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Anomalous proximity-induced s-wave superconductivity has been observed via the ac Josephson effect
and the magnetic field and temperature dependences of the Josephson current in Nb/CeCu2Si2, Nb/LaBe'f3,

and Nb/UBei3 junctions. The origin of the proximity-induced Josephson effect and its utility in discovering

the pairing type of heavy-fermion metals are discussed.

Intense recent interest has focused on the nature of the
superconducting state in the heavy-fermion metals
CeCu2Si2, ' and UBei3, ~ and particularly on the possibili-
ty of triplet pairing in these metals. '6 In the course of per-
forming point-contact Josephson tunneling experiments
between these metals and Nb we have discovered
anomalous s-wave proximity and Josephson effects which
occur at temperatures T,' well above the inherent transition
temperatures of these heavy-fermion metals. The effect is
also observed in LaBe~3, a d-band metal normal above 0.45
K 10

The signatures of the Josephson effect between two s-
wave superconductors separated by a tunnel barrier are well
known and include a supercurrent Iosintb, where Io is pro-
portional to t5 th2/(t5, t+t5, 2); here 5 represents the pair po-
tential at the surface of the superconducting electrode and Q
represents the difference in the phases of the pairs in the
two electrodes. The supercurrent (V=O) is also split into
Shapiro steps of spacing VJ=hv/2e under irradiation with
photons of frequency v (ac Josephson effect). Various
forms of weak-link junction" '2 are discussed, e.g., by
Likharev. '

The potential of the Josephson effect to test for triplet su-
perconductivity was first recognized and explored both
theoretically and experimentally by Pals, von Haeringen,
and van Maaren. In the simplest case of a junction with
tunneling matrix element Tb, the usual Io, of order Tb is re-
placed by a reduced contribution of order Tb4, with halved
Shapiro step spacing, hv/4e, under irradiation, for the case
of a singlet-to-triplet superconductor junction. More recent
discussions have been given by Fenton' and by Millis. ' '

Following standard methods' polycrystalline samples are
mounted outside a small hole in the wide face of a E-band
microwave guide and are contacted by a Nb pin traversing
the narrow dimension of the guide as described previously.

In Nb point-contact measurements on UBet3 (Ref. 17)
and CeCu2Si2 (Ref. 18) an anomalous apparent Josephson
effect was typically observed up to effective junction critical
temperatures T,' —7 K, while the effect on LaBei3 (Ref.
19) was observed at 4.2 K [Fig. 1(c)]. The Josephson I V-
curves were typically similar to those reported and analyzed
in Ref. 8 in that a nonzero resistance dV/dI persisted at
V=0. In the present case T,' & T, this residual series resis-
tance can be naturally interpreted as the spreading resis-
tance into the normal-state bulk: R, —p/a, with p the bulk
resistivity and a the lateral dimension of a superconducting
region induced by the Nb point contact. The depth of the
induced superconducting region is the proximity coherence
length.
&Typical observations of the ac Josephson effect (Shapiro

steps) are shown in Fig. 1. Corrections for the parasitic
resistance effect yield results consistent, within experimental
uncertainty, with an s-wave state in the sample, localized
near the Nb contact. The Josephson current feature in
UBei3-Nb contacts was observed in each of several different
sample mountings and several different point-contact junc-
tions were studied in each run. In all cases a Josephson
current feature was easily observable between 1.2 and 4.2 K.

An oscillatory variation of the critical current with mag-
netic field is a fundamental property of the Josephson ef-
fect, as this demonstrates the oscillatory dependence on the
phase difference Q between the two pair-state wave func-
tions. In a typical I, (H) plot for a UBet3-Nb contact,
shown in Fig. 2, the minimum at —43 Oe is consistent with
a single contact of dimension2' a —5—10 p, m, while a rela-
tively large normalized value at the second maximum is a
behavior known to occur when the contact dimension is
comparable to or larger than the Josephson penetration
depth Aq= (h/2ep, ojtd)'i . Here Jt is the current density
and d = Ai+ A2+ t, where Ai 2 are London penetration
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ed pair wave function being manifested by the Josephson
effects must reside in the electrode opposite the Nb tip.

The basic idea of a proximity-induced Josephson effect is
simple: a finite-order parameter is induced in the normal
metal by the proximity effect (flow of pairs from the Nb
point); the Josephson phenomena are then a consequence
of coupling to this induced pair wave function. To establish
the reality of this effect one must demonstrate that the free
energy F of the contact is an oscillatory function of the
phase difference P. The following simplified analysis that
plausibly demonstrates this effect is based on notes of one
of us (M.R.B.), which are previously unpublished.

In a simple one-dimensional model of the Nb-metal
(superconducting-normal) weak-link contact at x = 0,
assume a proximity-induced pair wave function

-"~&n '&n=P„oe "e " in N (x~0), where g„ is an appropriate
decay length. Here P„ is the phase and P„o is the modulus,
whose value will be determined by minimizing thc free en-
ergy of the contact. The pair wave function in s,

'@s—~ & x & 0, is fixed as P, =g,oe '. The free energy near
T" can be estimated in Ginzburg-Landau theory, with the
Josephson coupling energy, in a weak coupling approxima-
tion of Deutscher and Imry, 26 taken as 7)lg, —P, l Here g
depends upon overlap through the barrier or weak link at
x=o. Thus, the free energy of the induced Josephson
junction is

Q ao

F =77/y, —lp„/ + CX/I/I„i +, ivy„i dx
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FIG. 3. Normalized critical Josephson currents vs T/T, for typi-
cal Nb contacts to UBet3 [curves (a) and (b)], CeCu2S12 [(c)], and
In [curve (d)]. The observed junction critical temperatures
T, —7.5 K are anomalously high for heavy-fermion metals
[(a)-(c)] while that seen for the test junction on In, T,"=3.82 K, is
close to the bulk T„3.41 K. The data are inconsistent with the
Ambegaokar-Baratoff tunneling calculation [(d), dashed curve, for
ht/62-0. 43] but are described reasonably by the KO-2 clean
weak-link theory (Ref. 11, solid curves, P chosen arbitrarily). The
observed values of I, (0)(mA) are 1.24, 0.61, 0.21, and 0.65, for
curves (a)-(d), respectively.

Sn point contacts; ~ a short report of Josephson effects in
point contacts to normal metals Cu, CuZn, and Zn has been
given25 but apparently never confirmed.

Two questions are raised by these observations. The first
question concerns the means by which a well-characterized
Josephson effect can occur in a contact to a presumably nor-
mal metal. The second is, what properties of UBe$3,
LaBe~3, and CeCu2Si2 allow thc Josephson effect to occur at
much higher temperatures T,'/ T, than in In and Sn?2'

Observation of the Josephson effect requires an extended
pair wave function with a definite phase residing in the elec-
trode contacted by the Nb tip. The known geometry of the
tips, observed by optical and electron microscopy, rules out
the possibility that the second superconducting region is a
"split" portion of the Nb tip. This, as well as the reason-
able magnetic field dependences and well behaved test ex-
periments on Nb and In electrodes, implies that the extend-

= qy,'p[1+ (1+P/q)y„' —2y„cosg ]

where /3=t2/2m'g„=rig„, @=/, —$„, and the new vari-
able is y„=p„o/$,0. The correct value of y„should be
determined by the condition []F/By„=0, and y„~0 (be-
cause y„ is essentially the modulus of the order parameter);
this gives y„= (1+P/q) 'cos@ and hence,

q&,0[1—(1+P/q) 'cos'g], fP f
~ ~/2

,~y'0, ~/2~ I@I~~ .
(2)

That y„=0 is the lowest-energy solution of Eq. (1) for
m/2» ~$i ~n (cosp negative) is clear from the inherently
negative coefficient of cosP in 1. The oscillatory term
indeed gives rise to a Josephson effect. It is important to
recognize that F($) defined by Eq. (2) retains the usual
period, 2n, in P, in spite of a cos2@ variation. for
~$i ~n/2 For th.is reason, the Josephson current-phase
relation I($), given by (2e/t )r) F/8@, although non-
sinusoidal, also retains the usual period, 2~. It is therefore
expected that the fundamental splitting of the Shapiro steps
will be the conventional s-wave value, 27 VJ=tco/2e, as ob-
served in all cases. At the'same time, it is clear that the de-
tailed prediction of this model, and the examination of the
consequences of making its assumptions more realistic,
deserve further attention. In particular, the model may be
oversimplified by use of the weak coupling q iP, —P„i~ form
under conditions of strong NS coupling where q may also
be phase dependent, 7 or by neglect of a term involving
the superfluid velocity (phase variation) in the N region. In
either case, however, the prefactor Jo to the sinusoidal term
contains q2/(q+ P).
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This formally quadratic dependence on q, which returns
to the linear dependence of the SIS case, when P « q, re-
flects the fact that the superconducting state in %is induced
by proximity. The material dependence of the predicted ef-
fect resides in the parameter P =t'/2m'gz which should be
small compared to q. Further work is in progress to clarify
the material-parameter dependence of the proximity-induced
Josephson effect.

The present importance of this effect is as a tool in prob-
ing the inherent bulk superconductivity of UBe~3 and similar
materials analogous to the earlier application by Ulrich in
studying paraconductivity. In reducing the temperature
through the inherent T, one should observe a change in the
parasitic series resistance arising from the spreading resis-
tance R, to either zero (if the induced and inherent super-
conducting states are similar), or to a new value influenced
by the boundary resistance between singlet and triplet
phases, were the inherent bulk state of triplet character.
[This transition is hinted at in the lowest-temperature points
of curve (a) in Fig. 3.] Further study of this point is
planned.

To the extent that the electronic properties advantageous

'

to p-wave superconductivity are unfavorable to s-wave su-
perconductivity, '4 ' the present observation of s-wave-
induced superconductivity in UBe~3 favors the possibility of
an s-wave ground state for this metal. On the other hand,
the influence of the Nb pairs may be so great as to over-
come the possible preference of UBe~3 for a triplet state
below 0.85 K.

Note added in proof. Since submitting this paper we have
learned that concepts related to the proximity-induced
Josephson effect were discussed theoretically by R. A. Fer-
rell [J. Low Temp. Phys. 1, 23 (1969)] and by A. M. Kadin
and A. M. Goldman [Phys. Rev. B 25, 6701 (1982)].
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