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Properties of Dauphine-twin domain walls in quartz and berlinite

M. B. Walker and R. J. Gooding
Department ofPhysics and Scarborough College, University of Toronto, Toronto, Ontario, Canada M5S 127

(Received 18 April 1985)

The Dauphine-twin domain walls in quartz and berlinite are shown to be ferroelectrically polar-
ized, and the relative directions of the polarization vector in the six different orientations of domain
walls are determined. Furthermore, a discontinuity in the displacement field is shown to occur at a
domain wall, and vertices at which domain walls intersect are shown to be associated with disloca-
tions in the strain field; these dislocations are characterized by their Burgers vectors.

INTRODUCTION

In attempting to elucidate the mechanism of the a-P
transition in quartz and in berlinite (A1PO4), Van Ten-
deloo et al. ' discovered the regular triangular Dauphine-
twin domain structure which is characteristic of the in-
commensurate phase of these materials and which exists
in only a very small temperature interval in between the a
and P phases (for quartz this temperature interval is ap-
proximately 1.3 K). They also observed a coarse
Dauphine-twin domain structure in the cx phase. More
detailed electron microscopy studies ' and neutron-
diffraction studies ' of these Dauphine-twin structures
have become available recently,

Theoretical interpretations of the incommensurate
phase of quartz have been given independently by As-
lanyan et al. and by Walker in terms of the same
Ginzburg-Landau —model free energy, but using different
methods of analysis. The analysis of Aslanyan et al. was
carried out in terms of the three fundamental spatial
Fourier components of an order parameter describing a
periodic domain structure, whereas Walker proceeded by
first establishing the orientational properties of the
domain walls. The domain-wall picture can be used not
only to interpret the incommensurate phase, but also to
interpret the wide variety of different domain configura-
tions which occur during the first-order commensurate-
incommensurate phase transition, and to interpret the
domain walls occurring in the coarse domain structure ob-
served in the a phase. A detailed investigation confirm-
ing the applicability of the domain-wall model to a wide
variety of situations has been given by Van Landuyt
et al.

In this article we discuss both the electric polarization
and the strains associated with the Dauphine-twin domain
walls. Dolino has reported the results of theoretical cal-
culations by M. Vallade and B. Serge, following the ap-
proach of Ref. 5, showing that the incommensurate phase
of quartz should be ferroelectric, even though both the a
and P phases are not. Here we examine the ferroelectrici-
ty of the incommensurate phase in terms of the domain-
wall picture and show that it is the domain walls them-
selves which carry the electric polarization.

This results allows a discussion not only of the electric
polarization of the incommensurate phase itself, but of

the various domain-wall defect structures which occur
during the incommensurate-to-a-phase change of phase,
and also of the residual domain walls giving rise to the
coarse Dauphine-twin structure observed in the a phase.
We also study the strains induced in quartz by the
Dauphine-twin domain walls and show that a discontinui-

ty in the displacement occurs when a domain wall is
crossed.

POLARIZATION PROPERTIES

The phase transition from the P to the a phase in
quartz is a structural phase transition as a result of which
the ions undergo displacements as shown in Fig. 1. A
similar transition occurs in berlinite. ' The order parame-
ter g for the phase transition can be taken to have a mag-
nitude equal to the magnitude of the displacement of a
given silicon ion and is positive if the displacements are in
the direction indicated, and negative if the displacements
are in the opposite direction. The so-called Dauphine-

FIG. 1. Basal-plane projection of the positions of the silicon
ions in the Wigner-Seitz cell of the quartz structures. The sohd
circles give the silicon positions in the P phase, whereas the ar-
rows give the directions of the silicon displacements in the tran-
sition to the a phase. The directions of the x, y, x', and y'
coordinate axes and the angle P are also defined by this figure.
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(b)
FICx. 2. Basal-plane projection of the silicon-ion displace-

ments in the neighborhood of a domain wall separating a Dau-
phine twin corresponding to g = +go in the upper part of the
figure from a twin corresponding to g= —go in the lower part.
The displacements of the silicon ions labeled 1 in Fig. 1 are indi-
cated by arrows in the figure and are parallel to the x axis of
Fig. 1; the displacements of the silicon ions labeled 2 and 3 in
Fig. 1 are omitted for the sake of simplicity. The solid circle la-
beled 3 is the basal-plane projection of a twofold rotation axis
of symmetry of the figure: this twofold axis is parallel to the c
axis and is contained in the domain wall (the solid line).

FIG. 3. Basal-plane projections of the three P+ domain walls
and of the three P domain walls are shown in (a) and (b),
respectively. The shaded and unshaded regions on either side of
a domain wall correspond to the Dauphine twin having g= —go
and q=+qo, respectively, and the direction of the x axis de-
fined in Fig. 1 is also shown. The macroscopic polarization as-
sociated with each domain wall will give rise to a bound surface
charge density when the domain wall terminates at a crystal sur-
face; the domain walls are thus indicated schematically by a
line of plus or minus signs indicating the relative sign of the sur-
face charge density produced by the walls.

twins, which appear as dark or bright domains in the elec-
tron micrographs, correspond to the fact that r) can be ei-
ther positive or negative.

A section of a quartz crystal containing a domain wall
between the two Dauphine twins is illustrated schemati-
cally in Fig. 2. Notice that the axis labeled A, which is
normal to the plane of the paper, is a twofold axis of sym-
metry of this crystal. Clearly, any basal-plane component
of the electric dipole moment of this crystal must vanish,
otherwise the crystal would not have the twofold symme-
try axis just mentioned. There is no symmetry which re-
quires the c-axis component of the electric dipole moment
to vanish, however, and this component of the dipole mo-
ment must therefore be nonzero in general. Since the
point-group symmetry of the a phase is D3 there can be
no spontaneous electric dipole moment of the a phase, as
is well known, and the electric dipole moment of this

I

crystal which we have been discussing must therefore be
associated with the domain wall.

There are six different orientations of domain walls in
quartz, as shown in Fig. 3. Since the three P+ domain
walls are related by threefold rotations about the c axis,
all have the same electric dipole moment per unit area
directed in the same sense. The P walls are obtained
from the P+ walls by appropriate twofold rotations about
an axis lying in the basal plane and these walls are there-
fore polarized in the opposite sense to the P+ walls.

Similar conclusions concerning the polarization of the
domain walls can also be obtained by extending the
phenomenological model to include the coupling of the
order parameter to the electric polarization. The ap-
propriate terms in the free energy per unit volume for a
description of the z component of the electric polarization
are

+Px I b (rjyyy 3rl~y )+& [r)x(rj~y+rlyyy) rly(r)~+rjxyy )]j+d (re 3rIxrjy )

+erI(r)yrj y
—rjyq —2g„g„)+fg (r) —3' y) I,2

where a subscript coordinate attached to g indicates a
derivative with respect to that coordinate (although P„,
Py, and P, are the x, y, and z components of the electric
polarization vector). Now if the total free energy is mini-
mized with respect to P„and q is assumed to be a func-
tion of the variable x' only (see Fig. I), as is appropriate
for the case of a planar domain wall, one finds

l

For a domain wall, g and g„are shown schematically in
Fig. 4; clearly, g, is nonzero unless $=2rrn/3. Con-
sidered as a function of P, this dipole moment has its
maximum magnitude for P close to (+—,

' + —,
'

n)m, which

P, =(2a) 'sin(3$(br)„„„+dq„+eral„rl„„
+fr) '9x'x'x')2 (2)

The total dipole moment of the wall per unit area is thus

p, =(2a) 'sin(3$)(d+ —,'e+f) J dx'rI„. (3)

FIG. 4. Qualitative behavior of the order parameter and the
cube of its first derivative as a function of x in the neighbor-
hood of a domain wall.
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corresponds approximately to the observed orientation of
the domain walls in quartz and berlinite. If the order pa-
rameter is sufficiently small, which will be the case at
temperatures sufficiently close to the incommensurate-to-
P-phase transition temperature, the term proportional to b
in Eq. (2) will give the largest contribution to the

I

position-dhpendent polarization, although it oscillates in
sign and. makes no contribution to the macroscopic polari-
zation of Eq. (3).

A similar analysis for the components P„and Py of the
polarization gives

F=h (P»+Py )+j [P»( fI»» rlyy ) 2Py—fj»y ]+kv1(P il»+Py II' )+lg[P»(g»»»+g»yy )+Py(g~r+gyyy )]

+m IP»[Qz( Q»» Qyy )+2riy 9»y ] Py[ Qy(9»» 9yy ) 2 i» i»y]I

for the free-energy density, and

P„=—(2h) '[jcos(2$)g„„+cosp(kgb„+lgi)„„» +my„g„„)],
P„=(2h) '[j sin(2$)ii„„—sing(kgb„+li)i)„„„+my„g„„)].

(4)

(6)

Integrating P„and P~ with respect to x' gives zero, as re-
quired by the symmetry argument given above. Thus,
nonzero P„and P~ are also produced in the wall and these
quantities oscillate in sign and average to zero. These
quantities have a nonzero divergence and produce a
nonzero bound charge density in the crystal.

4u„=

4u

2a'9o 2K —p
p K+9 '
2ago 2aqp 7++p+

p p K+p
(12)

STRAIN FIELD PROPERTIES

The lowest-order contributions to the free-energy densi-

ty which involve the strains and the coupling of the strain
to the order parameter are

F=—(e~+e~) + [(e —e~)2+4e y]

+—[(e»» —
eyy ) i)» —2e»y'riy ],

where the definition of the strain fields e,.j in terms of the
displacement field u;(i =x,y) is

e"=— + (&)
2 Bxj. Bxg

Minimizing the free energy with respect to the inhomo-
geneous displacement field and assuming that all quanti-
ties are functions of the variable x' only (see above and
Fig. 1), we find

to order e where go is the magnitude of the order param-
eter far from a domain wall. The effect of such a dis-
placement is shown for two of the walls of Fig. 3 in Fig.
5, where e is considered so small that the contribution
b, u» in (ll) can be neglected; the displacement field
discontinuities for the remaining four walls are obtained
by rotating these figures by +(2ir/3) about an axis normal
to the page. The principal effect of a domain wall (orient-
ed at an angle near those found in quartz and in berlinite)
is thus to introduce a shearing of the lattice, although
some volume change in the region of the domain wall will
also occur and will be relatively more important for larger

In quartz and berlinite, vertices at which two, four, or
six walls intersect are possible. An example of vertex at
which two walls intersect is shown in Fig. 6. A closed-
circuit C circling the vertex, as in Fig. 6, crosses each of
the walls joined to V. %hen crossing the ith wall, the dis-

K
2
—+p cos(2$ )——cos(4$ )

X
2

2
—+p sin(2$) +—sin(4$)X . X

2
(10)

where the arbitrary constants in the solution are chosen so
that u;=0 at the center of a domain wall where g=0.

Now consider a domain wall for which P=(~/2) e, —
with e small. (At low temperatures in the a phase e has
approximately the values 9' and 5' in quartz and berlinite,
respectively; e decreases in magnitude in the incommensu-
rate phase as the temperature is raised towards the
incommensurate-to-P-phase transition". ) In the approxi-
mation e «1, this wall is nearly parallel to the xz plane
and the displacement of the underlying lattice on crossing
the wall in the x' direction is

FIG. 5. Two of the domain walls of Fig. 3 are shown again
in (a) and (b), respectively. The extra-heavy solid lines represent
scratches on the (basal-plane) surface of the crystal which, in the
absence of the domain wall, would be straight lines. The shear-

ing effect of the walls on the lattice is clearly evident. The x
direction is as defined in Fig. 1.
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placement field undergoes a discontinuity b,u;, so that the
total discontinuity undergone in a complete circuit around
the vertex Vis

by ——gh. ; . (13)

Thus, the vertex V behaves like an edge dislocation
characterized by the Burgers vector bz. The regular six-
line vertices from which the triangular domain structure
of the incommensurate phase is formed [these are shown
in Figs. 3(q) and 3(r) of Ref. 6] are special cases for which
b~ ——0, but many types of vertices exist which, like that of
Fig. 6, have b~ not equal to zero. The total Burgers vec-
tor (which is the sum of the Burgers vectors of all of the
vertices) is conserved whenever a change in the domain
configuration occurs.

CONCLUSIONS

The Dauphine-twin domain walls in quartz possess a
nonzero spatial-average electric polarization along the c-
axis, with all three P+ domain walls being polarized in the

FIG. 6. The vertex V formed by the intersection of two of
the P+ walls shown in Fig. 3(a). The Burgers circuit is labeled
C and the direction of the x axis is as defined in Fig. 1.

same sense, this being opposite to the common sense of
polarization of the P domain walls. In addition to a
nonzero spatial-average electric polarization, which varies
as the cube of the order parameter, the domain walls carry
a contribution to the electric polarization which averages
to zero as a result of its oscillations in sign as one crosses
a domain wall, but which varies as the first power of the
order parameter. This oscillating contribution should be
much larger than the spatial-average contribution at tem-
peratures close to the incommensurate-to-P-phase transi-
tion temperature.

In the incommensurate phase of quartz, one observes a
macrodomain structure in which there are two types of
macrodomains. ' The P+ macrodomain is a triangular
domain structure made up entirely of P+ domain walls
and, hence, carrying a total ferroelectric polarization in
the same sense as that of the P+ walls; the triangular
domain structure of a P macrodomain is made up from

domain walls and carries a ferroelectric polarization in
the opposite sense to that of a P+ macrodomain.

It is interesting to note that the interfaces between the
two types of Dauphine twins which are observed in the ci
phase consist generally of alternating P+ and P domain
walls. ~ Clearly, one should be unsuccessful in attempting
to move such interfaces by applying an inhomogeneous
electric field since the electrical forces on the P+ and P
walls would be in opposite directions. Many other
domain geometries can be identified and analyzed in
terms of the P+ and P domain walls, and the relative
electric polarizations of these domain walls can be deter-
mined by reference to Fig. 3 above.

The displacement field was shown to undergo a discon-
tinuity on crossing a domain wall. Furthermore, domain
wall vertices were shown to be associated with disloca-
tions in the strain field, and the Burgers vectors of these
vertices were identified.
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