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Hamiltonian studies of the Blume-Emery-Griffiths model
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Finite-size scaling methods are used to obtain the phase diagram of the Blume-Emery-Griffiths
model in its time-continuous Hamiltonian version. In particular, we locate the tricritical point,
where a first-order transition changes to one of second order, and evaluate its exponents. The ex-
ponents are in complete agreement with Nienhuis' conjecture. %'e also discuss a recent conjecture
concerning the universality of the ratio of mass-gap amplitudes. Our results suggest the validity of
this conjecture even at the tricritical point.

I. INTRODUCTION

The Blume-Emery-Griffiths' (BEG) model is a spin-1
model which has been used to describe the behavior of
He- He mixtures along the A, line and near the critical

mixing point. Apart from its practical interest (it repro-
duces at least qualitatively the main features of the phase
diagram for superfluid and phase-separation transitions),
the BEG model has intrinsic interest since it is the sim™
plest generalization of the spin- —, Ising model exhibiting
a complex phase diagram with first- and second-order
transition lines and tricritical points. The predictions of
the conventional mean-field theory are essentially correct
for d(d & 3) dimensional models. However, they are even
qualitatively incorrect for the two-dimensional (2D) lat-
tice. The failure of the mean-field approximation has led
to several studies of the 2D classical BEG model, such as
the renormalization-group, e expansion" downwards
from d =3, Migdal-Kadanoff renormalization scheme,
and Monte Carlo renormalization-group approximations.

This model can also be mapped, in the usual fashion,
into a one-dimensional quantum model which is believed
to share the same critical behavior with its classical coun-
terpart. In its quantum version, the BEG model has been
analyzed by real-space renormalization group ' and
mean-field-like variational methods.

The purpose of this paper is to obtain the phase dia-
gram and critical properties of the BEG model in its
quantum version, using the finite-size scaling (FSS) ap-
proach. The motivation is the recent success of the FSS,
in transfer-matrix calculations, ' in obtaining a tricritical
point and its leading exponents.

Our paper is organized as follows. In Sec. II we present
the model as well as its quantum version. Section III con-
tains a brief introduction to finite-size ideas and their ex-

tension to the study of tricritical behavior. The critical
point is obtained with high precision, and the critical ex-
ponents are evaluated by using two different methods. Fi-
nally, in Sec. IV we calculate the mass-gap amplitudes at
the tricritical point. Our results corroborate the recent
conjecture concerning the universality of mass-gap ampli-
tude ratios.

where b, is a single-state energy, J„and IC„(J, and K, ),
are, respectively, exchange and quadrupolelike interac-
tions in the horizontal (vertical) direction.

The transfer matrix associated with this model, with
periodic boundary conditions in the t direction, can be ob-
tained by a standard procedure and it is given by

alrZ -IIO -H, g2T=e e e (2)

where

Ho ——XQS„(i)+ZQS„(i), (3a)

H, = Fg Sz(i ) PJ„QS,(i )S,(i +1)—
/3IC„Q S, (i )S, (i + 1 ), — (3b)

II. MODEL
We consider a spin variable S(i,j) which assumes

values 1, 0, or —1, associated with each site of a square
lattice. The BEG dynamics is described by the Hamil-
tonian

A = —J„QS(ij )S(i + 1,j)
J&J

—X g S (ij )S (i +1,j)—J, Q S(ij )S (i,j +1)
»l J,J

IC, QS (i,j)S—(i, j +1) +5+S (i,j), (1)
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S —I~ S~ ' ' I, e—x,z,
with

0 1 0 1 0 0
S„= 1 0 1, S,= 0 0 0

2
0 1 0 0 0 —1

(4)

acting on the product Hilbert space.
The new coupling X, Y, and Z appearing in Eq. (3) can

be written in terms of the original couplings as follows:

sinh X=e '[cosh(PJ, , ) —e '] (5a)

and S„(i),S,(i) are now quantum spin-1 operators
represented by

III. FINITE-SIZE SCALING

In this section we shall present the finite-size scaling
method used to obtain the phase diagram (including the
tricritical point) of the quantum Hamiltonian [Eq. (8)]
associated with the 2D classical BEG model.

The FSS method had its genesis in the works of Fisher,
Ferdinand, and Barber" in which the finite-size effects on
criticality were studied. Later, Nightingale introduced a
phenomenological renormalization group, ' which permits
one to obtain the true infinite critical behavior from the
analysis of small systems. An appropriate form of the
FSS can also be stated for a quantum Hamiltonian. ' The
fundamental assumption of the FSS theory, in this case, is
that the mass gap G (related to the correlation length),
which is an infinite system, varies near a critical coupling
p, as

cosh(PJ, ) —I3E
e =

z [cosh(PJ, ) —e '],
sinh (PJ, )

Y=Pb —in [2e 'cosh(P J, ) ] .

(Sb)

(Sc)

G (p) =(Ei Eo) -(—p pc )"—
and for a finite system of size L, behaves as

Gl (p, )-L

(9a)

(9b)

The transfer matrix T commutes with the parity opera-
tor

(6a)

(6b)

It is this Z (2) invariance of T which will be spontaneous-
ly broken along the transition line.

We want to stress that the transfer matrix has almost
all elements nonzero, because it is formed by a product of
operators. Consequently, it is difficult to compute its
spectrum, even for relatively small lattices. To circum-
vent this problem we will derive an equivalent quantum
Hamiltonian (which is a sum of operators) which is ex-
pected. to preserve the long-distance behavior, and whose
spectrum determination is an easier task.

In order to get this equivalent Hamiltonian we need to
consider a highly anisotropic limit in which X, Y, Z, J„,
and K„are very small numbers. This limit is achieved by
choosing

In Eq. (9a), Eo (E, ) is the energy of the ground (first-
excited) state of the Hamiltonian H.

The FSS form suggests that P, can be found from the
sequence of values P for which the successive ratios of
GL(p) and Gl i(p) exactly scale, i.e., the value of p for
which'

Rl LGI (p)——/(L —1)GI i(p) . (10)

Q, (P, ) -L~'. (12)

Therefore, by considering a set of finite lattices it is possi-
ble to estimate the index g/v by extrapolating the se-
quence

I L [QI.(p. ) —Ql. -i(p. ) l/QL -i(p. ) l

In general, any thermodynamical quantity Q (P) whose in-
finite lattice behavior is

Q(P)-(P —P, )-~,
in the finite system scales as

PJ„,PIC„« 1,
and simultaneously

PJ„PK,» I,
under the restriction

P(b, —J,—K, ) «1 .

The quantum Hamiltonian so obtained is

H = —g[S,(i)S,(i+1) aS, (i) —S(i+1)

(7a)

(7c)

In particular, to obtain the critical exponent v the extrapo-
lation should be done with

BGI (p)=
G, (P) aP

(14)

A. Phase diagram

Next, we will use these ideals to study the quantum
equivalent of the BEG model.

with

—5S, (i)—yS„(i)—A,S„(i)],

Y X ZJ„' PJ„' PJ ' PJ
(8b)

To obtain the phase diagram of the Hamiltonian we
have to determine the critical curve as well as the tricriti-
cal point which separates the first-order transition line
from the second-order one. The first step of this program
can be easily performed by using the well-established
properties of the phenomenological renormalization
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group. However, to find the tricritical point some re-
marks are in order. First, we remember that in an extend-
ed parameter space (which includes the magnetic field II),
the first-order line is characterized by coexistence of three
phases: two ordered ferromagnetic ((S)&0) and a disor-
dered phase ((S)=0). Second, we notice that the average
size of the ordered domains ((S)&0) is related to the
quantity

gL
——[ln(Ap/A, i )]

while the average size of the disordered domain ( (S ) =0)
is determined by the persistence length'

gl = [In(zp/X, )]-',
where A,p, k, i, A,2 are the three largest eigenvalues of the
transfer matrix ( T) of the model.

At the tricritical point the disordered paramagnetic and
the two ordered phases becomes indistinguishable, which
requires the asymptotic degeneracy of the three largest
eigenvalues of T

l.40-

I.20-

23
3,4
4,5
5,6
6,7
7,8
8,9

0.431 10
0.42000
0.417 23
0.416 18
0.415 88
0.415 71
0.415 63

0.902 74
0.908 19
0.90945
0.909 88
0.91008
0.910 18
0.91024

0.430 76
0.41993
0.417 21
0.41627
0.415 89
0.415 72
0.415 64

0.909 84
0.91034
0.91042
0.91039
0.91039
0.91036
0.91035

In finite systems the asymptotical degeneracy of the
two largest eigenvalues is found by imposing that

Lkl. '(»=LVI. '(13»

whose counterpart in a lattice Hamiltonian field theory is

LGI. (p)=L'GJ (p) . (15a)

If we generalize the above procedure, we locate the tricrit-
ical point by solving the equation

LGL(t)=L'Gl. (t),
where t parametrizes the critical curve previously ob-
tained with Eq. (15a).

GL,
——E2 —Eo

TABLE I. Estimates of the tricritical point in the subspace
a=O, A, =O.

Lattices

0.40-

0.20-

0.00
0.00

0,90-

0.60-

0.30 0.60 0.90

is the next gap which vanishes as L~ao, and t ap-
proaches the tricritical point. The phase diagrams, so ob-
tained, are shown in Fig. 1(a) and 1(b), and our results for
the tricritical point are presented in Tables I and II, for
the cases a=k=0, o; =0, and X=0, 1, respectively. In the
first two columns of Table I (II) we list the tricritical
point estimates obtained by solving Eq. (15a) and Eq.
(15b) simultaneously, whereas in the remaining columns
the listed results are the crossing points between the extra-
polated critical line and the solutions of Eq. (15b) for the
lattice pair (L, L + 1). To clarify the above procedure, we
have plotted both sequences of estimates for tricritical
point in the A, =O case (Fig. 2). For the sake of compar-
ison we have included in Fig. 1 the results of a mean-
field-like variational method and of a real-space
renormalization-group calculation. Finally, we wish to
comment on the numerical part of calculations. In this
analysis we have considered lattices up to L =9 sites (3
states per site) and evaluated the lowest eigenvalues of the

030-
TABLE II. Estimates of the tricritical point in the subspace

a=0, A, =0.1.

Lattices
00
0.30 0,60

& 1

0.90
6

FICs. 1. Phase diagram of the Hamiltonian [Eq. (7)] for the
coupling (a) a=~=0, (b) a=O, A. =0.1. Our results (FSS) are
plotted together with those obtained by mean-field approxima-
tion (MFA) and real-space renormalization-group techniques
(RCx). The triangle (Q) locates the tricritical point separating
first- (dashed) and second- (solid} order transition lines.

23
3,4
4,5
5,6
6,7
7,8
8,9

0.450 17
0.435 55
0.431 55
0.43002
0.429 31
0.428 94
0.428 73

0.955 82
0.96048
0.961 73
0.962 20
0.962 43
0.962 54
0.962 62

0.450 12
0.435 53
0.431 54
0.43001
0.429 31
0.428 94
0.428 73

0.953 03
0.959 54
0.961 31
0.961 99
0.962 31
0.962 47
0.962 56
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0.42-

Gl (y, 5)-L 'F(L e,L 5),
where y2,y4 are tricritical indices associated with the scal-
ing field e and p, respectively. The y and 5 derivatives of
Eq. (17) are easily calculated, yielding

OAI-
EXTRAPOLRTED (4.5)

-~+v, ~G~ -~+~ ~GL
=aL ' +bL

Bp BE' Bp

Gg ]+@ BGL, —]+ ~GL

(18a)

(18b)

0.40
0.900

I

0.930 0.920

and similar equations for G.
In order to obtain the tricritical indices, we need to el-

iminate directional constants by using Eq. (18) for lattices
L and L + 1, the exponents y2 and y4 being given by

FIG. 2, Critical line estimates obtained for lattice pairs
(L, L+1) as well as the extrapolated curve. The tricritical
points estimates represented by open circles (crosses) are the
solutions of Eq. (15b) in the (L, L + 1) (extrapolated) curve.

y;=1 +[1 n(p;)/1 n(L/ L+1)], i =2,4,
where

p; = [ 8+(——1)' (8 —4AC)' ]/2&,
with

Hamiltonian H using the Lanczos scheme of tridiagonah-
zation. In order to save computer memory we represent
any quantum state by an integer number whose binary
code (2 bits per spin) gives its spin configuration.

B. Tricritical exponents
and

A=(B G, )(B G, ) —(5 G )(5 G ),
B=(B G }(8G, ) —(B G )(8 G, )

+(8 GL, ))(BsGL, ) —(& GL, ))(&sGL, ),

(21)

(22)

In this section we present two different ways, which
will be henceforth named A and B, to compute the tricrit-
ical indices. Method A is a natural consequence of the
special scaling of the two mass-gaps at the tricritical
point, while method B essentially consists in a numerical
search of the scaling directions.

1. Method A

@=a(y —y, )+b (5—5, ),
p=c(y —y, )+d(5 —5, ) .

(16a)

Moreover, the first and second mass gap should scale as

In the neighborhood of a tricritical point we have two
relevant scaling fields, e and p, which are functions of the
parameters y and 5, namely,

C=(B&GI )(BsGI ) —(B&GL )(BsGI ) . (23)

This method, which has succeeded in describing tricriti-
cality in metamagnetic models' and branched polymers, '

gives, for the tricritical indices of the BEG model, the re-
sults shown in Table III. In the same table we have in-
cluded the indices, obtained by extrapolating our data to
L —+ oo.

2. Method 8
A direct way to calculate the tricritical indices emerges

from Eqs. (13) and (14) if we know a priori the relevant
field e and p as functions of y and 5. In those particular
directions (parallel to e or p) our problem reduces to the
usual one-relevant-. field case which can be solved by a
standard FSS procedure

p, =O

GL(y, 5)-L 'F(L 'e,L 'p) —+L 'F(L 'e, O) .
GL, (y, 5)-L 'F(L 'e, L 5), (17a)

This method consists in searching the scaling directions
by requiring the invariance of the critical exponents with

Lattices

TABLE III. Tricritical exponent estimates via method A.

a=0, A, =O
g4

a=O, A, =O. l

g4

3,4
4,5 '

5,6
6,7
7,8
8,9

Extrapolated

1.780 13
1.786 99
1.789 18
1.792 04
1.794 30
1.795 97
1.805

0.636 36
0.655 02
0.669 21
0.680 99
0.69044
0.698 23
0.740

1.788 44
1.794 39
1.796 92
1.798 18
1.798 88
1.799 30
1.801

0.628 49
0.649 73
0.665 79
0.678 38
0.688 56
0.696 97
0.744
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0.63 0.500-

0.54-

045-
0.375

0.36-

0.27-

O.I8-

-
1.803

0250-

0.00 I

-65.50 -64.50 8,00e IO.OO
1.795

l2.00
O.I25 -"-

-4.00
I

-3,00 -200 —I.OO
I

0.00
6y

I.00

FIG. 3. The effective exponent in direction 0 (measured in

degrees) about the critical point. The solid (dashed) line is de-
rived from the lattice pair 5,6 (6,7). The two crossing points are
the estimators for the tricritical exponents and the angles corre-
sponding to the scaling directions.

FIG. 4. Amplitude ratio 3 ~ /A2 at the critical line as a func-
tion of 5, in the subspace a=it=0. As 5~ —oo the ratio ap-
proaches 0.125 which is [r)/2(2 —1/v)]~„„s——0, 25/2(1). At the
tricritical point the ratio tends to 0, 375 which is
[7)/2(2 —1/v)],„,„„„i=0,15/2(2 —1,8)=0,375.

the lattice size. In Fig. 3 we show the result of this pro-
cedure for the lattices L = 5,6, and 7 while in Table IV we
list the complete sequence of the results ranging from
I. =2 to I. =9.

It is interesting to mention that one of the scaling direc-
tions is just the tangent to the critical line, at the tricriti-
cal point, while the other one makes an angle around 10'
with the 5 axis. Following Eq. (17b) we could also have
used the second gap instead of the first one in order to
search the scaling directions. Unfortunately our numeri-
cal results indicate that the second gap derivatives have
bigger corrections to scaling compared with those of the
first gap. Despite this, as already noted previously for a
different model, ' we find that the second gap derivative
in the direction parallel to the critical line gives a reason-
able estimate for the critical index

y4
——0.69(8) .

For the sake of comparison we show in Table V our re-
sults for the critical indices, together with previously ex-

isting estimates. We observe that the dominant eigenvalue
obtained in this paper is in complete agreement with the
conjecture of Nienhuis' while the subdominant one is
systematically lower than the conjectured value. It is
worth mentioning that the quality of the estimates for y4
is consistently worse than for y2, as one may reasonably
expect.

IV. AMPLITUDES

In the finite-size scaling theory for an infinitely long
strip (L &( ac ) the inverse-correlation length should vanish
at T=T, as

'-A/L,
where A is the so-called amplitude of correlation length.
Recently an interesting conjecture concerning the univer-
sality of that amplitude has been proposed, ' namely,

(25)

G; =3;/L, (26)

and the universal quantities seem to be the ratio of the
mass-gap amplitudes ' AJ/A; j=1,2, 3, . . . ,
i =2,3,4, . . . ) instead of the amplitude itself.

Now the relation (25) is replaced by
'

2;/AJ =x;/xj, (27)

7l

where g is the critical exponent of the two-point correla-
tion function. Later, this conjecture was extended to in-
clude anisotropic models as well as other correlation
lengths and associated exponents.

In the case of a quantum Hamiltonian, as mentioned
previously, the counterpart of the several correlation
lengths are the various mass gaps

TABLE IV. Tricritical exponent estimates via method B.

Lattices

2,3,4
3,4,5

4,5,6
5,6,7
6,7,8
7,8,9

Extrapolated

8 (degrees)

5.64
7.54
8.64
9.77

10.13
10.98

1.822 17
1.811 55
1.807 39
1.804 18
1.802 54
1.801 82
1.801

8 (degrees)

—64.47.
—64.87
—65.10
—65.29
—65.44
—65.53

X4

0.321 70
0.376 55
0.418 90
0.456 97
0.490 89
0.519 18
0.64
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TABLE V. Critical indices of the BEG model. (1D and 3D denote one-dimensional and three-
dimensional, respectively. )

Mean-field approximation'
RG on the classical 2D BEG model"
RG on the quantum 1D BEG model'
@=3—d expansion
Migdal-Kadanoff RG on

the classical 2D BEG model'
Monte-Carlo

renormalization group
Finite-size scaling on the

quantum ID BEG model (this work)
Conjectured values

'See Ref. 1.
bSee Ref. 3.
'See Refs. 7 and 8.
"See Ref. 4.

'See Ref. 2.
See Ref. 6.

~See Ref. 18.

yz

2
1.837
1.816
1.968

1.773

1.80

1.80
1.80

y4

1

0.918
0.932
1.2

0.516

0.84

0.74
0.80

where x; (xJ ) is the anomalous dimension of the operator
related to the corresponding mass gap G; ( GJ ). If the
mass gaps involved in Eq. (27) are the first and second
ones, we get

3)/3~=x /x@ ——(g/2)/(2 —1/v),

since the associated operators are, in this case, spin and
energy density.

Using Eq. (27) we have calculated the amplitude ratios
at the tricritical point, and the results (shown in Table VI)
are in complete agreement with the conjectured values
also presented in that table.

We have also calculated the amplitude ratio A~/A2
along the critical line for a=A, =O (Fig. 4). It is interest-
ing to notice that, although we are dealing with small lat-
tices (I.&9), we clearly see a crossover behavior separat-
ing regions belonging to different universality classes. In
fact, as 5 goes to —ao, the ratio 2 &/A2 approaches 0.125
which is

0.25
2(2 —1/v) I...s 2(2 —1)

while at the tricritical point the ratio is approximately
equal to

0.15
2(2 —/Iv),„,„„„i 2(2 —1.8)

where we have used the value 0.15 for the index g.

V. CONCLUSIONS

In this work we have analyzed the quantum version of
the two-dimensional Blume-Emery-Griffiths model. We
have obtained its phase diagram and located the tricritical
point that separates the A, line from the first-order transi-
tion line. The tricritical exponents were calculated by two
different methods, and the indices are in complete agree-
ment with the conjecture of Nienhuis. We have also
presented some results which confirm the connection be-
tween ratios of mass-gap amplitudes and critical ex-
ponents. We thus conclude that finite-size scaling ideas
are very well applicable to locate tricritical points and cal-
culate its critical indices.
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TABLE VI. Amplitude ratios for various lattice sizes. Using the extrapolated value. of the ratio
A4/A2 and y2 obtained from Table III we get y4 ——0.804, to be compared with the conjectured value
y& ——0.80 obtained from the last line in this table [ A4/A2 ——(2—y&)/(2 —y2)].

Lattice

2
3
4
5
6
7
8
9

Extrapolated
Conjectured

A )/A2

0.4076
0.3949
0.3890
0.3857
0.3837
0.3823
0.3813
0.3807
0.3785
0.3750

2 )/A3

0.0973
0.0902
0.0879
0.0869
0.0864
0.0861
0.0859
0.0858
0.0856
0.0857

0.0864
0.0744
0.0070
0.0678
0.0665
0.0657
0.0651
0.0647
0.0633
0.0625

A4/Ap

4.7163
5.3046
5.5547
5.6861
5.7647
5.8159
5.8516
5.8776
5.9794
6.0000
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