shown that the susceptibility near the bulk
critical point of the finite d > 4 Ising model with free boun-
dary conditions is consistent with both the renormalization-
group scaling relation (4) and with the upper bound at bulk

. T, (X< constx L?). We have indicated how the leading or-

der contribution to X can be calculated in the immediate vi-
cinity of the bulk critical point.

Our theoretical predictions (12), (15) [with (14)], and
(17) may be tested by numerical Monte Carlo calculations
which seem feasible®* at least for d=5. One must, howev-
er, employ the appropriate susceptibility, defined with
respect to the ordering field A, which has coupling of
strength unity [see (9)] to the order parameter o. The or-
der parameter, in turn, is ‘‘normalized” by having the coef-
ficient of the gradient term in (9) equal +. The procedures
of deriving the mean-field equations for given lattice models
are rather straightforward and well known,!? so that identifi-
cation of A should pose no real problem. [Alternatively,
one can allow for an additional adjustable parameter, which
will enter in relations (12) and (15).]

We believe that the approach outlined above has applica-
tions beyond the scope of the investigation reported here.
It is now known®% that € expansions can be carried out for
finite systems with periodic boundary conditions below the
upper marginal dimensionality, given a properly modified
version of mean-field theory to expand about. The calcula-

- tional strategy proposed here ought to extend below four

dimensions, yielding one of the key elements needed to in-
vestigate finite systems with non-mean-field-like critical
behavior subject to the kinds of boundary conditions one
expects to find in nature.
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