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There is both theoretical and experimental evidence that the band structure of graphite intercala-
tion compounds (GIC’s) can be considered as a first approximation, as a superposition of graphitic
and intercalant bands. Assuming such a rigid-band-type model is valid, we have obtained the band
structure of second-stage potassium-mercury amalgam GIC, KHgCs, by superposing K-Hg-K
sandwich bands with the two-dimensional graphite bands. The graphite bands have been zone fold-
ed into the smaller Brillouin zone of KHgCs The self-consistent full potential linearized-
augmented-plane-wave formalism for thin films has been used to calculate the sandwich band struc-
ture and density of states. The K 3p states lead to a dispersionless set of bands at —17.75 eV. Hy-
bridization of K 4s states with Hg 6p states is very strong. From our band calculation we extract
the partial density of states (DOS) due to the intercalant at the Fermi level of KHgC;. Comparison
with low-temperature specific-heat measurements suggests a very small contribution to the DOS at
the Fermi level from carbon layers. We also compare the model predictions with optical experi-
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ments.

I. INTRODUCTION

There has been a great deal of interest in graphite inter-
calation compounds (GIC’s) containing  alkali-
metal—mercury amalgam, particularly because of their
unusual sandwich structure' and superconducting proper-
ties.>3 Experimentally the superconducting properties of
these materials have been investigated more extensively>*
than other physical properties. Even though few in num-
ber, there are also reports of experimental data on
Shubnikov—de Haas® and optical®’ measurements on
potassium-mercury amalgam GIC. These data have been
used to obtain some information on the electronic struc-
ture of potassium mercurographitides. So far the major
effort and emphasis has been in the experimental investi-
gation of properties. Thus, theoretical studies of the elec-
tronic structure of these compounds have lagged consider-
ably behind experimental work. One major reason for this
is that detailed and accurate ab initio calculations of the
band structure are difficult and time consuming due to
the large number of atoms in a unit cell.

The band structure of the binary compound KCjg has
been studied based on rigid-band model® as well as from
first principles.>® It is found that rigid-band approach
explains the electronic structure reasonably well. This ap-
proach is essentially similar to the treatment of alloys in
the dilute limit. Thus the Fermi energy of the pristine
graphite crystal is raised or lowered depending on whether
charge is transferred to or from the crystal by the inter-
calant. For the potassium mercurographitides, there is ex-
perimental evidence!® that the charge transfer from KHg
to carbon layers is much less than that in KCg. There is
also measurement of c-axis resistivity!! of these com-
pounds which indicates much weaker s-7 hybridization
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compared to KCg. Therefore, these experimental results
suggest that a rigid-band model can represent, to a first
approximation, the electronic structure of the ternary
compounds and can provide a guide for a coherent inter-
pretation of available experimental data.

The aim of the present work is to use a rigid-band-type
model in an attempt to obtain for the first time the band
structure of second-stage potassium mercurographitide
(KHgC,). This system is chosen because by analogy to
pure graphite!> we expect a five-layer (C-K-Hg-K-C)
thin-film band calculation to give reasonable results for
KHgCs. As it turns out, even this five-layer calculation is
still difficult and time consuming because there are twen-
ty atoms per unit cell. So for simplicity we have used a
two-step approach. We first calculate the band structure
of an isolated K-Hg-K sandwich using the semirelativistic
self-consistent full potential linearized-augmented-plane-
wave (SC-FLAPW) method for thin films.!> We next
construct the band structure of KHgC; by simply super-
posing the sandwich bands with the zone-folded two-
dimensional graphitic 7= bands. The Fermi energy of
KHgCy is then determined by filling the empty 7 bands
according to the rigid-band model. Finally, the predic-
tions from this comparatively simple model are compared
with existing low-temperature specific heat and optical
measurements on KHgC;.

The organization of the paper is as follows. In Sec. II
the crystal structure and the model input parameters are
introduced. Section III presents a brief description of the
formalism for the band-structure calculation. The energy
bands and density of states of the K-Hg-K sandwich, and
the KHgCg bands are given in Sec. IV. Section V
discusses the present results in terms of the available ex-
periments on KHgCs.
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II. CRYSTAL STRUCTURE AND MODEL

The alkali-metal—mercury amalgam GIC’s have a
stoichiometry! of MHgC,, (n=1,2; M represents K,Rb).
The intercalant layer consists of two layers of alkali metal
contacting bounding carbon layers and a mercury layer
sitting between the two alkali metal layers as shown in
Fig. 1. The distance between the two bounding carbon
layers is 10.16 A for the potassium-mercury amalgams.
There is some evidence! that the Hg layer may actually
consist of two layers a distance d apart, where
d <0.25 A. In the present calculation we assume we have
a single layer of Hg atoms sandwiched between the potas-
sium layers. For the second-stage compounds, the in-
plane configuration of alkali atoms is (2X2) R0°, similar
to that of KC;.

A projected view of KHgCjy structure is shown in Fig.
2. The planar arrangement of K atoms is hexagonal close
packed, while the Hg atoms form a two-dimensional
graphite like structure. The specific values of the inter-
layer distances between K and Hg and the carbon layer
are unknown. For our model system we assume a K-Hg
layer separation of 4.97 a.u. Then, since the bounding
carbon layers are reported to be 10.16 A apart, the spacing
between a carbon layer and the nearest-neighbor K layer is
4.63 a.u.

The model system we will investigate has a thin-film
geometry and is investigated by rigid-band approach.
This consideration of a thin-film and a rigid-band—type
model to describe the band structure of KHgCg is
motivated by the following observations.

(i) The K-Hg interaction is much stronger than the K-
carbon layer interaction. Thus, the intercalant K-Hg-K
sandwich is a thin film whose electronic structure is
weakly perturbed by the presence of bounding graphite
layers.

(ii) Graphite 7 bands near the Fermi level are essential-
ly weakly perturbed by the intercalant sandwich. This is
partly due to the fact that 7 bands are weakly bonding or
antibonding in nature.

(iii) Graphite layers on opposite sides of the K-Hg-K
sandwich do not interact directly since their separation is
large.

A justification for assumption (i) is the observation that
a bulk KHg alloy with triclinic structure!* exists in crys-
talline form. A further justification for assumptions (i)
and (ii) comes from the experimental result of C-axis

FIG. 1. Crystalline structure of KHgCs;.

FIG. 2. Projected view of crystal structure of KHgCj.

resistivity measurements!! which suggest very weak s-7
hybridization. In addition to this, since the interaction
between adjacent graphite layers is weak, the considera-
tion of thin-film geometry is a reasonable approximation.

To characterize the thin-film geometry completely we
have to specify the thickness and its two-dimensional
structure. The two-dimensional lattice constant deter-
mined by the K-atom occupied lattice sites is 9.278 a.u.
The K-Hg-K sandwich thickness is given by D=15.272
a.u., while the distance used in defining the z component
Fourier expansion of the FLAPW basis'® has a dimension
of D'=17.50 a.u. For both K and Hg atoms we assume a
muffin-tin radius of 2.684 a.u. Within a primitive cell de-
fined by the above dimensions, we have a total of four
atoms: two K and two Hg atoms. This essentially com-
pletes the definition of the model and some of the input
parameters used in the calculation of the K-Hg-K
sandwich band structure.

The three-layer K-Hg-K system has z-reflection sym-
metry. Therefore, it is possible to use basis functions that
are symmetrized under this operation. This symmetriza-
tion of FLAPW’s reduces the computation time substan-
tially.

III. FORMALISM

A. LAPW band method

The film geometry of the K-Hg-K sandwich system
dictates the choice of band-structure method. One of the
accurate band methods for treating this type of geometry
is based on the linearized-augmented-plane-wave (LAPW)
scheme. The self-consistent LAPW method used in the
present work has been described in the literature;'® here
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we will only outline the basic approach. A set of varia-
tional basis functions of the form

¢,k(r)_2[A,m YU (E},#) + Bl (K) U Ef,7)] Y (P)

(1)

and specified by the wave vector k is used to expand the
Bloch functions inside muffin-tin spheres around each
atom. The constant energy parameters E; control the
shape of the radial functions and can be given different
values for each [ and each atom type. The radial function
energy derivative U,=3U,/dE | E= g, are chosen to allow

an efficient expansion of the eigenstates for energies close
to E;. During computation, the parameters E; are nor-
mally chosen to lie near the center of the band of interest.
For the film geometry only two-dimensional periodicity
holds. So in the interstitial regions outside the atomic
muffin-tin spheres the basis function is defined as

¢{(nn(r)___9—l/2eixmn'r , )

where ( is a normalizing factor and K,,, =k+g,, +g,%.
Here k is the two-dimensional (2D) Bloch vector, g,, is a
2D reciprocal-lattice vector, and g, labels the Fourier
components for the expansion in the nonperiodic z direc-
tion denoted by the unit vector Z.

For the film geometry, it is convenient to consider the
exterior or vacuum regions outside the film to develop an
efficient expansion of the basis functions for |z | >D,
where D is the film thickness given in Sec. II. In this re-
gion, the basis is defined as a product of 2D plane wave
and a z-dependent function and its energy derivative:

BT (1) =[A2K) Uy (Eyyz) + B Uy (Eyy2) e o

(3)

in analogy with Eq. (1). Here the U,, are solutions of the
one-dimensional Schrodinger’s equation for the average of
the full potential over the x-y plane, and K,, =k + g,,.
Depending upon the value of the vacuum energy parame-
ter E,, the basis function may have either damped or os-
cillatory behavior for large z.

The expansion coefficients 4°, B of Eq. (1) are deter-
mined by matching the LAPW’s and their radial deriva-
tives across the muffin-tin sphere boundaries. Similarly,
the expansion coefficients in the exterior region are ob-
tained by again matching the LAPW’s at the vacuum-film
boundary. This completes the definition of the basis set.
Using this set and applying the variational principle, we
obtain a secular equation to determine the eigenenergies
and the corresponding eigenvectors for a discrete grid of
k values. The wave functions of the form:

v, (k,r)= 2 Cm'(k)tﬁi,k(l‘) (4)
i
are then occupied according to Fermi statistics to generate
the charge density required for self-consistent iterations.

B. Self-consistent crystal potential

The self-consistent crystal potential and charge density
were calculated using the special k points of Chadi and

Cohen."> For the fllm ca]culatlon presented in this work
the 3—k-point set: {(+,5), ($,2), and (1,%)} in the ir-
reducible two-dimensional wedge was used in the set of
self-consistent iterations. The potential calculations are
performed in the warped muffin-tin approximation, i.e.,
no shape approximations are made in the interstitial and
vacuum regions, but the potential in the atomic spheres is
spherically averaged.

At the end of the self-consistent iterations a finer k grid
was used to calculate the density of states. The finer grid
helps to minimize interpolation errors in the linear tri-
angular method'® used for the DOS calculation. We have
used fifteen k points in the irreducible triangle to deter-
mine the total and layer-projected DOS for the K-Hg-K
sandwich.

IV. BAND STRUCTURE

A. K-Hg-K level structure and DOS

In Fig. 3 we present the band structure for the isolated
K-Hg-K sandwich. The solid and dashed lines represent
bands which are respectively symmetrical and antisymme-
trical with respect to z reflection. Not shown in the figure
are the set of dispersionless K 3p bands which are located
at —17.75 eV. The ten low-lying bands are Hg 5d —like.
Of these, the bands that are antisymmetric with respect to
z reflection involve purely Hg 5d orbitals while the rest,
even though predominantly d-like, have some s character.
The energy range of the 5d core states is 2.20 eV. The
two bands lying entirely below the KHg Fermi energy Ep
and above the 5d bands are predominantly 6s-like. The
lower 6s-like band has significant d character, while the
upper band has significant p character. The bands which
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FIG. 3. Self-consistent FLAPW band structure of K-Hg-K
sandwich. Solid (dashed) curves represent symmetric (antisym-
metric) states with respect to z-reflection symmetry.
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FIG. 4. Layer projected density of states in units of states per
eVspin. The zero is at Ef (see Fig. 3), and the dashed line indi-
cates the Fermi energy of KHgCs.

lie partly below Er have both Hg 6p and K 4s character
in almost equal proportions. This considerable admixture
of states is also evident in the partial density of states for
the K-Hg-K sandwich.

In Fig. 4 we show the layer-projected DOS for the KHg
film broadened by convolution with a Gaussian of width
0.2 eV. The zero of energy is taken at the Fermi energy
Er=—2.41 eV. As mentioned earlier, this DOS was ob-
tained using 15 k points in the irreducible - of the two-
dimensional Brillouin zone. At the Fermi level, the con-
tribution to the DOS from Hg layer is approximately
equal to that from the two K layers.

B. KHgC; bands

The qualitative features of the KHgC; band structure
for states near the Fermi level are obtained by application
of a rigid-band-type model. Our basic assumption is that
the electronic band structure of KHgCjy is a superposition
of two-dimensional graphitic bands and intercalant KHg
bands. This means that there is no interaction between
carbon layers, between carbon and Hg layers, and that the
K potential is vanishingly small at the graphite planes.
Since the interlayer spacing between the carbon layers and
that between carbon and Hg layers is large enough, the as-
sumption of negligible interactions in these cases is justi-
fied. The vanishing of the K potential is at this point an
approximation assumed to simplify the problem.

Figure 5 shows the 7 bands of two-dimensional
graphite taken from the calculation of Painter and Ellis'?
zone-folded into the corresponding two-dimensional Bril-
louin zone of KHgCs. This zone is one-fourth the area of
that of graphite. In the folded 7-band structure shown in
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FIG. 5. Zone-folded m bands of two-dimensional graphite,
adapted from the calculation of Painter and Ellis (Ref. 12). De-
generate bands are indicated with thickened line.

Fig. 5, the M point of graphite has been mapped into the
I’ point of KHgCg. The K-point structure of graphitic
bands is found at the K point in KHgCg. On this band
structure, the Fermi energy of graphite lies at approxi-
mately —8.85 eV.

The KHgCjg band structure is obtained by a superposi-
tion of the 7 bands with KHg bands. Here it is assumed
the zeros of Figs. 3 and 5 are the same. In particular, the
Fermi level of KHgC; is determined by partially filling
the unoccupied 7 bands of graphite below the KHg Er.
This gives a value of (Er)y= —6.27 eV. A further exam-
ination of the superposed bands shows that the bands in-
volving Hg 6p and K 4s states are completely empty,
while the upper Hg 6s—like band is only partially occu-
pied. This is shown clearly in the DOS plot of Fig. 4,
where (Ef), is indicated by the dashed line. We also note
that at this Fermi level, the partial DOS due to the KHg
intercalant is 0.16 states/(eV atom).

V. DISCUSSION AND CONCLUSION

There have been relatively few experimental results

published that give relevant information on the band

structure of KHgCg. This might be primarily due to the
lack of theoretical band calculations that can be used to
interpret the experiments. The few available experiments
are not sufficient to provide rigorous comparison between
theoretical models and experiment. Keeping this in mind
we now review some of the measurements and their inter-
pretation in the light of the present rigid-band-type ap-
proach. :

The DOS of KHgC;y at the Fermi level has been deter-
mined ‘by low-temperature specific heat measurements.?
The value reported is 0.18 states/(eVatom). In the
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present calculation, we have only determined the inter-
calant, KHg DOS (see Fig. 4). This figure shows that at
the KHgC; Fermi level, indicated by the dashed line, the
K-Hg-K sandwich partial DOS is approximately 0.16
states/(eV atom). Thus, a comparison to the experimental
result suggests a very small contribution to the DOS from
the carbon layers.

Another property of KHgCy that has been measured is
the optical reflectivity in the energy ranges 0.5—6.0 eV
(Ref. 6) and 0.16—5.8 €V.” The results indicate that the
threshold at which interband transitions occur is 1.2 eV.
A theoretical calculation of the optical-absorption coeffi-
cient would involve evaluating matrix elements of the
operator € Ve'®T where k is the photon wave vector and
€ is its polarization. We have not evaluated these matrix
elements. Instead we adopt the view that structures in the
reflectivity spectrum can be correlated with direct transi-
tions at high symmetry points in the Brillouin zone.
Furthermore, if by following Ref. 6, we assume that the
interband transitions involve only Hg levels, the present
model predicts a transition of 0.9 eV at the M point. This
is in agreement with the observed threshold value.

The results from our simple model are qualitatively
- consistent with the specific heat and reflectivity measure-
ments. However, besides further experimental data, more
improvement of the present model is needed to carry out
rigorous comparison of theory and experiment. Since

band calculations of KHgCy are unavailable currently, we
have not been able to demonstrate the deviations from the
predictions of the present model. An obvious shortcom-
ing in the present approach is that the direct superposition
of intercalant and graphitic bands neglects any interaction
between the KHg bands and graphitic bands even though
the Hg 5d— and 6s—like bands lie within the folded 7
bands. Thus, to obtain the detailed band structure of
KHgC; we must consider the five-layer, C-K-Hg-K-C
thin film. This will give relevant data for predicting the
details of the Fermi surface, besides providing informa-
tion on the possible deviations from the present model.
But this five-layer study using SC-FLAPW scheme is
both computationally difficult and time consuming, be-
cause the unit cell consists of 20 atoms. Furthermore, be-
fore even attempting this, more experimental measure-
ment is needed to resolve the uncertainty in the position
of the mercury atoms in KHgC;. In the meantime, it is
hoped that the present simple model will be useful as a
first step for interpreting experimental results.
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