
PHYSICAL REVIEW B VOLUME 32, NUMBER 11 1 DECEMBER 1985

Dynamics of a particle in an external potential interacting with a dissipative environment
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The study of the recently introduced model of a particle in a periodic potential interacting with an
external environment has been pursued, and two main new results are reported: (i) The Hamiltonian
is exactly soluble for a particular value of the friction coefficient, g =Am/a, a being the lattice con-
stant. Earlier results based on the scaling laws obeyed by the model are confirmed. (ii) The inAu-

/

ence of imperfections in the potential on the phase diagram of the system is analyzed. It is shown

that near impurities, or at a surface, a new localized phase appears.
'I

I. INTRODUCTION

The problem of a quantum system interacting with a
dissipative environment has recently attracted a great deal
of attention. ' An interesting case is that of a particle
moving in a periodic potential and experiencing a friction-
al force. It has been shown to have a nontrivial transi-
tion to a self-localized state if the friction coefficient is
large enough.

The analysis of the phase diagram presented in Ref. 3
(hereafter called I) was based on the renormalization flow
of the interactions of the Hamiltonian, completed with a
duality transformation which maps the strong friction
and large-corrugation regime onto its opposite. The scal-
ing laws obeyed by the model are similar to the
Kosterlitz-Thouless type of flow deduced for the closely
related two-level system interacting with a dissipative en-
vironment. Hence, when the friction coefficient lies
above a given value, the "fugacity" of the jumps of the
particle between successive sites (instantons) increases as
the cutoff is reduced, and, at zero temperature, the parti-
cle is localized in one of the wells defined by the periodic
potential. Below this critical friction coefficient, the
Hamiltonian scales towards a strong-coupling regime,
away from the initial dilute instanton gas case, and this
analysis cannot be continued. To study further the phase
diagram, an interesting duality transformation was used,
which allows us to apply the same scaling laws to the situ-
ation opposite to the one discussed earlier, that of a parti-
cle weakly perturbed by the external potential. Then, the
flow calculated in one of the limits can be smoothly ex-
tended to the other, if, as argued in I, no extra relevant in-
teractions appear in the intermediate-coupling regime.
The analysis was completed by an exact calculation of the
order parameter, the mobility, along the transition line
separating the two phases.

The purpose of the present work is twofold: first, we
will show that the model is exactly soluble for a particular
value of the friction coefficient, which lies in the region
where the Hamiltonian scales towards its strong-coupling
regime. The calculations confirm the predictions made in
I. We think that this solution may also be relevant to
studies of the discrete Gaussian model with r interac-
tions, onto which our system can be mapped. ' Second,

we will analyze deviations from perfect periodicity in the
potential and their influence on the phase diagram of the
system. Although the main conclusions of I remain un-
changed, it will be shown that the renormalization flow of
the system is altered, changing the positions of the critical
lines, and, within the localized phase, a new regime may
appear, in which the particle can tunnel between sites
close to the impurity (or surface), although it is confined
to a finite region in its vicinity.

II. THE MODEL

+A, gnc~c„
n

g v k (bk+bk)
k
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where 6 is the hopping probability between successive
wells, the possible values of k lie between 0 and co„and

The model introduced in Ref. 2 describes a particle
. moving in a periodic potential with an extra term in its ef-
fective action, in such a way that its motion is dissipative
in the classical limit. The effective action can be replaced
by a coupling term to a heat bath of appropriately chosen
harmonic oscillators. It is this latter situation which we
will consider. We will also study only the case in which
the barriers between adjacent potential wells are so large
that only the lowest-lying state of each well has to be tak-
en into account. This is the limit in which a semiclassical
approximation to the tunneling processes is appropriate
(the instanton approach in Ref. 2), and, as extensively dis-
cussed in the same reference, is also equivalent to the op-
posite case, that of a nearly free particle. Thus, its
analysis suffices to understand the complete phase dia-
gram. Following the arguments given in Ref. 9, we will
describe the environment by a set of harmonic oscillators
whose frequencies range from 0 to a maximum co, . Final-
ly, we choose a linear coupling between the oscillators and
the particle, in order to describe the dissipative mecha-
nism. The complete Hamiltonian then reads

H =b, gc„c„+i+H.c.+ g kbkbk
n k
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g„nc„c„ is the position operator for the particle in our
tight-binding basis. The last term in (1) is required to
avoid an unphysical renormalization of the potential from
the coupling to the environment. .

Following the definition of the friction coefficient given
in Ref. 2, we can relate it to the coupling coefficient A, by

II(x)= g v'k/2(bke' +bke '~),
k

P(x) =i g (bke'~ b—ke '~),„v'2k
2

q=A, A/2a (2)

where a is the distance between successive wells. In the
following it will be convenient to express the magnitude
of the coupling to the environment in terms of the dimen-
sionless constant:

ga
4~ 2ark

Following I, we define a canonical transformation such
that

U =exp A, inc„c„
k

H=U HU= gkbkbk
k

&k —&k+6 gc„c„+~exp A, g +H.c. ,

+26, cos[q +v 2A,Q(0)] .

p= lim geo(x, x )„,
Q)~0

(10)

where (x,x)„ is the Fourier transform of the position
correlation function for the particle at different times. In
our tight-binding basis this operator is

X =Q nCnCn (11)

A convenient way of expressing the mobility in terms
of oscillator operators is to replace x by

Then, it can be seen that, by a global displacement of the
values of P, Hamiltonians with different values of q can
be made to coincide. The generator of the transformation
is the total momentum operator.

A convenient parameter to define the dynamics of the
particle is the mobility, given by

where the translational symmetry of (1) is made explicit.
Writing L ixX= lim —exp ——1

L~ao l L
(12)

Cq = e Cn
iqn

we have

This operator shifts the lattice momentum of the particle
by q = 1/N, N =I./a, so that

bk bk—
H = g kbk bk +6 g cq cq exp iq +A, g-

k
q q

& X(t)X(0)) =a lim N (O
I
(e ' —1)

~

o)
N~ ao

+H. c.

Now H is diagonal in the particle operators. Thus, once
the state q occupied by the particle is specified, we are left
with an effective Hamiltonian for the oscillators

H = g kc„ck+6 exp iq +A g-
q k

+H. c.

and, making use of Eq. (8)

lim N (0~ (e ' —1) ~0)

lim N (0~ U (e ' —1)U ~0)
N —+ao

, [(o~ p(t)p(o) ~o) —(o~ p'~o)],

P = lim v k (bk+bk),
k —+0

so that

(14)

Hamiltonians for different q's are related by canonical
transformations p= lim co(P,P)

2A,
(15)

Hq ——Uq q Hq Uq q,

Uq q'=exp lim v k (bI, +bk)
i (q —q')

2A, k~0

The physics behind this transformation become more
transparent if we consider the operators bk as defining a
one-dimensional field

and the expectation value in the equation above is to be
taken over the ground state of Ho, Eq. (7).

The equation of motion for P reads

i =4i A, b sin[v 2AQ(0)]
. dp

dt

and, substituting in Eq. (15)
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p=8o, h m lirn
N —+0

(s,s). l
Sf= ——g (Ck —Ck) .

k
(20)

S =sin[v 2A,Q(0)] .
(17)

III. EXACT SOLUTION WHEN a= z

In order to analyze the problem when a= —,, we will

also replace Hp [Eq. (7)] by a fermionic Hamiltonian. It
is well known that the free part of Hp is equivalent to a
free Fermi field. As we are considering a single bosonic
branch, k & 0, the spectrum of these ferrnions will have a
single branch as well. We can also define

ikx b
—ikx

Pt(x) =~co, exp v 2mg, (18)
k

Thus we have integrated out the particle's variables,
and we have now to calculate a correlation function which
involves only the bosonic Hamiltonian Hp, given by Eq.
(7) setting q =0. The last term in this Hamiltonian is
reminiscent of the nonlinear term of the sine-Gordon
model, although restricted to a single point in space. This
feature, however, prevents the application of the methods
used to solve the latter system. ' It is also to be stressed
that we are interested in a dynamical correlation function,
which is usually much harder to compute.

In I it was shown that a perturbation expansion of Hp
in terms of 5 is formally equivalent to the partition func-
tion of a one-dimensional gas of charges equal to +V2a
interacting with a logarithmic potential. Contrary to the
similar analysis for the Kondo and related Hamiltonians,
the signs of these charges need not be in a definite order,
which lead to changes in the phase diagram. When a & 1,
these charges are bound in neutral pairs, irrespective of
the value of A. For a & 1, their fugacity increases when
the cutoff is lowered, and eventually the scaling trajec-
tories move away from the region of validity of the ap-
proximations needed to define the renormalization equa-
tions. As mentioned earlier, in I the fact was exploited
that the scaling equations can also be known in the
nearly-free-electron case, when the periodic potential is a
weak perturbation acting on the particle. Thus, .a smooth
interpolation is feasible provided that no relevant vari-
ables appear in the intermediate coupling region. Finally,
when ct= 1, there is not renormalization flow. In I it was
possible to calculate exactly the mobility along this line,
using the equivalence between bosons and fermions in one
dimension. "' Its value increases as a function of b, , in
agreement with the identification of this line with a line
of fixed points, and p with a critical exponent.

The fact that the second part of Hf does not commute
with the first one prevents a straightforward solution by a
factorization of the eigenfunctions into separate k com-
ponents.

To transform Hf into a Hamiltonian quadratic in the
fermion operators, we will choose a particular regulariza-
tion by assuming that the fermionic operators are only de-
fined on the sites of a semi-infinite lattice,

Hf = —,
' g c„c„+&+H.c.+6( —,'m)' (cp+cp),

S = ——( —rr) (cp —cp) .l & 1/2

2 2

(21)

g (cr"„cr"„+~+o~o ~+&)+b,( ,'m)'~ op-, . .
n=0

S, =-,'(-,'~)'~2o;,

which is the semi-infinite X- Y model with a magnetic
field at the boundary. We can apply a canonical transfor-
mation well known in the - study of duality in one-
dimensional spin systems, '

i=p
Z —X —X

On =~nO n+1 ~

Hs 4 g (on+1 o non+ion+2)
n=0

+~(-,' ~)'"r'

2
and now we can go back to fermionic operators

—z —+~n J J ~i~n
i (&n)

(23)

The free part of Hf in the previous equation is easily
diagonalizable, and it can be seen that Eq. (19) is just the
continuum limit of (21).

We now use the Wigner-Jordan transformation and ex-
press Hf in terms of Pauli matrices, representing a set of
coupled two-level systems,

z
~n J g ~i~n

i (&n)
Z

~n J I Oi~n
i (&n)

where cu, is our high-energy cutoff. It can be proved' '"
that these operators have the anticommuting proper'ties of
a Fermi field, and also the right low-energy propagators
in terms of the free-field Harniltonian. Thus, the fer-
mionic equivalent of Hp is

Hf = g kCkCk+5 g (Ck+Ck ) (19)
k . k

and, to compute the mobility we also need the fermionic
representation of S [Eq. (17)],

—Z ——
~n = II in ~

i(&n)

f—
4 g [( 2c „+&c„+&

—1 )
1

n

+(C n
—Cn )(C n+2+Cn+2)1

+b, ( —,
' ~)'~ (2c pep —1),

Sf= —( —,'~)' (cp+cp)(c ~+cq) .
2

(24)
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Note that H~ as defined above can be split into two
decoupled parts, one acting only on odd and the other on
even sites. The operator Sf contains operators acting on
the two subspaces, and the correlation required to calcu-
late the mobility [Eq. (17)] can be factorized into two
terms, when computed in real times.

The Hamiltonian Hf is now quadratic, and can be
solved by a transformation to a new set of Fermi
fields. ' ' The calculation is straightforward, although
tedious; the details are given in the Appendix. The main
result is that, in terms of the operators ck and ck which
diagonalize, respectively, the even and odd parts of Hf, .

we can write

ticular cases, we will consider a local imperfection charac-
terized by an altered barrier, and that of a surface, i.e., a
semi-infinite chain of an otherwise perfect sequence of po-
tential wells; extension to higher dimensions is straightfor-
ward. On the other hand, we can no longer use the duali-
ty transformation which allowed us to extend the results
to the nearly-free-particle case. We will restrict ourselves
to the tight-binding case [Eq. (29)]. As before, we can
perform a canonical transformation

bk-&k
U =exp g A,nncncn

k

c 0+C0 = y ak(ck +Ck )
k

c i+el Q ak(ck +ck ),
k

1
lim ak ——
k 0 ~V 25

2
lim ak ——
k 0 Vm

(25)

H = U~HU

= g kbkbk+ g b „c c„exp ( —A, m +A„n),
m, n

x

(30)

+H.c.

where 0 & k & m. /2, and we also know that

lim (ck(t)ck(0)) = lim (ck(t)ck (0))=e' ',
k —+0 k —+0

so that

lim (Sf(t)Sf(0))= 1

t~ ao 4~22 2t2

and, finally,

(26)

(27)

We can treat the second term in H as a perturbation,
and expand all correlation functions in powers of the

„'s; the integrations over the oscillators' operators can
be performed exactly. Following the same steps as in I
and Ref. 6, we can map this expansion onto the partition
function of a one-dimensional gas of charges interacting
via a logarithmic potential. Each jump of the particle be-
tween sites I and n can be seen as a charge q „with
fugacity b, m „,whose values are

lim (Sf Sf )—
4m'

p=1,
(28)

~mm ~n+
n=m

(31)

as predicted in I. Using the duality transformation from
Ref. 2, this result also means that the particle is always lo-
calized (p =0) when a =2, for any finite strength of the
periodic potential.

IV. INFLUENCE OF IMPERFECTIONS
ON THE PHASE DIAGRAM

In the following, we will analyze the scaling equations
satisfied by the Hamiltonian:

~= g b c cn+mHn. c.+ gkbkbk
m, n k

r

„nc„c„,g V k (b„+bk )

The charge associated with the inverse hop has the
same value, with the sign changed. co, is the high-energy
cutoff in the oscillators' energies.

As the cutoff is lowered, these parameters have to be re-
placed by scaled quantities. The ensuring equations can
be analyzed with the method used in Ref. 2. A general
procedure valid up to second order, is given in Ref. 16.
The main new result with respect to the well-known case
of a two-level system (TLS) is the appearance of new
charges, arising from the composition of two simpler
ones. The scaling equations are

d~m, n qm, n
~mn+ g ~m, ,i~i, n

(32)

„nc„c„g, 1, (29)

dqm, n = +trim i m+g9nj nj
l J

which is a simple generalization of (1), but allowing for an
arbitrary distribution of hopping terms and a position-
dependent friction coefficient proportional to A,„. As par-

where I =lnco, .
We will now assume that the initial Hamiltonian has all

the A,„'s equal to a constant value A, and the hopping is
only possible between nearest-neighbor sites. Then, we
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consider the two cases mentioned above.
(i) A single impurity characterized by a hopping b, , in a

chain with an otherwise constant value of the hopping A.
Numbering the sites from the impurity, we have the fol-
lowing equations:

dip qp

dl 2

dqp = —2qo~p+qi~ i ~

dip qp
z

'

1 — Qp, dA„
dl

qn
n

(34)

p 2 2qoa p+2q

(33)

dA„q„
dl 2

1—

qn 2= —q ~ +q —&~ —]+q ~i~

where b, „=6„,q „=q„,and the initial value of b.0 is
5'/co0. All initial q's are equal. In Eq. (33) we have also
neglected the extra charges which correspond to hops be-
tween sites which are not nearest neighbors, and which
appear in the scaling process. The value of these extra
charges is, initially, twice that of the original ones.
Hence, if we are close to the critical region, q -2, their
fugacity will increase with decreasing cutoff and they will
become irrelevant.

Far from the critical region, the renormalization of the
charges is also irrelevant (it is a second-order process), and
the equations for the fugacities give the vertical flow in
the (b„q) plane which characterize the perfect model. Let
us now examine the critical region, q -2, assuming that
6 & 6, i.e., the impurity decreases the hopping probability
in its vicinity. Then, the charge associated with this hop
will increase with decreasing cutoff (because the nearest
hops give a kind of antiscreening effect), while the charge
related to the nearest hop will move in the opposite direc-
tion. As the scaling proceeds, these deviations from the
behavior of the perfect system around the impurity will be
transmitted to hops further from it, because the changes
in the values of the charges influence the fugacities,
which, in turn, alter the equations for the neighboring
charges. In general, even charges will tend to increase,
while odd ones will decrease. This process is self-
amplifying: a charge q &2 will make its corresponding
fugacity grow which will enhance its antiscreening effect
on the neighboring charges. Thus, between the two
phases of the perfect model, the localized and the dif-
fusive one, we may have an extra one, in which some of
the hops will be suppressed, while the others not. Of
course, the particle will be localized, because it cannot
move through the entire lattice, but it will not be in a sin-
gle well of the external potential as before. The analysis
when b, '~ 5 proceeds along the same lines and leads to
similar results.

(ii) A semi-infinite chain. In this case the equations are

dq~
qn ~ n +qn —&~ n —&+qn+ &~ n+»

where we start to label sites from the surface. All initial
charges and fugacities are equal. The analysis of these
equations resembles closely the one presented before.
Near the critical region, the hopping processes near the
surface do not experience the antiscreening effects typical
of the bulk and, hence, they are more easily deconfined.
The phase diagram for these charges is similar to that of
the TLS. On the other hand, once the fugacity of these
charges grows, the charges further inside the system tend
to increase, leading to a reduction in the corresponding
hopping processes. Again, we can have an extra phase in
which the particle is localized, but not anywhere in the
system; it will tend to be close to the surface.

V. CONCLUSIONS

We have continued the analysis of the dynamics of a
particle in a periodic potential, interacting with a dissipa-
tive environment. ' We have shown that the model is ex-
actly soluble for a particular value of the friction coeffi-
cient. This solution contributes to clarify the behavior of
the system in the intermediate coupling regime, a region
of the phase diagram not directly accessible by a renor-
malization analysis or a duality transformation. We
think that the method proposed here may also be relevant
to the study of other systems which can be mapped onto
the discrete Gaussian model, and to Hamiltonians with
commuting and anticommuting terms.

We have also studied the changes in the phase diagram
induced by imperfections in the periodic potential. It has
been shown that the critical region lying between the dis-
sipative and localized phase is altered. The flow in the
scaling equations changes in this region, and, for certain
values of the initial parameters, a new localized regime
appears, in which some of the hops of the particle between
potential wells are not suppressed.

APPENDIX

Here we will calculate the excitation spectrum of the
Hamiltonians:

IIi= ——„' g [(2c„~zc~~z—1)~(c„—c„)(c„~c~~z)]
n, even

~A( —,m)' (2c Dca —1),
(A1)

Mz ————, g [(2c „c„—1)+(c„—c„)(c„+z+c„+z)].
1l, odcl
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H~ and Hz are the even and odd sites parts of Hf [Eq.
(24)].

We will first consider H1. We look for new Fermi
operators, ck, such that

ck= gDk(cn+cn)+ QPk(cn —cn) ~

k k

v'2m 5 cosk
ik

2
—2mi 6

k =~l j er in —1 ik(, n —1) ~+k~ .in —1 —ik(n —1)

(i )neikn+ (& )ne' ke ikn-ip
n&0 (A5)[Hick�

]=ekck

The coefficients ak and pk satisfy

n & n & n+2ek~k= 2pk 2pk
n~O

n j n & n —2
ek pk 7~k Pk

&kizk =2~( 2 ~)'"pk —
~ Pk,

ekpk 2b, (
—,' ir)' —ak .

The two first equations admit the solutions

n
( )n +ikn

nn ~ i ~ in —1 +ik(n —1) (A4)

ek /2e '"+2m i 5
'k ~ 2

ek /2e ' 2n—ib. ,

So far we have neglected a normalization factor, re-
quired to obtain the right anticommutation relations for
the operators ck. This factor is 1/V'SN, where N is the
number of sites. The diagonalization of Hz can be
achieved following the same steps presented above. In
fact, the eigenenergies, and the bulk part of the equations
are the same as for H&. The only difference lies in the
boundary conditions, which are actually simpler.

To complete the solution, we need the inverse transfor-
mation to (A2), in order to calculate the correlation func-
tion for Sf

C n
= g A k(Ck+Ck )+ g Pk(Ck Ck ) (A6)

k k
When n is even, we obtain the following. equations for the
coefficients:

.n&0~n & —n & —n+2
~kl~ k 2 k 2

ek=smk, 0&k &~/2 .
eke k =2~(,' ~) ' 'P k, (A7)

Once the "bulk" solutions have been obtained, we can
satisfy the boundary conditions given by the two last
equations in (A3), by choosing an appropriate combina-
tion of these solutions:

ek p k
——2b, ( ,' m. )

' a k
———,

' a k,
which are formally equivalent to (A3). The only differ-
ence is the normalization factor which now turns out to
be —,

' v ~.
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