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A. E. Jacobs*
Department of Physics, Brookhauen National Laboratory, Upton, New York 11973

(Received 1 July 1985)

In naive mean-field theory, the initial ordering in the short-range Ising spin glass is in the form of
internally inhomogeneous clusters which form in regions with favorable bond configurations. These
"Anderson clusters" are identified with the clusters inferred from experiments. The metastable
states are domain states and have a tree structure, despite violation of the ultrametricity condition
obtained in the infinite-range version of the model.

I. INTRODUCTION AND INTERPRETATION

After a decade of sustained, intensive effort (Ref. I re-
views hundreds of papers, most of them dealing, however,
with the infinite-range version), strong numerical evidence
has been obtained for a finite-temperature phase tran-
sition in the three-dimensional, short-range version of the
Edwards-Anderson model of a spin glass. The two-
dimensional short-range model has a transition only at
zero temperature. ' The Monte Carlo work suggests a
new unit of computational effort, the CEY (Cray-
equivalent central-processing-unit year); one paper alone
amounts to 5 CEY. This remarkable effort attests to the
interest in the model, to the difficulty of its solution, and,
perhaps, also to the seductive simplicity of its starting
point. Reference 8 provides a fine summary of the experi-
mental and theoretical situation as of two years ago.

In an attempt to clarify the nature of the transition,
which the Monte Carlo work suggests is not an ordinary
one (the finite-size scaling analyses of Refs. 3 and 4 show
atypical behavior), the present article treats the three-
dimensional short-range model in mean-field theory; this
theory, one of the most useful guides to the behavior of
complex systems, has been largely neglected in the study
of the short-range model (only a few articles ' discuss it},
in contrast with the infinite-range model. " This neglect
is hard to understand, for mean-field theory is the natural
first step in understanding nonergodic systems.

In a previous article, ' I investigated the metastable
states of a few small systems near the mean-field onset of
ordering, in zero magnetic field. This study gave several
results whose qualitative features are not expected to
change on further "resort to the indignity of numerical
simulations, "' that is, more and larger systems. For ex-
ample, the metastable states are domain states in the
short-range model. "' (This result is probably limited to
nearest-neighbor interactions if domain is interpreted
strictly, as a set of flipped spins, each a nearest neighbor
of another. ) Walstedt has described evidence for domain
states in another model. The present article deals in
greater length with the same systems and draws further
conclusions regarding the short-range model. Averaging
over bond configurations is not possible with so few sys-

tems, but neither is such averaging desirable for present
purposes, for several interesting features are apparent only
on detailed investigation using individual bond configura-
tions.

In mean-field theory, the initial ordered state in the
short-range model consists of a small cluster of spins, as
shown some time ago by Anderson ' see also Ref. 15.
The second-order transition (from the paramagnetic state
to an ordered state) predicted by mean-field theory is a
false result, for the ordered state is localized and there is
therefore no thermodynamic transition (as discussed by
Anderson' ). In mean-field theory, further ordering takes
place with growth of the original cluster (all magnetiza-
tions increase by a constant factor), followed by the for-
mation of other clusters, some driven by the first, others
independent of it, as shown in Sec. VI.

The experimental evidence (see Sec. II) suggests that the
clusters should be taken seriously. In order that there be a
phase transition (in the thermodynamic limit), an infinite
number of such clusters must be present, and an infinite
number of them must lie sufficiently close together; an
analogy with a percolation transition seems empty, how-
ever. Perhaps the closest analogy is to the proximity ef-
fect in a random mixture of superconducting particles of
different sizes and different bulk transition temperatures.
Once an ordered state is established, many low-energy
states are available to the system due to the weak interac-
tion between clusters; that is, in mean-field theory irrever-
sibility sets in immediately below the onset of ordering.
With decreasing temperature the average magnetizations
grow at different rates, and nonthermodynamic first-order
transitions (domain flips) are energetically favorable, as
shown in Ref. 10; the state which minimizes the free ener-

gy at high temperature does not do so at all T.
An open question is the size of the energy barriers to

these domain flips (and to the motion of domain walls); as
discussed in Sec. IV, barrier heights have so far not been
obtained in the mean-field theory of the short-range Ising
spin glass, although progress has been made in both
Monte Carlo calculations on this model and in a vector
model as described by Morgenstern and Walstedt,
respectively. Even in the thermodynamic limit though,
many of the barriers are finite (only a finite number of
spins need be flipped} and some states are nearby in con-
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figuration space (there are small domains), and so at high
temperatures it seems certain that the system can explore
many of these. states and make transitions to them on lab-
oratory time scales. At the same time the system is
nonergodic because it cannot make on the latter time
scales the large excursions (in free energy or configuration
space, or both) necessary to sample all configurations with
appreciable Boltzmann weight. The infinite-range model
also has both accessible and inaccessible states; see Ref. 14
(p. 176) and Ref. 16.

The complex behavior of spin glasses is due to the mul-
titude of local minima, to the near degeneracy of many of
the lowest, and to the broad spread in energy of the bar-
riers between them. A feature apparently new with Ref.
10 is that the lowest-energy state at one temperature is not
necessarily (and probably not ever in the thermodynamic
limit) the continuation of the lowest-energy states at near-
by temperatures, and so the state of lowest free energy at
one temperature evolves continuously into what is a
domain state at others. The system must make domain-
flip transitions (which become progressively more diffi-
cult at lower temperatures) to get to the lowest state in
even a restricted region of configuration space. This pro-
cess may be responsible in part for the long equilibration
times found in the Monte Carlo work.

The domain picture developed in Ref. 10 suggests a
continuum of these nonthermodynamic first-order
(domain-flip) transitions in the thermodynamic limit, with
the result that the temperature axis is a critical line
(though perhaps not extending down to T =0); a similar
result is obtained in the infinite-range version of the
model (see Ref. 17 and pp. 232 and 242 of Ref. 14). The
same behavior should carry over to nonzero magnetic
field (for not too large, field), so that a critical area (where
the thermodynamic functions are nonanalytic at each
point) is expected in the magnetic-field —temperature
plane. The axial next-nearest-neighbor Ising (ANNNI)
model shows similar behavior, as pointed out in Ref. 10,
but the second-order and first-order transitions are ther-
modynamic in the ANNNI model; other similarities be-
tween the two models were pointed out in Ref. 18. There
is related work on the random-field Ising model. '9

The article is organized as follows.
Clusters of spins have long been recognized as impor-

tant in spin glasses. In Sec. II I cite some experimental
articles, and also define the terms "Anderson cluster" and
"domain. "

In Sec. III I review the Edwards-Anderson model and
the mean-field approximation. In Sec. IV I discuss the
solution of the mean-field equations.

In Ref. 10 it was shown that the ordered solutions of
the mean-field equations for the short-range model have a
tree (hierarchical) structure; such structure had been ar-
gued previously for the infinite-range version. In Sec. V
I discuss the tree structure in the short-range model,
where its origin is transparent; this structure is found
despite violation of the condition qi &qz ——qq obtained
in the infinite-range version.

In Sec. VI I show how the Anderson clusters form at
the mean-field onset of ordering and how they develop
with decreasing temperature.

II. CLUSTERS

In the first part of this section I explain what Anderson
clusters are not; in the second part I explain what they
are, and identify them (as did Anderson' ) with the clus-
ters inferred from experiment. The discussion of other
uses of the term cluster differentiates them from the use
here.

(1) Experimental results on spin glasses (see, for exam-
ple, the articles by Mydosh and Wenger in Ref. 8) are
sometimes interpreted ' in terms of giant clusters of spins,
along the lines of theories used to explain the magnetic
properties of inhomogeneous systems such as rocks. Un-
fortunately, these interpretations are sometimes taken
literally; the recognition that spin glasses behave as if they
are composed of clusters is important, although it is not
'in itself an explanation of spin glasses, but "spin glasses
exhibit rock magnetism" seems excessive. Both the ori-
gin of the assumed superparamagnetic clusters and the
reason for their rigidity are unclear in these interpreta-
tions; while chemical clustering no doubt occurs in some
systems, such a mechanism fails in several respects, as dis-
cussed by Binder (who also discusses the weaknesses of
the paramagnetic cluster interpretation).

(2) Smith defined a cluster as "a group of spins each
of which is coupled to at least one other member of the
group by an exchange bond whose magnitude is greater
than thermal energy, and is thus not coupled to any spin
outside the group", the other spins are called loose spins
"which arise by a fortuitous cancellation of internal fields
from different neighbor spins, and are responsible for
most of the low-temperature and transport properties. "
Smith identified the spin-glass temperature as the tem-
perature at which the bonds with magnitude greater than
kri T form an infinite cluster; that is, Smith suggested that
the spin-glass transition is a bond-percolation transition.
Smith's argument omits two important physical effects,
Anderson localization and frustration. In the first part of
Ref. 24, Binder used the term cluster in inuch the same
sense as Smith.

(3) Soukoulis and Levin proposed and analyzed a
model with regions ("clusters" ) of enhanced exchange in-
teraction with smaller (but not necessarily small) interac-
tions between clusters. Intracluster interactions were ac-
counted for—the spins in the clusters were not assumed
rigid. This model might be appropriate for chemical clus-
ters, but is not necessary to explain the clusters deduced
from experiment.

(4) Binder recognized the existence of another kind of
cluster; starting with a random configuration of spins at
T =0, he "annealed" it with the Monte Carlo algorithm,
and then warmed the system to finite temperature. The
spins which changed sign on warming formed groups (see
Fig. 12 of Ref. 24) which look very much like domains
(defined below); the two are certainly closely related,
despite the different definitions. The identification is
clouded, however, because the two-dimensional systems of
Ref. 24 have no finite-temperature phase transition. Simi-
lar "clusters" have been found by Palmer and in a Monte
Carlo study of the Mattis-Ising spin glass. Binder' s
clusters are not Anderson clusters; his Fig. 13 compares
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the size distributions of percolation clusters and entities
similar to what I call domains.

(5) In a study of the two-dimensional model, Kinzel
used the term to describe groups of spins which had not
changed sign after a given number of Monte Carlo steps
at fixed temperature. The spins in the Anderson clusters
discussed below probably also relax slowly, but are dis-
tributed differently (compare Fig. 3 of Ref. 28 with the
figures below); neither are Kinzel's clusters to be inter-
preted as domains (compare Kinzel s Fig. 3 with Fig. 3 of
Ref. 10).

Studies similar to those of Binder and Kinzel, but
on three-dimensional systems, would be of interest, partic-
ularly if combined with mean-field calculations on the
same systems.

(6) In Ref. 29 (and on p. 252 of Ref. 14) a cluster is a
group of spins of volume f . These "clusters" are similar
to what I call domains, but not identical; g is only the
minimum domain dimension, and domains can have
volume larger than g". They are not Anderson clusters
cut off to include only sites with absolute magnetizations

~
s;

~

greater than some value; because of the exponential
decay of the

~
s; ~, this cutoff gives entities of volume

proportional to [in(const/g) ]".
(7) Finally, there are what I call Anderson clusters.

These are found in mean-field theories' ' of disordered
systems and are closely related to Anderson localization;
the eigenvector corresponding to the largest eigenvalue of
the J;J matrix is localized. In agreement with Anderson
(Ref. 14, p. 217), it is proposed here that these "Anderson
clusters" are the clusters postulated in Ref. 21.

In mean-field theory, the initial cluster forms in the re-
gion where in some vague sense the bond configuration is
most favorable, where the frustration is least severe. At
lower temperatures, other clusters form independently,
each at its own ordering temperature, in regions where the
frustration is not severe. Still other clusters can be forced
to order by nearby clusters. The figures of Sec. VI suggest
the following.

Definition In mean-field . theory, an Anderson cluster is
a group of spins with absolute magnetizations

~

s;
~

sharp-
ly peaked at the center and decaying approximately ex-
ponentially with decay constant independent of tempera-
ture and roughly equal to —,

'
per site.

A typical such cluster contains 20 to 30 sites at which
the

~
s;

~

are larger than half the maximum
~

s;
~

. A sin-

gle state is sufficient to recognize a cluster, but in mean-
field theory clusters are distinguishable only near the
(mean-field) onset of ordering.

A cluster cannot be defined so simply outside mean-
field theory. One expects there to be regions where the
spins are strongly (but inhomogeneously) correlated with
each other, and weakly correlated with spins outside each
region.

Clusters differ from domains. A domain is a group of
spins, connected by nearest-neighbor bonds, whose mag-
netizations have different signs in two states compared at
the same temperature. This definition is imperfect (be-
cause of frustration, there is some straggling —see Fig. 3
of Ref. 10) but may be the best possible in such systems.
Domains are recognized easily by multiplying the s; at

each site; using a reference state to identify special spins
apparently originated with Binder, but the idea also oc-
curred to Bak. Domains have been seen in one Monte
Carlo study, and likely in another [see point (4) above].
In mean-field theory a test can be made that these are
domains in the usual sense of the term; a comparison of
the magnitudes of the s; as well as their signs is given in
Sec. VI. The requirement that the two states be compared
at the same temperature arises because the magnetizations
in a given state rearrange with temperature, as shown in
Sec. VI; they change nonuniformly with temperature and
so the internal field acting on a given spin can go through
zero, several times in some cases.

The Anderson clusters form quite naturally, even in the
extreme model of exchange constants +J between nearest
neighbors and zero otherwise. There is no need to put in
by hand regions of enhanced exchange constant in order
to explain the cluster interpretation of the experimental
results. .While there are undoubtedly regions in laboratory
spin glasses where there are clusters as defined by Smith
and Soukoulis and Levin, the nearest-neighbor, +J
model shows that such clusters are not necessary to ex-
plain the clusters deduced in Ref. 21. These other ex-
planations for the clusters draw attention from the main
point, that sufficient disorder is the only requirement for
the formation of the clusters; even the frustration is un-
necessary.

Anderson clusters differ substantially from Smith's
clusters, and the analogy with a percolation transition
differs correspondingly. The analogy (which appears to
contribute little to the understanding of spin glasses) is to
a correlated site-percolation problem ' (preferential addi-
tion of new sites near existing ones), rather than to a stan-
dard bond-percolation problem.

Identification of Anderson clusters in Monte Carlo cal-
culations may be difficult; mean-field calculations on the
same systems should be helpful in this respect. In mean-
field theory Anderson clusters are easily identified in only
a narrow temperature region; they overlap strongly at
temperatures well below the mean-field onset of ordering.
At these latter temperatures it is domains rather than
clusters which are important. ' In the following, cluster
is to be interpreted as Anderson cluster.

III. EDWARDS-ANDERSON MODEL
AND MEAN-FIELD THEORY

T'he suggestion that the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction is important in spin glasses
seems due to Marshall; the statistical mechanics of such
systems was also studied by Klein and Brout. The
Edwards-Anderson model consists of spins occupying
every site of a lattice; the exchange constants have ran-
dom sign to take into account the oscillatory nature of the
RKKY interaction. Considerable differences * are
found between Ising and vector systems; in the latter case,
uniaxial and Dzyaloshinsky-Moriya terms are usually
included to give the anisotropy (automatic in Ising sys-
tems) believed necessary for irreversibility.

An interesting alternative to the Edwards-Anderson
model has been provided by Walker and Walstedt, who
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the magnetic field H is taken to be zero in the following,
but the results are expected to be qualitatively correct for
H&0 as long as

~

H
~

is not too large. Unfortunately,
Eq. (1) can be solved only numerically for general values
of the temperature.

Equation (1) falsely predicts a second-order transition
from the paramagnetic state (all s; =0) to an ordered state
at the temperature T' where the determinant of the linear-
ized equations vanishes. ' Whether a localized solution is
obtained also in treatments which go beyond this naive
mean-field theory is uncertain (see Ref. 14, p. 241); there
are serious numerical difficulties with such improved
theories.

Given a solution of the mean-field equations, one can
calculate its free energy from

1F= —, g Jjs;sj
r

—p 'gin. 2cosh —,'p g J,jsj+H
. J

(2)

The paramagnetic state is stable for T & T' and unstable
for T & T', its free energy (for H =0) is F0 ———XT ln2.

IV. SOLUTIONS OF THE MEAN-FIELD
EQUATIONS

I have solved Eq. (1) for three bond configurations, two
of 10 spins and one of 20 spins, in which the mean-field
onset of ordering occurs at temperatures T'=4. 52, 4.53,
and 4.55; the large discrepancy with the thermodynamic
transition temperature T, =1.2+0. 1 found in Refs. 2—4
shows that thermal fluctuations are strong (as is already

treated both Ising and vector spins with RKKY interac-
tions on a diluted face-centered-cubic lattice; they found
several extrema of the energy in a system of vector spins
without finding irreversibility. Monte Carlo studies of
the model have also been made.

The present article is limited to the Edwards-Anderson
model with Ising spins on a simple-cubic lattice with
periodic boundary conditions and nearest-neighbor in-
teractions randomly +1 with equal probability, as in the
recent Monte Carlo work. Gaussian bonds are more
realistic and (unlike the +1 choice) do not yield ambigu-
ous spins at low temperature. The model is treated in the
naive mean-field approximation which, though inadequate
for the infinite-range version, ' is generally accepted for
the short-range version.

The defects of the mean-field approximation are well
known and are listed in Ref. 10 but bear repeating here.
It gives false transitions in finite systems, false transitions
in systems of dimensionality lower than critical, usually
poor numbers for the critical exponents, frequently a poor
value for the transition temperature, and occasionally the
wrong order of the transition; its virtues are its simplicity
and the insight which it provides.

In naive mean-field theory, extrema of the free energy
are obtained when the thermally averaged magnetization
s; at the ith site satisfies (p= 1/T)

si ——tanh Pg J,qsq+PH

well known), but part of the difference arises because T' is
not a transition temperature. Only the temperature region
near T' was investigated.

Solutions to Eq. (1) were found by inserting an initial
set of s; into the right-hand sides to generate a new set
and repeating to convergence; to accelerate convergence,
new values were used as soon as they were available. This
scheme is adequate for the above naive mean-field theory,
but problems arise in more sophisticated theories.
Under both the accelerated and unaccelerated iteration
schemes, the physically unstable solutions (maxima and
saddle points of the free energy) are, unfortunately, nu-
merically unstable as well; means other than simple
iteration of Eq. (1) are necessary to estimate the energy
barriers between the metastable solutions of Eq. (1).

The convergence criterion was

max s; —tanh Pg Jjsj (3)
J

. & ~~rms ~

1 2
&m S= ~S

' 1/2

(4)

a convergence parameter e of 10 was usually sufficient,
but much smaller values were required near T'. Typical-
ly, several hundred passes through the equations were re-
quired for the 10 systems and several thousand for the
20 system. These numbers increased as T' was ap-
proached; here convergence was accelerated greatly by
scaling the magnetizations by a factor determined varia-
tionally.

Solution branches were generated by starting with spins
randomly +1, or randomly +0.3, or all 1, or all 0 but one,
etc., and iterating to convergence; other branches were
found as the result of decay of known states. Once a solu-
tion was found it could be tracked to other temperatures
by using the current s; as starting values for the next tem-
perature. Various updating strategies were used: sequen-
tial, completely random, and restricted random (each site
updated once and only once in each pass through the
equations, in random order).

As in Ref. 9, solutions decayed only on warming (with
the two exceptions noted below). The decay of a state is
interpreted as due to the vanishing of its local minimum
in the free-energy surface.

A second rule was followed (in all but one case); decays
occurred to states of lower free energy. This is expected
on physical grounds, and therefore reinforces the domain
picture, for there is no obvious mathematical reason why
all decays should be downward.

A single state, curious for a third reason (it exists for
only the narrow temperature interval b, T & 0.03), violated
both these rules.

Only one case was found in which a relative minimum
evolved into a relative maximum with decreasing tem-
perature (a pitchfork bifurcation, as at the mean-field on-
set of ordering).

In Ref. 10 I found a rapid decrease in the number of
solutions of the mean-field equations with increasing tem-
perature; this decrease was attributed' to the increase of
the correlation length g with temperature. The minimum
linear dimension of a domain is —g and hence all
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domains eventually become unstable as the temperature
increases, the smallest going first. That there exists a
temperature T~ above which only one ordered solution of
the mean-field equations is found was attributed' to the
increase of g with T and to the finite volume ( L ) of the
systems; no domain state can exist for g) L.

The success of the interpretations of the preceding
paragraph supports the existence of an underlying "shat-
tered" or "staggered" order parameter suggested on other
grounds in Refs. 39 and 4; see, however, Ref. 16.
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V. TREE STRUCTURE AND UI.TRAMETRICITY

q~tI =~+S; Sr
(a) (P) (5)

etc. , where ~ is a normalization constant. If the overlaps
are ordered so that q~ & q2 &q3, the ultrametricity condi-
tion is

The solutions of the mean-field equations for the
short-range model have a tree structure, as noted previous-
ly see Figs. 1 and 2 of Ref. 10. The tree structure arises
because the metastable states are domain states; ' it
merely reflects the fact that many states decay to the same
state. A metastable state can contain many domains, ei-
ther separated from each other or adjacent, with domains
within domains, large domains composed of smaller ones,
etc. When a domain becomes unstable, it can either van-
ish or (probably less frequently) add a domain or two at
its periphery to form a larger domain.

Ultrametricity: Suppose that one has three states a,
P, and y with overlap parameters q ft, qtrz, and qz ob-
tained from

I I I I ! I I I ! I I I I I I I I I I

5 10 15 20
k

FIG. 1. Magnetizations s;JI, in the plane i =3 (which contains
the site with the largest absolute magnetization) for the initial
ordered state at a temperature slightly below ( T' —T=10 T')
the mean-field onset of ordering. The integer n at a given site, is
the integer part of the, absolute magnetization as a percentage of
the largest absolute magnetization [see Eq. (7)], except that
n =99 is to be read as n = 100; bars denote negativIe values. For
example, n; =66 and 7 mean 0.66 & s; &0.67 and
—0.08 & s; & —0.07, respectively.

configurations in the short-range model.
Early work of Krey (see his Fig. 3) should be cited in

a discussion of the tree structure, and an article of Pal-
mer as well. Krey's picture, "a continuous sequence of
bifurcations" (a local minimum of the free energy
changes with decreasing temperature into a local max-
imum with two subsidiary local minima), is not correct in
detail, ' but it does anticipate several later developments.

qi &q2=q3 ' (6)
VI. ANDERSON CLUSTERS

this last result, derived in the infinite-range model after
averaging over bond configurations, implies that the space
of states is ultrametric (that it has a hierarchical or tree
structure ). Numerical tests of Eq. (6) have been made
for both the short-range ' and infinite-range models,
with inconclusive results. The physical origin of the tree
structure in the infinite-range model is obscure at present,
in contrast to the short-range model where it is transpar-
ent.

Because the rnetastable states are domain states ' in
the short-range model, it is easily seen that Eq. (6) is
violated. At zero temperature (where the overlap par'arne-

ter is most simply interpreted —note, however, that the +J
model'is ill behaved at T =0) and if ~ is taken to equal
1, the overlap between two states is X minus twice the
number of spins inverted from one state to the other. The
distribution of overlaps reflects the distribution of domain
sizes and the extent to which large domains possess natu-
ral fracture lines which can split them into smaller
domains; a study of the two-dimensional, short-range,
Gaussian-bond model at T =0 shows such lines and other
interesting features. Despite the violation of Eq. (6) in the
short-range model, the states have a tree structure. ' To
repeat, in Ref. 10 (and here) no bond averaging is done;
the tree structure applies to individual sets of bond
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FIG. 2. s;Jk.. i =2, initial ordered state, T=4.53.

The comments are brief here; the results have been dis-
cussed both above and in Ref. 10.

Figures 1 to 6 show selected planes of the 20 system
(T'-4.55) at various temperatures. The number n; at
site i is
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FIG. 3. s;Jk. i =3, initial ordered state, T=4.53. FIG. 6. s;Jk. i =3, domain state, T =4.52. The heavy lines
separate sites whose magnetizations have the same sign in the
initial ordered state and the domain state from those which have
different signs in the two states.
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where int is the integer part and S=max; I I
s;

I I is the
maximum absolute magnetization in the state at the tem-
perature. n; =100 is shown as n; =99 (for lack of space),
while bars over the n; denote negative values.

Figure 1 shows the magnetizations in a plane (i =3)
containing the site with the maximum

I
s; I, at a tempera-

ture T-T' —5X10
Figures 2 to 4 show the same plane (i =3) and the two

neighboring planes at the lower temperature T =4.53.
Comparison of Figs. 1 and 3 shows some growth of the
original cluster at the edges. Note the two sites at k =9
and 10,j =20 in Fig. 3.

Figure 5 shows the plane i =3 at the slightly lower

FIG. 4. s;Jk. i =4, initial ordered state, T=4.53.
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FIG. 5. s;Jk. i =3, initial ordered state, T=4.52.

FIG. 7. Absolute values of the magnetizations along the line
i =3, j =10 for the initial ordered state (left-hand side) and the
domain state (right-hand side) at three temperatures; the domain
state exists only for T (4.528. Sites at which the magnetization
is positive (negative) are shown as open (solid) circles. For clari-
ty, lines connect the points.
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FIG. 8. Absolute values of the magnetizations along the line
i =3, j =20 for four temperatures. For further explanation, see
the caption for Fig. 7.

temperature 4.52. Another strong cluster (with maximum

~
s,jk ~

also in the plane i =3) has formed and several
weak clusters are apparently being forced to order by the
two strong ones. Two other strong but connected clusters
(maximum

I s;Ji, ~

=49 and 34 on the same scale) are cen-
tered in the plane i =6.

Figures 1 through 5 apply to the initial ordered state
which is the only ordered state for T & 4.528. At
T =4.52, however, there is another state (called the
domain state here and in the figures). Apparently no oth-
er ordered state exists at this temperature; ten random
starts at T =4.52 gave only the two. Figure 6 shows the

O.OI 5 —O. IO

0.0 I 0
E-0.05 ~

0.005

0
4.40 4.45 4.50 4.55

FICT. 9. Free energy per spin (relative to the paramagnetic
state) and the root-mean-square magnetization s, [Eq. (4)] for
the three systems (numbered 1, 2, and 3) as functions of tem-
perature T. For system 1 (%=103},only the initial ordered
state exists in the temperature interval shown. For system 2
(also %=10) a domain state exists for T(4.43 but is not
shown. For system 3 (%=20') the free energy and s, are plot-
ted for both the initial ordered state and the domain state; the
latter exists only below T=4.528 and is the only domain state at
T=4.52. At least 12 more domain states exist at T=4.50, and
many, many more at lower temperatures.

magnetizations in the domain state; comparison of Figs. 5
and 6 shows that the two states are domain states relative
to each other.

Figure 7 is a plot of
~ s;Jk I, the magnitude of the mag-

netization, as a function of the index k for i =3, j=10
(along a line through the center of the original cluster) for
three temperatures. From the highest temperature to
T =4.5516, the magnetizations increase by virtually the
same factor at each site. The larger

I
s;

~

scale from
T =4.5516 to T =4.52 as well, but there are rearrange-
ments at some of the other sites. A plot of the absolute
magnetizations in the domain state (which exists only for
T (4.528) is given on the right-hand side.

Figure 8 is again a plot of the absolute magnetization as
a function of the index k, here for i =3 and j =20
(through the center of the second cluster). Again the
spins change by almost the same uniform factor from the
highest temperature to T =4.5516, and the same is
roughly correct from T =4.5516 to T =4.53. From
T=4.53 to 4.52, however, there are major changes in
both the magnitudes and signs of the s;Jk at many of the
sites. The right-hand part of the figure shows the mag-
netizations in the domain state at T =4.52; the signs are,
perversely, in most cases identical to those at the same
sites in the initial ordered state at T =4.53.

At T=4.50, four or five more strong clusters have ap-
peared; there are at least 14 states with energies (per spin,
relative to the paramagnetic state) ranging from
—6.7 X 10 to —5.8)& 10, roughly uniformly dis-
tributed. The distribution of energies beeotnes centrally
peaked at lower temperatures.

Figure 9 shows the free energies (per site, relative to the
paramagnetic state) and the root-mean-square magnetiza-
tions [Eq. (4)] of the three systems as functions of T near
T'. The clusters cause unusual behavior; the reduced free
energy is proportional to ( T' T) near T',—but the coeffi-
cient behaves roughly as 1/X The root-mean-square
magnetization is roughly linear in T until it turns over
and vanishes as (T' T)'; the tu—rnover is sharper and
closer to T' for the larger system. The tails in the free en-
ergy and s~, are due to the finite size of the initial clus-
ters and will extend to higher temperatures (and decrease
in magnitude) with increasing size of the system; in the
+J model used here, the tails will extend ultimately to
T'=6 (the mean-field transition temperature of the model
with all nearest-neighbor bonds =1), since in an infinitely
large system there will exist arbitrarily large unfrustrated
regions. The approach to the limit is expected to be very
slow, however, as indicated also by Fig. 9. In the
Gaussian-bond model, the tails will extend ultimately to
T'= ~, but much more slowly than in the +J model; T'
will likely have a reasonable value even in systems of mac-
roscopic size.
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