
PHYSICAL REVIEW 8 VOLUME 32, NUMBER 2 15 JULY 1985

Dephasing effects in a simple magnetic-breakdown linked-orbit network
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The magnetoresistivity of a magnetic-breakdown linked-orbit network with one-dimensional to-
pology is calculated for the case of a stochastic distribution of defects in the network. We consider
the case of a perfectly periodic network, as well as bimodal and rectangular distributions of defects.
The results show an extremely pathological dependence on the defect distribution which is charac-
teristic of the one-dimensional topology.

I. INTRODUCTION

The aim of this research is to understand, by means of
model calculations, the effects of dephasing on the trans-
port properties of electrons in a system where magnetic
breakdown is present. The concept of magnetic break-
down (MB) in solids, first introduced over twenty years
ago, is now an important piece of our understanding of
the dynamics of band electrons in an applied magnetic
field. The significance of the MB effect derives from its
ability to alter drastically the topology of electron orbits
as a function of magnetic field strength and orientation,
and to form a system of orbits coupled probabilistically by
a tunneling mechanism. First proposed by Cohen and
Falicov' to explain the "giant orbit" observed in de
Haas —van Alphen experiments in magnesium, MB is im-
portant in many experiments which are sensitive to the
details of Fermi surface geometry. The way in which MB
manifests itself in a given sample depends on the degree of
coherence of the electronic wave functions in the applied
fields; it is quite sensitive to the size and shape of the or-
bit network. In particular, if the purity of the sample is
sufficient, quantum oscillations in the magnetoresistance
(a giant Shubnikov —de Haas effect) may be observed,
with phases of the oscillations proportional to the magnet-
ic fiux enclosed by the extremal closed orbits of the net-
work.

Previous calculations of the magnetoresistance in MB-
linked networks employed the Boltzmann equation and
assumed perfect periodicity; they have yielded good agree-
ment with experiment. However, even in relatively pure
samples the periodicity may be broken by the presence of
dislocations. They produce small changes in the areas of
some closed orbits, which must result in some loss of
coherence. The sensitivity of the magnetoresistance to
these changes suggests using it to probe the distribution of
the dislocations and study the way in which they affect
the coherence of the electronic wave functions.

The basic physics of MB may be understood by consid-
ering Stark and Falicov's simple model of a metal in
which the Fermi "sphere" intersects only one Brillouin
zone (BZ) boundary. Figure 1 shows a slab of the result-
ing Fermi surface in the repeated zone scheme, when a
magnetic field perpendicular to the slab is applied. The
electronic orbits are defined by the intersection of surfaces

of constant energy with planes of constant wave vector
parallel to the field. At low enough temperatures, only
electrons at the Fermi energy are relevant. One therefore
observes two types of orbits: the open orbits of the first
BZ, and the lens orbits of the second BZ. When the elec-
tron wave packet comes to the intersection of the orbits, it
experiences Bragg diffraction along the original orbit or
tunnels across the gap into the next BZ. This latter effect,
MB, results in a linked network of orbits. Though a full
quantum-mechanical solution of the band structure in the
presence of this effect is prohibitively complicated, one
may describe such a system by means of Pippard's ap-
proach of treating the orbits as a network with switching
junctions wherever MB can occur. (This description is
possible because in a metal one is typically in the semi-
classical regime where the electronic wave functions are
confined to a "racetrack" with a width that is negligible
in comparison with its radius. ) When MB is complete,
one sees only a free-electron-like circle, which is a com-
bination of portions of the open and lens orbits in a dif-
ferent sequence. Since the galvanomagnetic properties
caused by open and closed orbits are very different, the to-
pological effect of MB on the network has easily observ-
able consequences, and the behavior in the intermediate
regime of partially broken down junctions can be quite
rich in structure.

Even within this switching-junction picture there are
several levels of approximation. The most important con-
sideration is whether or not the electrons maintain their
quantum-mechanical phase coherence. The presence of

FICr. 1. Fermi surface of Stark and Falicov's model in the re-
peated zone scheme.
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phase coherence gives rise to interference effects. For
specific values of the magnetic field, destructive interfer-
ence may result in zero probability of the electrons emerg-
ing from a junction onto the open-orbit path. These field
values are not necessarily very large. When coherence is
important, we may assign probability amplitudes to the
branches of a switching junction as shown in Fig. 2. (For
a justification of the basic MB formulas, see the review
article by Stark and Falicov. ) In the absence of scatter-
ing, the amplitude of the wave function along any
racetrack segment stays constant, while the phase changes
according to the usual line integral of the vector poten-
tial. At a junction, the wave function splits according to
the probability amplitudes of Fig. 2. By adding up the
amplitudes of all possible paths, one may follow the evo-
lution of a wave packet on the network.

Large-angle scattering effects in the conductivity are
well known, and are accounted for by a relaxation time r
in the Boltzmann equation. On the other hand, small-
angle scattering results in a wave packet staying on the
racetrack but suffering a (random) change in phase, with
the consequent loss of coherence. We consider the case
where the lens orbit is so small that one may neglect
scattering there, but the semicircular arms are long
enough so that phase coherence is completely destroyed in
the transit from one end of an arm to the other. The net-
work [see Fig. 3(a)] reduces to "touching" circles on
which only the amplitude is important, connected by
nodes with transmission coefficient T and reflection coef-
ficient S—:1 —T. These coefficients are calculated by in-
jecting a wave packet of unit amplitude into the node [see
Fig. 3(b)], adding up the infinite series of amplitudes ob-
tained by letting the packet traverse many times the infin-
itesimal lens orbit until all of the probability has leaked
out into one of the two available channels, and then tak-
ing the absolute square of the amplitudes thereby ob-
tained. Clearly, for T=l all trajectories correspond to
open orbits, while for T=O only the free-electron-like cir-
cles are observed. Since the phase change of the electron
packet for a full lens orbit is just the magnetic flux
through the lens, one expects the phase

8=—(Az )H/(A'c/e)+const

=(At, )(kc/eH)+ const

where Az is the real-space area of the lens and Ak the @-

space area, to be important. Indeed, one obtains the coef-
ficients

FIR. 3. (a) Model orbit network in k space. (b) Node con-
necting cells on the network.

2q (1—cos8) —

d pand S=
1+q —2q cosO 1+q —2q cos0

for Stark and Falicov's model, where p and q are defined
in Fig. 3(b). Since the k-space area of the lens is a con-
stant, T oscillates with the Shubnikov —de Haas period of
the lens orbit between zero and 4q /(1+q ), whereas S
oscillates between one and p /(1+q ) . As a conse-
quence, transmission through the node may be periodical-
ly blocked ( T=O), even at small field strengths.

In the next section, we use T and S to calculate the gal-
vanomagnetic tensors for the network of Fig. 3(a). We al-
low for dislocations by assuming a stochastic distribution
for the lens-orbit areas and taking ensemble averages of
the observables over the probability distribution of these
orbits. First we discuss the general formulation of the
problem, then the low-field limit, then the infinite relaxa-
tion time limit, and finally our method of interpolating
between these extremes. In Sec. III we show results for
the cases of rectangular and bimodal distributions of lens
areas, and we present our conclusions in the final section.

II. CALCULATION
OF THE GALVANOMAGNETIC TENSORS

A. Formulation

The solution of the Boltzmann equation, in the uniform
relaxation-time approximation by means of Chamber's ef-
fective path-integral method, yields for the conductivity
of the slab:

2

P=
2 g Jd kv„(k)

spin cr

G 0
Ankae

where the effective path Ak is given by

~Ohmic

2

to(k)
At, = I dt vt, (t)exp

t —I;0

ip '(
J& 0

In (1), vt, (t) is the time-dependent group velocity of the
wave packet, which satisfies the equations

FICi. 2. Magnetic breakdown switching junction: probability
amplitudes and phases.

Ak'=(e/c)[ (vtt) XH],
v, (t) =a-'(ae/ak ),
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such that the packet is at k'=k at the time t =to(k).
Since the arms of the network are free-electron-like, their
contribution to Ak is simple to evaluate. The effect of the
nodes can be taken care of by matrix methods whenever
the coefficients at each node are the same throughout the
network; however, we are explicitly interested in the case
for which dislocations prevent this uniformity condition
from being satisfied. Figure 4 shows the real-space orbit
corresponding to the k-space network of Fig. 3(a). With
this notation the effective path integral along the arms a
and 13 of any given cell of the network becomes

t
A(t, a) =A~exp( t/r)+—f dt'v(t', a)exp[(t' t)/r]—

0

and

A(t, P) =A&exp( t/r)+—f dt'v(t', P)exp[(r' t)/r—],
where A„and A~ are effective paths evaluated at the
time (t=O) at which the electron wave packet emerges
from a node onto the a and P arms, respectively. Thus if

2p 3

to ——(m/co, ) is the travel time on one of the semicircular
arms, and

o
L =— dr'v(t', a)exp[(r' r—o)/rl,

0
to

L~ —= f dt'v(t', P)exp[(t' —to)/r],

then the effective path is given by the coupled equations

Ag (2p —1 ) = T (2p )[exp( —to/r )Ag (2p + 1 ) +L&]

+S (2p )[exp( to/r) A—& (2p 1)+L—p],
(2)

Az(2p+ 1)= T(2p)[exp( to/—r)A&(2p 1)+—L&]

+S(2p)[exp( to/r)—A&(2p+1)+L ] .

One may easily show that

L~= —L~——UFr(1+co, r )

X [1+exp( —t, /r)]( —x+co, ry),
so in principle we have the algorithm necessary to calcu-
late the effective path. To calculate the conductivity,
which is proportional to Ak, we must obtain the ensemble
average of A over all possible orbits and orbit segments.
In practice, we have not been able to solve exactly for this
ensemble average of the effective path, but we have an ap-
proximation for the limit co, ~ && 1 and and exact solution
for co,r~~. In what follows, we develop each of these
in turn, and then discuss an interpolation scheme that
connects them in the intermediate regime.

B. Low-field limit

2@+1

)&a

A„(d) = g A~ (n, d)exp( —nto/r) L
n=0

r

A~(d) = g A~(n, d)exp( —nto/r) L
n=0

E

with

A, ~ (n, 2p —1):—T (2p )A, ~ (n —1,2@+1)

(3)

When the area of the lens-shaped portion of the Fermi
surface obeys a probability distribution, the matrix
method of solution mentioned earlier breaks down. In-
stead, one must follow a wave packet through the network
by iterating Eq. (2), with each iteration following the
packet for another unit of time to and bringing in one
more power of the coefficients T(c) and S(c). In order to
perform correctly the ensemble average, it is convenient to
find a recursion relation for Az(d) and Az(d), where d
labels a cell on the network as in Fig. 4. If n is used to in-
dex the number of nodes that a particular contribution to
the wave packet has encountered since being scattered
onto the network, and a sum over all paths is performed,
one obtains

FIG. 4. Model orbit network in real space. We label nodes

by even numbers c =2p (0,+2, +4, . . . ) and circular cells by odd
numbers d =2@+1 (+ 1,+3, . . . ).

+S(2p, )A,~(n —1,2p —1),

A,g(n, 2@+1)=T(2p)i,g(n —1,2p —1)

+S(2p)A&(n —1,2@+ 1),
and the initial conditions for (4)

(4)
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Az(0, 2p —1)=[T(2p)—S(2p)] and Az(0, 2p+1)= —[T(2p) —S(2p)] .

This yields a partial contribution to 0 of the form

o oa)c& 2ho=
z [1+exp( —to/r)] g exp( n—to/r)[A~(n, 2p —1)—Az(n, 2p+1)]

m [1+(co,r)']
Mc7

COq '7—( Coq 1 )
(5)

where oo is the H=O conductivity of the slab. Thus if we know 0(n,p):—[Az(n, 2p —1) A—~(n, 2p+1)], we have o and
therefore also the resistivity p. Defining

E (n,p): [A—z (n, 2p —1)+A~(n, 2p+ 1)],
the recursion relations (4) may be rewritten as

E(n,p) =(—,
' )[E(n —l,p+ 1)+E(n —l,p —1)+0(n —l,p+ 1)—0 (n —l,p —1)],

0 (n, p) =( —, )[E(n —l,p+ 1) E(n —l—,p —1)+0 (n —l,p+ 1)+0(n —l,p —1)],
with the initial conditions

E(O,p, )=0 and 0(O,p)=2[T(2p) —S(2p)] .

Of course, the number of terms in 0 (n, c}grows geometrically with n; however, in the limit co,r « 1 one may cut off the
iteration after a few terms due to the damping factor exp( —to/r) in (3). Then one must correctly average the powers of
[ T(2p) —S(2p)] over the distribution of the lens areas. As an example, the term for n=2 is

0(2,p) =(—, )[T(2p) —S(2p)]([T(2p)—S(2p)] I [T(2p+2) —S(2p+2)]+[T(2p —2) —S(2p —2)]—2I

+ [T(2p+4) S(2p+4—)] I 1+[T(2p+2)—S(2p+2)] I

+ [T(2p —4) —S(2p —4)] I 1+[T(2p—2) —S(2p —2)] I ),

which averages to

(0(2))=(T—S&'+&T—S&'+&T—S&&(T—S)'& —&(T —S)'& .

This procedure in principle may be laboriously extended
to ever higher orders; as the damping factor exp( —to/r)
approaches 1 for co,r&&1, higher orders of (0(n)) are
necessary in Eq. (3) and the work required becomes prohi-
bitive. Because we are interested in the ensemble-averaged
effective path for all field values, it is necessary to consid-
er the opposite limit co,~~ oo.

C. Infinite relaxation time limit

When large-angle scattering may be ignored, the relaxa-
tion time becomes infinite and the damping factor be-
comes one. Equation (2) reduces to

A„(2p —1)= T(2p)A„(2p+1)+S(2p)Ag(2p, 1), —

Ag(2p+ 1)=T(2p)Ag(2p —1)+S(2p)A„(2p+ 1) .

This simpler form may be solved by use of transfer-
matrix techniques. With r(c) =—S(c)/T(c) and a little
rearrangement we find the matrix equation

Ag(2P+1) 1 r(2p) r(2p) Ag(2P —1)

A~(2p+1) r(2p) 1+r(—2p) A~(2p —1)

where

N

Rz =—g r(2p+2n) .

Thus in this limit we need the average of r =S/T over the
probability distribution. A straightforward calculation
now yields for the sum in the right-hand side of Eq. (5)

g exp( ntp/'T)(0 (n—) )~(1/(S/T) —1)—:X . (6)

This limit has some interesting physical consequences to
be discussed later.

D. Interpolation scheme

There are two contributions to o. The first comes
strictly from scattering on the semicircular arms of the
network, and is known exactly for all values of co,r. The
second is the EFof Eq. (5). If this could be evaluated for
all co,~, the problem would be solved; however, we know it
only for co,r «1 and co,r~ ao. This suggests an interpo-
lation scheme to connect the solutions in the intermediate
regime. The important quantity is N, the ensemble-
averaged summation over 0(n,p):

—Rg 1+R~

This is easily iterated to yield

Ag (2p, +2N + 1 } 1 —R~
A~ (2p+2N + 1)

Ag(2p —1)

A~ (2p —1)

@(co,r)= g (0(n})exp( nto/r), —
n=0

which has the infinite relaxation time limit C&( oo ) =X,
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J
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III. RESULTS
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IV. CONCLUSIONS

Our model is just one example of phase-coherent gal-
vanomagnetic effects in magnetic breakdown networks.
There is a huge range of possibilities as the network topol-
ogy and dynamics change. ' In this section, we discuss
the special features of our results and model which are
particularly interesting.

Our results demonstrate the danger of assuming that a
small quantity of dislocations necessarily has very little
influence on the transport effective path. The dephasing
effect in our model provides a mechanism by which the
effective path decreases drastically, even in the case of
very small changes in the distribution of k-space areas.
The main reason for this is the overwhelming importance
of the particular phase that causes a node to become
opaque (T=O), which is a feature characteristic of the
one-dimensional, topology of the network. A small quan-
tity of nodes with this opaque phase is much more signifi-
cant to transport on the entire network than the same
small quantity with any other phase. This is- especially
true at smaller values of co,r In Fi.g. 7(b) (coos=1), just
1% concentration of the minority phase has an easily ob-
servable effect on p», but only when the field strength is
such that this minority phase produces an opaque junc-
tion. The effect is even more dramatic when there is a
continuous distribution for the areas. The resistivity de-
rived from the rectangular distribution (Figs. 8—12) is
qualitatively and quantitatively very different from that
derived from a single well-defined area (Fig. 5), because
the finite width of the distribution gives rise to finite
bands of field values for which some node in the network
becomes opaque.

The highly nonlinear dependence of the effective path

on the distribution of k-space areas contrasts sharply with
the usual effects of impurities (i.e., relaxation rates). It
suggests that even small quantities of dislocations (or oth-
er area-changing imperfections) might be detectable in the
right kind of crystal. The one-dimensional topology of
the network is responsible for the pathological behavior.
Systems with one-dimensional topology exist. Highly
pure magnesium for fields in the basal plane has a one-
dimensional coupled network of orbits. Its nodes are
more complex than the simple lens orbit of our model,
and quantum coherence on the larger orbit segments can
cause further complications which we have not con-
sidered. ' Another type of system, typified by graphite
intercalation compounds such as stage 1 AsF5 graphite,
holds more promise for finding the dephasing effect.
These crystals are two-dimensional in character and may
have orbit networks very similar to that of our model. '

Such a topology would occur if the usual periodicity of
the crystal in the graphite plane were doubled along one
crystal axis but not along the other, causing the (usually
hexagonal) Brillouin zone to fold over into a rectangle of
half the area. If the carrier concentration is such that the
fold in the BZ touches the edge of the Fermi surface, the
result is similar to the BZ of Fig. 1. It would be very in-
teresting to see the results of a magnetoresistance experi-
ment on a system like AsF5 graphite with purity such that
the nodes are fully coherent and the arms are, in essence,
semiclassical.
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