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Josephson phase transition
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A different theoretical approach gives the usual result for the Josephson current and its temperature
dependence, and reveals that the coupling may be destroyed by a magnetic field. The calculated critical
field agrees with new observations on cylindrical junctions. The theory predicts that this phase transition

can be observed in narrow ( ~ 10 um) flat junctions as well.

The Josephson current density is given by Jysiny. The
phase difference between wave functions on the two sides,
v, varies spatially in the presence of magnetic fields and
temporally in the presence of electric fields. These varia-
tions of y account for all of the usual Josephson effects.
Experiments on cylindrical junctions have shown that J, de-
creases with magnetic field so that the coupling is destroyed
by a critical field B;."> Measurements of the energy-gap
parameters by quasiparticle tunneling showed that neither
gap A, nor A, was measurably affected by B;.! No theoreti-
cal explanation has been given for this phase transition in a
magnetic field.

In this Rapid Communication, we present a simple theory
of Josephson coupling, which yields the relation Jysiny, the
temperature dependence of Jy, and the magnetic field in-
duced phase transition observed in cylindrical junctions.
This phase transition should also be observable in narrow
(=10 um), flat, singly connected junctions.

Let a planar superconductor lie in the y-z plane between
x=0 and x=d Let the space x < 0 and x > d be the insu-
lator. Due to interaction with the insulator, the supercon-
ducting order parameter ys(x) is depressed at the interfaces.
This depression is small, so y(x) may be calculated from
the linearized Ginsburg-Landau (GL) differential equation,
dxp/ dx*= (2/£2)y, with solutions « exp( ++2x/¢) and the
de Gennes® boundary conditions, (dy/dx)o= (a/&§)o;
(dy/dx)y= — (a/E§Po. Here &, is the BCS coherence
length, ¢ is the temperature-dependent GL coherence
length, and « is the effective distance to which electronsJ
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The first term is the condensation energy of the super-
conductor. The second, which is positive, is caused by the
interaction with the insulator and the third, which is nega-
tive, is due to the coupling. This term plus a similar one
from the other superconductor is the Josephson coupling
energy. For a thick superconductor, d >> ¢, the bracketed
factor equals 2.

In this limit, with Ago=vo(aé/V2¢4) and £2=¢¥
8m2\2B? (Ref. 4), we obtain the coupling energy between
two thick superconductors:
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Some results of the BCS theory are already incorporated
into Eq. (4) through the de Gennes boundary condition.
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penetrate the insulator. The result for ¢ (x) is
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Let lllo(fa/\/ifg) = Al[lo.

Let us coherently couple this superconductor to another
superconductor at x =0 to form a Josephson junction. We
require that at x =0,

¥ (0) =o— Ao coth(d/~2€) + Cobexpiy .

Here, C, is a coupling constant and y is the phase differ-
ence between the order parameters of the two superconduc-
tors. The order parameter is now

cosh(d/~2& —2x/&)
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The Gibbs function G(0) in zero magnetic field can be
obtained by inserting ¢ (x) into the GL expression:

g(0) =alyl>+ (B/2) |yl*+ |ale?ldy/dx|? .

Here, o/B= —|¢|? and «%/28= B2 2u¢ and B, is the bulk
critical field of the superconductor. By dropping terms of
order C§ and Cy(Ayg)? and higher we obtain the Gibbs
function per unit area
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The BCS results for |yol2, &, and the effective penetration
depth \ can be inserted by use of the relation*

A2(0)/ 2T =[A(D)/A(0)1tanhA(T)/2kgT  (5)

and N2=m/2uol¢|2e2. Reexpressing G.(0)/A4 in this way
and setting it equal to the usual expression G.(0)/
= — (Joopo/27 ) cosy, we have for Jy
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For like superconductors this temperature dependence is
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identical to the Ambegaokar-Baratoff result.>¢ For unlike
superconductors Eq. (6), when plotted, is indistinguishable
from the plot of their infinite-series expression.

We wish now to consider the magnetic field contribution
to the Gibbs function. Since the fields in question, though
larger than those usually considered in Josephson effect, are
well less than the critical fields of the superconductors we
may ignore changes in |4/|2 caused by them. This is sup-
ported by the measurements as mentioned earlier. There-
fore, B(x) and the current density J(x) may be calculated
from the London theory using the BCS value for the effec-
‘tive penetration depth A. Further, the magnetic contribu-
tion to the Gibbs function can be calculated by integrating
($)mor22+ (1/2u0) (B — By)? over the volume. For a su-

perconductor in a field By applied parallel to its surface, the
result is G(B)— G(0)=(B§/2uo) (V—\A4), where V is
the volume and A4 the surface area of the superconductor.

Now the origin of the extra magnetic energy due to the
coupling is a slight coupling-induced decrease in A. From
the last term of Eq. (2) and A2« 1/|y|?, this decrease is

cosh(~/2d/¢ —2x/¢) )

dhi= — Co(A\Y/\y) cosh (V3d/) cosy .

Consider two identical flat bulk superconductors coupled at
x=0 [Fig. 1(a)]l. Then at x=0, d\ = — Cy\ cosy in both.
If £ >> \ then d\ can be considered constant over the re-
gion of field penetration and the extra magnetic contribution
to G is [G.(B)—G.(0)1/A=2(B¢/2umo) Cohcosy. From
this expression and Eq. (4) we obtain the coupling energy in
a magnetic field (£g; = €gy= &p):
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This approximate result should be valid for pure, thick su-
perconductors for which &, >> A(0). Examples are tin and
aluminum. If the superconductors have short mean free
paths as in alloys or thin films the result will be substantially
different. With @ =0.2 nm, £,=230 nm, A(0)=32 nm,
which are the values for pure tin, Eq. (9) gives B;(0) =4.7
mT. To observe this effect the junction width W must be
so small that the interference effects do not hide the
critical-field effect. This may be expressed B;= (¢o/
2\W) = B,. For the parameters used this gives W =26
um at T=0. For alloys or films, W must be even smaller.
Next we consider a cylindrical junction like that shown in
Fig. 1(b). The junction is formed between a bulk cylinder
and a thin film of identical material coaxial with it. The
Josephson currents are radial and the applied field is axial.
The approximations used for the flat junction are not ap-
propriate because of the film and because the field is applied
to the outside of the sample and decays inward. The cou-
pling induced change in penetration depth for the film is
given by Eq. (7) with cosh[v/2/é(d—x)] replaced by

cosh[~/2/¢(d+x)], as can be seen from Fig. 1(c). In thel
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FIG. 1. Josephson junctions (a) flat, (b) cylindrical in a magnetic
field. The approximation used to calculate B(x) in the cylindrical
junction is illustrated in (c).

bulk superconductor d\A= — Cohexp(—+2x/¢)cosy. In
both d\ decays with distance from the junction and has the
value d\ = — Cy\ cosy at the junction. We approximate this
spatial dependence by taking dA to be — CoAcosy within
+¢//2 of the junction and zero elsewhere. A straightfor-
ward but tedious calculation yields the additional magnetic
energy to first order in dA:

B§

[G.(B)—G.(0)]/A4=———e"2f(¢,d)Cycosy ,
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s(&.d)= exp2d/n—exp(—~/2¢/\), &€/N2<d .

The last term of Eq. (3) gives the film’s contribution to
the zero-field coupling energy. This same term with the
bracketed expression replaced by 2 gives the contribution
from the solid cylinder. When reexpressed as before and
combined with Eq. (10) we have the coupling energy in an
applied field By:

G./A = Cycosy
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FIG. 2. The critical field B; as a function of temperature. The
solid curve is from Eq. (12). The points are data on junctions as
described in the text.. The film thicknesses are shown on the figure.

Again, G, is zero when By is B;:

&0 sinh(3d/~/2¢) + sinh(d/~/2¢)

By

+2

[aexp(Zd/)x)

T 2mé, sinh(d/~/2¢ )cosh(2d/~/2¢)

This result is plotted in Fig. 2 for £(0)=¢£¢,=101 nm,
A(0) =724 nm, and a=0.2 nm. The discontinuity in slope
at (T/T,)=1t=0.86 occurs when £(T)/~2=d and f(d, &)
changes form. Below ¢=0.5 Eq. (12) predicts a decreasing
slope for B,(T) with B;(0)=17 mT and (dB;/dT)=0 at
T=0. There are no adjustable parameters in Eq. (12) but
the value selected for a amounts to a guess. The data
shown are for four types of junctions no one of which cor-
responds exactly to our model. The single junctions consist
of a 0.125-mm-radius Nb wire/niobium oxide/Sn film. The
double junctions consist of Nb wire/Nb oxide/Sn film/Sn
oxide/Sn film. For the double junctions only the results for
the outer, Sn/Sn oxide/Sn, junctions are shown.

The model gives a thermodynamic critical field B; which
depends upon material parameters and geometry but is in-
dependent of the coupling strength. This all agrees with our
observations. A further prediction of the model is that the
Josephson current density varies as Jo(B)=J,(0)[1
— (B/B,)?]. The junctions reported in Ref. 1 showed this
dependence for I;(B). These junctions had Josephson

FIG. 3. The critical Josephson current as a function of axial field
for a cylindrical junction between a 0.25-mm-diam Nb wire and a
160-nm tin film. Note the ‘‘steps’’ and the ‘flat top.”
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Eurrents of about 1 mA. The junctions reported here have
larger critical currents and do not show this dependence ex-
cept possibly very near T,.

The dependence of Josephson current on axial field By is
shown in Fig. 3 for a single junction, Nb wire/Sn film. The
film is 160 nm thick and its critical temperature is 3.85 K.
In these measurements the current is increased until a vol-
tage is sensed across the junction. The current is then re-
turned to zero and the process is repeated. At the same
time the magnetic field is slowly increased by an automatic
current drive. The data were recorded on an x-y recorder.
The sample was cooled in zero field and the data in the
lower plot were recorded. The field was returned to zero
and then increased in the opposite direction to obtain the
upper plot. There are several interesting features of these
data. Among these are the ‘‘flat top”> and the ‘‘steps.””’
Note that the junction switches repeatedly at several values

~ of the current.

Finally the sine-Gordon equation for a junction® must be
modified by replacing A7 by A7/[1— (B/B;)2]. Here, A, is
the Josephson penetration depth.
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