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Theory of coupled phason and sound-wave normal modes in the incommensurate phase of quartz

M. B. Walker and R. J. Cxooding
Department of Physics and Scarborough College, University of Toronto, Toronto, Ontario, Canada M5S 137

(Received 18 June 1985)

A phenomenological theory for coupled phasons and sound waves in the presence of viscous
damping of the relative phase motion is developed for the incommensurate phase of quartz. For
weak damping, five propagating normal modes occur, whereas for strong damping we find propaga-
ting nearly pure sound waves, fast relaxing nearly pure relative phase motion, and diffusive coupled
sound-wave and relative phase motion. Technical points of interest are the introduction of a relative
phase-displacement field, and the discussion of the rotational invariance of the free energy.

I. INTRODUCTION

It has been shown by Walker' that the long-wavelength
Overhauser phason excitations characteristic of an in-
commensurate phase are coupled to the long-wavelength
sound-wave modes, and that both sound waves and
phasons must be treated together in a coherent frame-
work. In studies by Golovko and Levanyuk and Zeyher
and Finger, which have ignored this coupling, it was
shown that the nature of the phason is strongly affected
by viscous damping forces which cause the mode to have
a diffusive character at long wavelengths. Thus, it is evi-
dent that a study of the low-frequency excitations of in-
commensurate structures should include both the coupling
of phasons to sound waves as well as viscous damping
forces. (See Note added in proof. ) This article develops
such a theoretical model for the coupled sound-
wave —phason systems, in the incommensurate phase of
quartz. Another example of a coherent treatment of
sound waves and phasons (which, however, neglects
viscous damping forces) is provided in an article by Axe
and Bak. Currat has reviewed both experimental and
theoretical studies of phasons.

In the incommensurate phase of quartz, the phason re-
sults from a sliding motion of a spatially modulated opti-
cal mode. In formulating the problem of coupled sound-
wave and phason motions, it is important to use coordi-
nates which describe the motion of the Inodulation wave
relative to that of the underlying crystal lattice, and not
its motion relative to some fixed laboratory frame of
reference. When this is done the kinetic energy separates
into a sum of contributions representing a contribution
from the motion of the underlying lattice and the modu-
lated mode together, and one from their relative motion.
Furthermore, it is the relative motion which is subjected
to a viscous damping proportional to its velocity. The ap-
propriate coordinate, which will be called the relative
phase displacement field U, is introduced in Sec. II. Since
U lies in the basal plane it has two components and gives
rise to two vibrational modes. Thus there are a total, of
five coupled phason —sound-wave modes in the absence of
damping.

The combined effects of phason to sound-wave cou-
pling and viscous relaxation of phasons will'be shown to
have some interesting consequences. For example, in the

case of coupling of a single phason and a single sound
wave, there is, at sufficiently low frequencies, only a sin-
gle propagating mode which is approximately pure
sound-wave motion. On the other hand, at high frequen-
cies there is a relative motion of the incommensurate
domain structure and the underlying crystal and there are
propagating modes corresponding to both a phason and a
sound wave; the elastic interaction between the sound
wave and phason pushes their frequencies apart, however,
and the low-frequency sound velocity thus lies in between
the two velocities appropriate for the high-frequency re-
gion.

Another point of interest is that the high-frequency
propagating modes in the incommensurate phase of
quartz for the case where both the wave vector and the
polarizations lie in the basal plane, are in general neither
purely longitudinal nor purely transverse. This contrasts
with the usual situation in crystals with hexagonal sym-
metry where sound waves propagating in the basal plane
are either longitudinal or transverse.

The incommensurate phase of quartz is essentially a tri-
angular Dauphine-twin domain structure. The Dauphine
twins are the two degenerate ground states of the low-
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FIG. 1. Basal-plane projection of the positions of the silicon
ions in the signer-Seitz cell of the quartz structures. The solid
circles give the silicon positions in the P phase, whereas the ar-
rows give the directions of the silicon displacements in a transi-
tion to the a phase. The direction of the x coordinate axis of
Fig. 2 is also defined here.
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temperature a phase of quartz. Figure 1 illustrates the
displacements of the silicon ions in the a phase relative to
their high-temperature P-phase positions. The order pa-
rameter iI describing the phase transitions from the p to
the incommensurate and a phases can be taken to have a
magnitude equal to the magnitude of a given silicon-ion
displacement and to be positive if the silicon-ion displace-
ments are in the direction shown, and negative if these
displacements are in the opposite direction. The two pos-
sible signs of g correspond to the two Dauphine twins. In
electron microscope images, one of the Dauphine twins is
black and the other is white, thus allowing electron micro-
scope observations of Dauphine-twin domain configura-
tions. ' '

The incommensurate phase of quartz is shown
schematically in Fig. 2 (e.g., see Walker" ). There are two
degenerate possibilities for the ground state corresponding
to different orientations of the triangles, one shown in the
upper half of Fig. 2 and the other shown in the lower half.
The incommensurate phase has been observed to have a
macrodomain structure, the two types of macrodomains
corresponding to the two possible orientations of the tri-
angles. In this article we assume that the crystal is com-
posed of a single large macrodomain. It is perhaps possi-
ble to prepare such a sample by cooling through the P
phase to the incommensurate-phase phase transition in an
electric field directed along the c axis and thus making
use of the ferroelectric properties' ' of the macro-
domains.

Now note that, since black regions are converted to
white regions by a rotation of 2m. /6, the c axis is a sixfold
axis of symmetry of the incommensurate phase. This is
the only point-group symmetry element of the incom-
mensurate phase. It will be shown below that the free en-
ergy describing the linear long-wavelength elastic proper-
ties of the coupled phasons and sound waves has a higher
symmetry than the incommensurate phase itself, and these
additional symmetries will be used to help simplify the
study of the normal modes.

II. THE RELATIVE PHASE-DISPLACEMENT FIELD

The incommensurate phase can be described by the or-
der parameter having the form

3

g(r)=A g sin[Q; (r—U')],

where the Q; are three wave vectors lying in the basal
plane and making angles of 120' relative ta one another.
For the incommensurate phase of the upper half of Fig. 2,
each of the three Q s is perpendicular to one of the three
domain-wall orientations, and positive q corresponds to
say black regions whereas negative g corresponds to white
regions. The expression (1) with U'=0 was obtained by
Aslanyan et al. '

A nonzero value of the vector U' in Eq. (1) corresponds
to a displacement of the incommensurate domain struc-
ture by U' relative to that described by Eq. (1) with
U'=0. U' will be assumed to lie in the basal plane; a
component of U' normal to the basal plane has no physi-
cal significance as a result of its being normal to the Q; in
Eq. (1). The ground state of the incommensurate phase
has a continuous degeneracy resulting from the fact that
the free energy is independent of U'. Changing the value
of U' in Eq. (1) is equivalent to a certain change of the
phases of the sine functions in Eq. (1) and U' will be
called the phase-displacement field.

The elastic properties of the crystal are described in
terms of the usual elastic displacement field u. A spatial-
ly uniform u corresponds to a displacement of each atom
in the crystal by the same vector displacement u. If one
starts with a crystal in which- the order parameter is given
by Eq. (1) with U'=0 and then gives each atom in the
crystal a basal-plane displacement ub, the new order pa-
rameter will be of the form of Eq. (1) but with U'=ub.
Therefore, we write U' ub =—U, —where ub is the basal-
plane component of u, and U is called the relative phase-
displacement field and represents the translation of the in-
commensurate domain structure relative to points fixed in
the crystal lattice (these points fixed in the lattice may be
thought of as the centers of mass of crystallographic unit
cells, such as the one illustrated in Fig. 1).

The free energy will depend on the spatial gradients of
the displacement fields u and U, and in order to establish
the rotational invariance of the free energy the rotational
significance of these gradients must be established. The
rotational significance of

(2)

where

FIG. 2. Basal-plane projection of the incommensurate
domain structure of quartz shows the two differently oriented
macrodomains, one in the top half of the figure, and the other in
the bottom half.

i)(r) =A g sin[(Q; +5Q; ) r], (4)

Q~ p=
Bxp

is well known (e.g., a spatially uniform r corresponds to
a rotation of the crystal about the positive y axis by an an-
gle r~). The rotations associated with phase strains are
not quite analogous since the phase-displacement field has
no z component and it is impossible to antisymmetrize
U~, and Uy z However, note that if U„', is spatially con-
stant, then U„' = U„',z plus an irrelevant constant. Equa-
tion (2) for g(r) with U'=e„U„',z can be rewritten in the
form
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where

5Q;=5QXQ;, &Q=&y Uz, z . (5)

III. THE FREE ENERGY AND THE EQUATIONS
OF MOTION

Thus a constant U„', corresponds to a rotation of the in-
commensurate domain structure about the positive y axis
by an angle U„', . These and similar considerations lead
us to define the relative rotational components of the
strains by

&~= Ux, z —&~

Ryx = 2i ( Uy', x Ux, y ) yyx

The free energy per unit volume is expanded to second
order in the displacement gradients, giving

1

2 iajI3 ia jp~

where the summation convention is used, indices i,j take
values 1,2,3,4,5 while a,P=x,y, z, and the five-component
displacement field u; is defined by

(u i, u2, u3pu4yu5 ):—(uzi Uz&uyp Uyiuz)

These quantities describe rotations of the incommensurate
domain structure relative to the underlying crystal lattice
about the positive y, z, and x axes, respectively.

Later on, the notation
1

ea p 2 (ua, p+up, a)i Exy T(Uxy+ Uyx)

E~ = U„x~ Eyy
——Uyy

will also be used.

The free energy F is constructed in such a way as to be in-
variant with respect to sixfold rotations about the c axis
(the only point-group symmetry element of the incom-
mensurate phase). Furthermore, although the free energy
must be invariant with respect to simultaneous identical
rotations of the incommensurate domain structure and the
underlying crystal lattice, it must depend on the relative
rotational variables defined in Eq. (6).

Thus, in terms of the variables defined in Eqs. (6) and
(7),

F= Ai(e +e~) +Az[(e~ —ey„) +4e y]z+A3e +~A4e~(e~+e~)+A5(e +~ey )+zA6(E~+Eyy)

+A7[(E~ Eyy) +4E—„y]+As(E +Eyy)(e +e. yy)+A9[(E„„Eyy)(e~ ——eyy)+4E„ye„y]

+Aic[(e eyy)E~ —(E Eyy)e~]—+A»e—(E +E~)+A zRiy+A, (R3+R~)+A&4(E +Eyy)Ry„

+A i5 (ezz +eyy )Ryz +A i6ezzRyz +A i7 ( ezxRzz eyzRzy ) +A ]s(ezzRzy +eyzRzz ) (9)

2 Qptur' (10)

where pi ——p3
——p5 ——p and pz ——p4

——p*. Here p is the mass
per unit volume, and p* is an effective mass per unit
volume associated with relative phase displacements.
That p2

——p4 follows from the sixfold symmetry of the in-
commensurate phase. Note that the kinetic energy has
this simple form because we are using u and the relative
displacement field U as independent variables. The kinet-
ic energy in terms of u and U' 1ooks quite different and
can be obtained by substituting U=U' —ub in Eq. (10).

An immediately striking feature of Eq. (9) is the rela-
tively large number of elastic constants (i.e., eighteen) re-
quired to describe this incommensurate phase. Another
feature of Eq. (9) is that, because we have restricted our-
selves to terms which are quadratic functions of the dis-
placement gradients, it exhibits a higher point-group sym-
metry than the incommensurate phase itself. For exam-
ple, the free energy of Eq. (9) is invariant not only with
respect to c-axis rotations of 2m. /6, but to arbitrary c-axis
rotations. As a consequence, the normal-mode frequen-
cies will be independent of the orientation of the basal-
plane component of the wave vector. The other important
symmetry property of the free energy of Eq. (9) is its in-
variance with respect to a basal-plane reflection (i.e., the
transformation z —+ —z).

The kinetic energy per unit volume has the form

The equations of motion are

a aT a aF
at au. ax au;

a%

au.

where %' is a dissipation function which will be taken
equal to zero for the moment. The normal-mode solu-
tions of Eq. (11) have the form

u; (r, t) =u;0 exp[i (q.r —cot) ] . (12)

The normal-mode frequencies are determined by the
eigenvalue equation

co w;=q d;i(q)wj. , (13)

where w; =(p;)'i u;, q is the magnitude of q, and q is a
unit vector in the direction of q. The matrix d,z is given
by

dtj. (q) =(p;pJ )
' g c;aJpqaqp,

a, P
(14)

ip'aU aU=2. at at
(15)

where i and j are not summed over. The matrix d;~ is a
real symmetric 5 X 5 matrix which can be diagonalized by
an orthogonal transformation to give the frequencies of
the five normal modes for a given q.

The dissipation function is chosen to be
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If the elastic free energy Ii is set equal to zero in Eq. (11),
the equation of motion for the relative phase-displacement
field is

dU 1dU
7 dr

(16)

Thus, the dissipation function 4 has been chosen so as to
give a viscous dainping of the motion of the incommensu-
rate domain structure relative to that of the underlying
crystal lattice. We shall be particularly interested in the
effects of damping at very low frequencies, and therefore
neglect the conventional' contributions to the dissipation
function quadratic in the time derivative of the displace-
ment gradients.

l
Q) =+U+q—

2%

2 2
U+ —U

2 2
U+ —V

2 2
U —U

2 2
U+ —U

(22)

(23)

In the long-wavelength case the four frequencies are

(v+ —v )(v —v )'r
CO= +Uq —l

2U
(24)

CO= —l

2 2
U+U

U

(25)

(here v' is the order of magnitude of v+, v, or v). In
the short-wavelength case the four frequencies are

IV. NORMAL MODES FOR q PARALLEL
TO THE C AXIS Co= —r /1 (26)

If desired, the parameters in this matrix can be found in
terms of the elastic constants A3 A5 Ai3 Ai7 and His.

The variable ws ——p'~ u, is decoupled from the others.
This variable is associated with a longitudinal sound-wave
mode of velocity vi=e' . The remaining variables wi,
w 2 w 3 and w 4 are coupled to'gether and give rise to two
pairs of doubly degenerate transverse modes, the two dis-
tinct velocities being

v~ ———,
' I(a+c)+[(a c) +4(b —+d')]'~'] . (18)

If d [which is proportional to His of Eq. (9)] were equal
to zero the polarization directions u and U for a given
mode would be parallel, but since d is not, in general,
zero, this is not, in general, the case. The twofold degen-
eracy for each transverse mode results from the fact that,
given a transverse mode, a rotation of n./2 about the c
axis produces another linearly independent transverse
mode having the same frequency.

Now add the damping of the relative coordinate U to
the problem by combining Eqs. (11)—(15) and (17). The
longitudinal mode is unchanged, but the transverse-mode
frequencies are found to be given by the solutions of

(p —v+ )(p —v )+ipB(p v) =0, —
where

p =co/q, B=(qr) ', v =va .

Note that

(19)

(20)

U+ )U)U (21)

The four solutions of Eq. (19) can easily be found in the
short-wavelength or weak-damping limit v'qv. ))1 and in
the long-wavelength or strong-damping limit U'q~&&1

For q parallel to the c axis the matrix d,j can be shown
by symmetry arguments to have the form

a b 0 d 0
b c —d 0 0
0 —d a b 0 (17)
d 0 b c 0
0 0 0 0 e

In the short-wavelength case one finds modes propagating
with the same velocities as obtained in Eq. (18) in the ab-
sence of damping. In the long-wavelength case one ob-
tains a single (twofold degenerate) propagating mode with
the interesting feature that its velocity v lies in between
the velocities of the two high-frequency modes. At low
frequencies there is also a diffusive mode [Eq. (25)] and a
solution representing the rapid relaxation of the relative
coordinate U [e.g., see Eq. (16)].

An examination of the eigenvectors in the long-
wavelength limit shows that for the strongly damped
mode [Eq. (26)] w —(kvv) 8, for the propagating mode
[Eq. (24)] w —(kuz) W, and for the diffusive mode
w —W. [Here w—:p'~ u and- W=(p*)' U. ] Thus for
kU~&&1, the strongly damped mode is approximately
pure relative phase motion, the propagating mode is ap-
proximately pure sound-wave motion, and the diffusive
mode involves coupled relative phase and sound-wave
motion.

V. NORMAL MODES FOR q IN THE BASAL PLANE

Because the free energy of Eq. (8) is invariant with
respect to arbitrary rotations about the c axis, the
normal-mode frequencies are independent of the basal-
plane orientation of q. We arbitrarily take q to be in the
x direction.

Because the basal plane is a plane of reflection symme-
try of the free energy, the coordinate w5 ——v pu, is not
coupled to the remaining coordinates. This coordinate
thus yields an undamped [in the approximation of Eq.
(15)] propagating transverse mode with dispersion relation
co=+Up q.

The remaining four coordinates are all coupled to one
another and in the absence of damping give modes propa-
gating with four distinct velocities since there is no sym-
metry to cause degeneracies. It is necessary to solve a
quartic equation to obtain expressions for these frequen-
cies as a function of the elastic constants. Furthermore,
the polarization vectors- uo and Uo associated with these
modes, while lying in the basal plane, will, in general, be
neither parallel nor perpendicular to q.

There is one special somewhat artificial case for which
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analytic results for the frequencies of the modes polarized
in the basal plane can be obtained. If A ~o A &4, and A»
in Eq. (9) are negligibly small, the remaining terms in Eq.
(9) which are nonzero for q in the basal plane are invari-
ant with respect to a reflection in any plane containing the
c axis. When this additional symmetry is present, the ma-
trix d 1 has the simple block-diagonal form

a b 0 0 0
b c 0 0 0
0 0 d e 0
0 0 e f 0
0 0 0 0 g

(27)

The 2&&2 matrix in the upper left-hand corner couples
u„and U„and determines the velocities Ut+ and Ut of
two longitudinal modes. When damping is included, there
is, in the long-wavelength limit, a single propagating long-
itudinal mode with a velocity Ut =va such that Ut+
&Ut &Ut . A complete description of the frequencies of
the modes is given by Eqs. (22)—(26) of the preceding sec-
tion with U+, U, and U replaced by UI+, U~, and vI

respectively.
Similarly, the central 2X2 matrix in Eq. (27) couples

uz and U~ and determines the short-wavelength velocities
v, +,U, of two propagating transverse modes. The fre-
quencies of these modes in the presence of damping are
given by Eqs. (22) to (26) with u, +, U, =v d, and u, re-

placing U+, v, and U, respectively.
Finally, it should be emphasized that the analytical re-

sults just described for q in the basal plane are for the spe-
cial case A~a ——A~4 ——A~5 ——0. Whether or not this is a
good approximation can be determined by experimentally
finding the polarization of the modes.

displacement field u and a relative phase-displacement
field U. In the absence of damping the coupled system
has five normal modes for which the frequency varies
linearly with the magnitude of the wave vector.

For the case of q parallel to the c axis, analytical re-
sults are easily obtained. There is one longitudinal mode
(with both u and U parallel to q) and there are two dou-
bly degenerate pairs of transverse modes (with both u and
U perpendicular to q). Viscous damping of the relative
phase-displacement field U strongly affects the character
of the transverse modes at long wavelength. Whereas at
relatively short wavelengths there are two doubly degen-
erate propagating transverse modes with two distinct ve-
locities, U+ and U, at long wavelengths, there is only one
doubly degenerate propagating mode; this mode has a
velocity U such that U+ &U &U and is approximately
pure sound-wave motion. There is also a doubly degen-
erate diffusive mode which involves coupled sound-wave
and relative phase motion, and a fast relaxing mode which
is approximately pure relative phase motion.

The case of q lying in the basal plane is more difficult
to analyze analytically in that for modes polarized in the
basal plane an equation of eighth order in the frequency
must be solved in the general case, and if damping is
neglected, a quartic equation must be solved. An interest-
ing result for this case is that modes polarized in the basal
plane are, in general, neither purely longitudinal nor pure-
ly transverse, although they may be approximately so if
certain elastic constants are sufficiently small; if these
elastic constants are neglected completely, analytical re-
sults similar to the case for q parallel to the c axis are ob-
tained.

Note added in proof. Other relevant studies include
Refs. 16—18.

VI. CONCLUSIONS

A phenomenological model determining the coupled
sound-wave phason modes in the incommensurate phase
of quartz was developed in terms of the usual sound-wave
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