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Finite-size effects on the W(001) low-temperature phase transition
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The W(001) low-temperature, reconstructive phase transition was studied by low-energy electron diffrac-
tion with use of a carefully aligned, low-step-density W(001) surface. Finite-size effects on this transition
were studied by observing the same transition on a high-step-density W(001) surface which has limited size

0
reconstruction domains of —60X30 A. The critical behavior of the step-limited domains shows rounding
of the order parameter and shifting of the critical temperature as compared with the results obtained from
the much larger flat-surface domains.

The clean W(001) surface has been observed by
low-energy electron diffraction (LEED) to have a (W2
xv2)R45' structure at temperatures below room tempera-
ture. ' It has been proposed that this structure is a result
of lateral movement of top-layer W atoms along (110)
directions into zig-zag rows, periodic vertical displace-
ments, or a combination of both. The lateral displacement
model is preferred from symmetry arguments. ' A rapid
decrease in superlattice LEED beam intensity as the tem-
perature increases above 200 K is generally associated with a
second-order phase transition. In view of recent studies in-
volving the physisorption of krypton on graphite which
show that a weakly first-order transition may be easily mis-
taken for a second-order transition, the assignment for
W(001) cannot be considered definite. However, lacking
evidence to the contrary, the W(001) phase transition will
be treated herein as second order. Symmetry arguments
suggest that this transition is a realization of the two-
dimensional (2D) XI' model with cubic anisotropy, 's in
which the critical behavior is nonuniversal. ' " Monte Car-
lo and renormalization theoretical studies' ' of finite-size
effects in the critical region of Ising square lattice and
three-state Potts models, as well as the 2D XY model with
cubic anisotropy, predict that the singularities present in the
thermodynamic limit (infinite system) are both rounded and
shifted in a finite system, in agreement with scaling theory,
as reviewed recently by Barber. " These shifted critical
values may be regarded as pseudocritical values to differen-
tiate them from their true thermodynamic limits. Few mea-
surements of finite-size effects have been made"' and
none have been made on single-crystal surfaces with con-
trolled domain sizes.

To observe the predicted finite-size effects, we have.
prepared two W(001) surfaces; one is a flat surface [within
0.1' of the (001) orientation], and. the other is a high-step-
density surface [3.25' + 0.25' off the (001) orientation],
with step edges parallel to the [010] and an average terrace
width of —30 A [Fig. 1(d)]. Details of the crystal prepara-
tion, mounting, and cleaning are given elsewhere. ' Recon-
struction occurs on the high-step-density surface, but the
domain size is limited, or controlled, by the terrace
width. ' ' In this paper, we report and compare experi-
mental low-energy electron diffraction results for the phase
transition of the flat and stepped surfaces which reveal pro-
nounced finite-size effects.

The LEED patterns observed with a backviewing screen
from these surfaces at room temperature (with a back-

ground pressure ( 3& 10 " Torr to reduce H contamina-
tion) contain only integral-order beams. In the case of the
stepped surface, at certain energies these beams are split
perpendicular to the step edge direction, ' as shown in Fig.
1(c). Detailed measurement of this splitting was obtained
with an electron spectrometer, with angular and energy
resolutions of 0.6' and 25 meV, respectively. Integral-order
beam splitting from the stepped surface indicated an average
step separation of 30+ 2 A, while the lack of any splitting or
measurable oscillation in beam width versus energy from
the flat surface permits a lower bound of 400 A to be es-
tablished for the terrace width of the flat surface. "

When the crystal is cooled to 100 K, half-order beams
due to surface reconstruction appear, as shown in Figs. 1(a)
and 1(c). The (—, , —,I beams on the stepped surface are

elongated perpendicular to the steps in contrast to the small-
er, round (—,, 2 I beams observed with the flat surface. The
superlattice beam shapes indicate the shapes of the recon-
struction domains on the surface, ' ' while the presence
of all four (2, 2 ) beams for surfaces with nearly equal in-1 1

W(001), FLAT SURFACE, T = 85 K

ORNL —DWG 84 —12843
W(001), STE PP ED SURFACE, T = 85 K

(a) LEED SCHEMATIC

~ ~ 0 (1, 1)

(1/2, 1/2)

~ (1, 0)

(c) LEED SCHEMATIC

~0 ~ ~0 (1, 1)

(1/2, 1/2)

~ (1, 0)

~0 ~0

(6) RECONSTRUCTION DOMAINS

DOM A IN
BOUNDARY

(0') RFCONSTRUCTION DOMAINS

j010]

L, 1,'STEP EDGE
I

-60K

„~,l'
[',

&I BOUNDARY

FIG. 1. Schematics of LEED patterns observed with flat and
stepped surfaces below T, and the sizes and shapes of reconstruc-
tion domains determined from detailed angular measurements of
(2. 2] beams. The lateral atomic dispiacements indicated for the
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zig-zag model are highly exaggerated.
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tensities implies that both of the domain orientations possi-
ble are present in nearly equal numbers. ' From the mea-
sured 2D angular intensity distributions (deconvoluted from
the instrumental broadening to get the physical broadening
Ag), the average domain size M was determined in two per-
pendicular directions by using M = 0.888K/(68 cos8), where
X is the electron energy wavelength and 8 is the diffraction
angle. ' The maximum average domain dimensions deter-
mined for the lowest obtainable sample temperature are in-
dicated in Figs. 1(b) and l(d). There is, in reality, a distri-
bution of both terrace widths and domain dimensions, but
only average values are represented here. The short dimen-
sion of the stepped surface domains corresponds closely to
the average terrace width and the long dimension is less
than half that of the flat surface domain width. Most signi-
ficant for the present study, this results in an average
domain area ratio of —1:8 for the stepped versus flat sur-
faces, which provides the controlled size difference desired
for observation of finite-size effects. A serious concern,
though, is that shape effects due to the more rectangular
shape of the stepped surface domains may seriously influ-
ence the results. However, recent calculations by Kleban,
Akinci, Hentschke, and Brownstein indicate that for an as-
pect ratio less than 2, the critical behavior of a rectangular
domain is very similar to a round domain.

The temperature dependence of the ( 2, —,) beam peak in-

tensity I(T) was observed while the crystal was cooling
after either high-temperature flashing ( —2000 K) to re-
move oxygen or after mild heating ( —450 K) to remove
hydrogen, as well as at several fixed temperatures. As ob-
served before, ' the half-order beams have some intensi-
ty at temperatures well above room temperature, which is
associated with short-range order as discussed below. The
data obtained are independent of cooling rate, reversible
with temperature, and continuous to within experimental
resolution; i.e., the data are consistent with a second-order
phase transition. To remove the Debye-Wailer effect from
the data, the I(T) curves were normalized to the Debye-
Waller slope estimated from the data obtained below the
transition temperature on the flat surface. These I~(T)
values for the flat surface shown in Fig. 2(a) remain near 1

for a small temperature range and then rapidly drop in the
vicinity of a critical temperature T, . In contrast, the
integral-order beam intensities increase slightly near T, ;
these increases reflect a redistribution of intensity in the en-
tire reciprocal space, after which typical Debye-%aller
temperature-dependent decay is observed. For T ( T„
I~(T) obtained from small, step-limited domains is lower
than the 1~(T) obtained from large domains, and the re-
verse is true when T ) T, . Thus, I~(T) (which is propor-
tional to the square of the order parameter) is more round-
ed for a smaller domain size, an observation in qualitative
agreement with the theoretical results already discussed.

The temperature dependencies of the full width at half.
maximum (FWHM) of the ( 2, 2 ) beams have also been
measured and are shown in Fig. 2(b). The broadening of
these beams, coincident with the rapid decay in peak inten-
sity as reported previously for surfaces with large terrace
widths, ' implies a decrease in domain size to a diameter
of —12 A independent of whether the surface is flat or
stepped. This short-range order is not necessarily associated
with static domains, but may be transitory in nature. The
existence of short-range order for T & T, is consistent with
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FIG. 2. (a) Normalized ( 2, 2 ) LEED beam intensities for flat

and stepped surfaces as a function of temperature. The intensities
were normalized to the Debye-%aller slope of the flat surface

( 2, 2 ) beam intensity below T, , (b) Measured FWHM of the

( 2, 2 ) beams for both flat and stepped surfaces as a function of1 1

temperature.

Monte Carlo and renormalization-group studies on the
W(001) surface25 and also with the experimental results of
ion scattering, and may explain the conflict between theory
and photoemission experiments. " An alternate suggestion
by King is that the reconstruction is nucleated from the
upper step edges for a distance which decreases with tem-
perature. On a high-step-density surface, more of the sur-
face would then be reconstructed at high temperature than
on the nearly flat surface. At present, we cannot distinguish
from the angular profiles whether the surface is indeed di-
vided into two different structures by steps, but it is con-
sistent with the higher ( —,, —, ) beam intensities observed

here for the stepped versus flat surfaces at T » T, . A
more detailed understanding of half-order beams at high T
will help to elucidate the (long-range) order-order versus
order-disorder nature of the transition.

The rounding of I~ ( T) near the transition temperature
and the shifting of the transition temperature due to finite-
size domains can be quantified in terms of a second-order
phase transition. Utilizing the procedures applied by Lyuk-
syutov and Fedorus to the H-W(001) phase transition, we
can extract the critical exponent P and critical temperature
'r, from the critical region of the W(001) system. First, the
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FIG. 3. Log-log plot of normalized intensity vs reduced tempera-
ture for several assumed values of T, for the flat surface. The dot-
ted lines indicate the region within which the best fit to a straight
line, i.e., power-law behavior, is obtained for T, = 211 K.

critical region is examined by plotting the temperature
dependence of the (~,~) beam intensity versus reduced

temperature in logarithmic coordinates at different values of
the adjustable parameter T, as shown in Fig. 3 (flat sur-
face). For an infinite system, the phase transition should be
described by a power law of the form I = Io[(T, —T)/T, )'a
in the critical region. As a result of finite-size effects, the
critical temperature region to which the power law applies is
below and separated from T, . Accordingly, the power law

where b T describes the transition temperature "smearing"
width, which is related to the domain size and size distri-
bution. As can be seen in Fig. 3, the critical region, and
hence P, depends on the choice of T, . If T, is chosen as
211 K on the flat surface, the intensity data in the range
T, —17 to T, —6 are consistent with the power law. The
"best-fit" values of T, and p were determined through a
four parameter (T„P,IO, I), t) fit using Horn's power-law for-
mulation and a range of assumed critical temperature re-
gions. Optimal values of T„p, Io, and I) r were thus deter-
mined to be 211, 0.144+ 0.04, 1.76, and 3.26 K for the flat
surface and 217, 0.050+0.01, 0.95, and 2.32 K for the
stepped surface, respectively. The error limits indicated for
P were obtained by assuming a + 5 K error in T„but since
the errors are likely to be in the same direction for both sur-
faces, the qualitative comparison should not be affected. In
each case calculated I„(T) curves using the best-fit parame-
ters are virtually indistinguishable from the measured 1„(T)
(Fig. 2) for T & T, .

In conclusion, two W(001) surfaces with different step
densities which provided two distinct size distributions of
reconstruction domains were prepared. This allo~ed the
study of finite-size effects on the critical behavior of the
W(001) phase transition, providing the first experimental
observation on a single-crystal surface of the finite-size ef-
fects predicted for surface phase transitions. The critical ex-
ponent P and the critical temperature were found to have
different values for different domain sizes and the anticipat-
ed rounding of I(T) for smaller domains was observed.

This research was sponsored by the Division of Materials
Sciences, U. S. Department of Energy under Contract No.
DE-AC05-840R21400 with Martin Marietta Energy Sys-
tems, Inc.

'M. K. Debe and D. A. King, Phys. Rev. Lett. 39, 708 (1977);
Surf. Sci. Sl, 193 (1979).

~T. E. Felter, R. A. Barker, and P. J. Estrup, Phys, Rev. Lett. 38,
1138 (1977).

3R. T. Tung, W. R. Graham, and A. J. Melmed, Surf. Sci. 115, 576
(1982); A. J. Melmed, R. T. Tung, W. R. Graham, and G. D. W.
Smith, Phys. Rev. Lett. 43, 1521 (1979); A. J. Melmed and W. R.
Graham, Appl. Surf. Sci. 11-12, 470 (1982).

4D. P. %oodruff, Surf. Sci. 122, L653 (1982).
5J. F. %'endelken and G.-C. %ang, J. Vac. Sci. Technol. A 2, 888

(1984).
D. A. King, Phys. Scr. T4, 34 (1983).
E. D. Specht, M. Sutton, R. J. Birgeneau, D. E. Moncton, and

P. M. Horn, Phys. Rev. B 30, 1589 (1984).
P. Bak, Solid State Commun. 32, 581 (1979).
K. Binder, in Phase Transitions and Critical Phenomena, edited by

C. Domb and J. L. Lebowitz (Academic, London, 1983).
J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys.

'
Rev. B 16, 1217 (1977).

'E. Domany and E. K. Riedel, Phys. Rev. Lett. 40, 561 (1978).
D. P. Landau, Phys. Rev. B 13, 2997 (1976).
S. C. Ying and G. Y. Hu (private communications).

' A. N. Berker and S. Ostlund, J. Phys. C 12, 4961 (1979).
M. N. Barber, in Phase Transitions and Critical Phenomena, edited

by C. Domb and J. L. Lebowitz (Academic, London, 1983).
~ R. J. Birgeneau, P. A. Heiney, and J. P. Pelz, Physica 109-

1108+C, 1785 (1982).
- J. F. %endelken and G.-C. %ang, Surf. Sci. 140, 425 (1984);

G.-C. %ang and T.-M. Lu, Surf. Sci. 122, L635 (1982).
T.-M. Lu and G.-C. Wang, Surf. Sci. 107, 139 (1981).

~OJ. F. %endelken, S. P. %ithrow, and P. S. Herrell, Rev. Sci. In-
strum. 51, 255 (1980)~

J. M. Pimbley and T.-M. Lu, J. Appl. Phys. 55, 182 (1984).
J. F. Wendelken and F. M. Propst, Rev. Sci. Instrum. 47, 1069
(1976).

P. Kleban G. Akinci, R, Hentschke, and K. A. Brownstein, J.
Phys. A (to be published).

4P. Heilmann, K. Heinz, and K. Muller, Surf. Sci. 89, 84 (1979).
L. D. Roelofs, G. Y. Hu, and S. C. Ying, Phys. Rev. B 28, 6369
(1983).

6I: Stensgaard, L. C. Feldman, and P. J. Silverman, Phys. Rev.
Lett. 42, 247 (1979).
L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 29, 5372 (1984).
I. F. Lyuksyutov and A. G. Fedorus, Zh. Eksp. Teor. Fiz. 80,
2511 (1981) fSov. Phys. JETP 53, 1317 (1981)].
P. M. Horn, R. J. Birgenau, P. Heiney, and E. M. Hammonds,
Phys. Rev. Lett. 41, 961 (1978),


