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A one-dimensional model of a two-component interacting electron gas with different Fermi wave
vectors and Fermi velocities is considered. The method of the multiplicative renormalization group
is used and the leading-order equations for the vertices as the frequency or momentum cutoff is re-
duced are derived. There are in general twelve different vertices in which there are logarithmic
corrections in scaling, which may bt.'broadly classified as intracomponent interactions, intercom-
ponent exchange interactions, and charge-transfer interactions. The scaling equations are numeri-
cally solved in a limited regime appropriate for the valence-fluctuation problem. We discover that
intercomponent charge-fluctuation interactions' do not affect the dominant instabilities which are
primarily determined by the intercomponent exchange interactions (provided intracomponent chan-
nels by themselves are stable, as in the range of parameters examined). The theoretical connection
of the fluctuating-valence problem to the Kondo-like problems which is phenomenologically ob-
served is thereby established.

I. INTRODUCTION

The one-component interacting electron gas in one di-
mension has been studied exhaustively by a variety of
methods. ' The Fermi-liquid properties and the
instabilities "harge-density waves and various forms of
magnetism and superconductivity —have been mapped out
in the various regimes of relevant parameters. This has in
turn shed considerable insight into the properties of actual
materials, both pseudo-one-dimensional and two or three
dimensional. In this paper we study the properties of a
two-component interacting electron gas in one dimension,
with the ratio of the mass of the two components, in gen-
eral, different from one. Because the number of compet-
ing interactions is much larger, the problem has a much
richer structure than that of the one-component problem.
The problem occurs in solid-state physics in a wide
variety of contexts —in transition metals and in rare-earth
metals and in their compounds. A strong motivation for
our work is the properties of the so-called fluctuating-
valence (also called mixed-valence or intermediate-
valence) compounds.

A. Valence fluctuations

The fluctuating-valence problem arises in rare-earth
and the actinide compounds, when the chemical potential
is pinned by the 4f or the 5f resonances whose eigenvec-
tors in the isolated atoms correspond to very localized or-
bitals. This occurs in only about 10% of the cases.
About 90% of the cases belong in the localized-moment
regime. The Coulomb repulsion energy for electrons in
the localized orbitals is large, of the order 10 eV and their

hybridization with the conduction bands very weak, so
that when the partially (but integrally) occupied reso-
nances lie mell below the chemical potential, they have
negligible charge (valence) fluctuations and carry localized
magnetic moments. The scattering and polarization of
the conduction electrons in this situation is very weak and
leads to Ruderman-Kittel-Kasuya-Yosida (RKKY) cou-
pling between the moments and long-range magnetic or-
der of these moments at low temperatures. By contrast,
in the fluctuating-valence regime, a high-temperature re-
gime of Curie-Weiss susceptibility characteristic of local-
ized moments, gives way at low temperature to a
temperature-independent (Pauli) susceptibility characteris-
tic of itinerant electrons. The value of this susceptibility
is very large. The specific heat at low temperatures varies
linearly with temperature, also characteristic of itinerant
electrons. The magnitude of the specific heat and the sus-
ceptibility suggest that the ground state and the low-lying
excitations are characteristic of a Fermi liquid with an ef-
fective mass m'/m of order 10 and not very significant
exchange enhancement in a majority of the cases. Only
one fluctuating-valence compound, TmSe (and its alloys),
is known to undergo a magnetic phase transitiol|. This is
a special situation arising when both the valence states of
the ion carry a magnetic moment. In all other clearly de-
fined cases one of the valence states carries no moment.

If the Ferm'i level is pinned by the f resonance, it fol-
lows that f orbitals undergo charge fluctuations.
Phenomenologically, there appears to be a third class of
compounds, ' in which the f resonance is below but not
too far below the chemical potential. The relevant energy
scale would appear to be the resonance width I =m V p(0),
where V is the appropriate hybridization matrix element
of f orbitals with conduction electrons whose density of
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states at the Fermi level is p(0). In this case, charge fluc-
tuations should be negligible. They also behave as Fermi
liquids, with an even large mass of O(10 ). The con-
siderations in this paper are confined to a situation in
which there are explicit charge fluctuations in the f orbi-
tals but the close connection between the two problems
will be apparent.

So far the properties only of an isolated fluctuating-
valence impurity in a conduction band are well under-
stood and some work has been done for the interaction
between a pair of such impurities. The isolated impurity
plus the conduction band, despite the charge fluctuations,
has a singlet ground state, just like the Kondo impurity.
The theoretical problem in the fluctuating-valence lattice
is to understand how, despite the strong interactions, the
lattice has a singlet ground state with low-lying excita-
tions characteristic of Fermi liquids.

9. Fermi liquids

In a system of interacting fermions, a Fermi-liquid
ground state may be looked upon as a weak-coupling fixed
point in the sense that at low energies the various interac-
tion vertices scale to constants —the Landau parameters,
and the discontinuity at the Fermi surface is preserved. It
appears that a different kind of Fermi liquid is possible,
where the scaling is to strong coupling and a new type of
ground state is organized at T~O, the excitations about
which are of fermionic nature. The single-impurity Kon-
do effect is the simplest manifestation of this
possibility —the fluctuating-valence solids and the so-
called heavy fermion solids may be others.

We will employ the method of the multiplicative renor-
malization group to study the problem. We will also con-
fine our detailed attention to a one-dimensional model, as
all the divergent terms in one dimension can be summed

up by the renormalization-group method. If the unrenor-
malized interactions are such that scaling is to the weak-
coupling fixed point, this method leads to the correct
qualitative results in the leading order. If in one dimen-
sion the problem scales to weak coupling, the results are
likely to be valid in three dimensions. If for some choice
of interactions some of the vertices scale to strong cou-
pling the present method is inadequate for determining
the ground state and the low-lying excitations. The
manner of scaling to strong coupling can be very instruc-
tive, however, for understanding the physics of the prob-
lem. There are, in general, 12 different kinds of interac-
tions with infrared divergent corrections in perturbation
theory. These are outlined in Sec. II. Broadly, these are
interactions in which all incoming and outgoing particles
are of the same type and those in which they are different.
The latter are of two kinds, which may be described some-
what imprecisely as charge-fluctuation interactions from
one type to another and exchange interactions between the
two types. The problem therefore has interactions which

appear in the one-component electron gas, the single-
impurity Kondo problem, and the single-impurity
fluctuating-valence problem. These various interaction
channels interfere and, from an examination of the most
divergent channel, one can draw important conclusions
even if the flows are to strong coupling.

II- THE MODEL

A. Kinetic energy

We consider a model which has two types of electrons
labeled A and B, respectively. The 8 electrons can hop to
their neighbors with transfer integrals t; the A orbitals
have a weak hybridization. Whether the hybridization is
on site or at neighboring sites with the B orbitals is not
relevant in our treatment. Both A and 8 orbitals are con-
sidered nondegenerate. Extensions of the method used
here for the degenerate case are straightforward. In that
case A would denote the f orbitals and 8 the s and d or-
bitals. The kinetic energy operator is therefore

Ho=@„ga a + g t;J(b bj' +c.c. )
i) CT i &j,cr

+V+(ai' b +c.c. ), V« typical t;J . (1)
i, cr

The reason for putting the prime in various quantities
in Eq. (1) will be clear momentarily. The largest interac-
tions in the problem are those between electrons on the
same site in the A orbitals. Usually the other interactions
are neglected to begin with, but since they are generated in
higher-order perturbation theory, we might as well start
with the general problem and consider all possible ver-
tices. These will be generally of two kinds, those that lead
to . singular (logarithmic) corrections in perturbation
theory and those that lead to nonsingular contributions.
The renormalization group is well suited to considering
the former and they will be classified in the next section.
Ho, Eq. (1), is trivially diagonalizable. We assume that
we can group the leading effect of the second type of ver-
tices (i.e., the self-energy corrections due to them) together
with IIO to give an effective one-electron Hamiltonian.
This will describe two bands, which in general, in one di-
mension, will have two sets of Fermi vectors +k~ and
+kg.

HO —g 'skA ak ak +&kBbk bk (&)
k

The original orbitals, i.e., a' and b' of (1) get mixed up,
but the bandwidth Wz of the ekz « 8'ii, the bandwidth
of akim which is given in terms of the t in Eq. (1). The
electron velocity Bek~/Bk is much smaller than Beni/Bk
near the Fermi surface. We will work only with kz&kii,
otherwise a semiconducting situation will arise, which we
do not wish to treat. We will also ignore any gaps in ekz
and Ek

In these simplifications the principal shortcoming is
that we are considering a one-dimensional problem. Ig-
noring the small gaps away from the Fermi surface is not
a crucial shortcoming because the momentum range of
the hybridization is negligible compared to the momen-
tum cutoff kc.

B. Interactions

As discussed in the preceding section, two electron
bands are considered with two essentially different Fermi
momenta which are labeled as kz and kz. The corre-
sponding electron creation operators are ak, and bk„
respectively, where s stands for the spin. Thus, the unper-



32 SCALING IN AN INTERACTING TWO-COMPONENT. . . 7401

k, s k, s

The momentum summations are restricted to regions
which are symmetrically placed around the Fermi mo-
menta, and the momentum cutoff kc is applied for mo-
menta measured from the Fermi momenta (see Fig. 1).
As discussed, it is assumed, furthermore, that these linear-
ized spectra are approximations of a realistic dispersion
curve where hybridization effects and effects of nonsingu-
lar perturbations have already been taken into account.

The electron-electron interaction will be considered in
logarithmic approximation, thus the logarithmically
singular terms will be kept which arise from the region of
the Fermi energy. There are, however, nonlogarithmic
contributions as well. The scheme to be followed is to
consider only those vertices which contribute to logarith-
mic terms, and all of the nonlogarithmic vertex and self-
energy renormalization are assumed to be contained in the
starting vertices and Fermi velocities. Thus, vertices do
not occur which have, e.g., three A-particle and one B-
particle legs; as due to momentum conservation, at least
one particle has energy far from the Fermi energy.

The vertices are labeled in a way depicted in Fig. 2,
where the first and last indices correspond always to par-
ticles with the same spin. The signs associated with the
number of closed loops in the diagrams will be determined
with this convention. Following the notation generally

Wg

turbated Hamiltonian with linearized dispersion is the fol-
lowing:

Ho g——(k —k~ )u~a J,al + g ( —.k —kz )usa~a~
k, s k, s

+ g (k kg—)ubb~bI + g ( —k kg—)up bi b~ .

accepted, I ~~ corresponds to the scattering of two particles
with parallel spins and I to particles with opposite spins.
Furthermore, for the sake of simplicity the initial vertices
depend on whether the electrons belong to the branches A
or 8 and to the left or right part of the dispersion curve,
but are independent of the particular values of the mo-
menta inside those regions. In this way the vertices can be
labeled, e.g., as I A+B B A+, etc., where the A+ means

the A particle with momentum on the right-hand part of
the dispersion curve, etc. As in the case of a single-band
model, the scattering processes in which all the particles
are on the left- or right-hand side of the dispersion curves
do not contribute in the logarithmic approximations.
Thus, the two incoming and the two outgoing particles
are always on opposite sides of the dispersion curve. A
scattering will be labeled by a superscript (1) if the parti-
cles associated with the first and last indices are on the
opposite sides, and by (2) if those are on the same side. In
thss way a vertex I A+A B+B ——I AABB andi i(1)

I + z z+ ——I z'&zan, etc. Finally, for parallel spins the

identity I,'I„'~ ———l,gg holds; thus, only one of these
quantities will be kept, namely, I,b,'d ——I,~d, where the
index (1) will be dropped in the parallel spins channel for
the sake of brevity.

Using these notations the following twelve vertices
must be introduced:

i(1) i(2)
~AABB

III ABAB I AB A I ABAB

T-i(1) ~i(2)
AAAA, i AAAA ~ PAAAA

i(1) i(2)I„„,r„„,r$„, .

The interchange of the incoming lines by the outgoing
lines does not lead to new couplings.

These interactions may arise from Coulomb interac-
tions or electron-phonon interactions, or from these in
combination with the hybridization V between the a' and
b' orbitals of Eq. (1). In the usual model Hamiltonians
used for the valence-fiuctuation problem, only a large
Coulomb repulsion between the electrons with different
spins in the a' orbital on the same site is added to Eq. (1).
This may be associated with I AAAA. The hybridization V
produces in second-order perturbation theory an exchange
interaction J between a' and b' orbitals, when the effect
of U is included. Jmay be associated with I „~„~as may
direct Coulomb or electron-phonon —induced interactions.

-~a~
(

~lta
o

{b)

FIG. 1. Kinetic energy dispersion for the two components A

and 8 is shown. The dispersion of A is shown inverted with
respect to 8, but this is not essential. In (a) the dashed lines
represent the effect of hybridization. In (b) the idealized (linear-
ized) dispersion is depicted. All branches cover a momentum re-
gion of width 2k~ where kc is the cutoff.

-=~)ZS4

FIG. 2. Illustrates the labeling of the vertices as described in
the text.
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The AHAB channel is what appears in the single-impurity
Kondo problem and will play a major role in the present
problem. The AABB channel transfers electrons between
the A and 8 components and may be looked upon as a
charge-fluctuation channel.

The unrenormalized Green's functions GA+ and GB+
have the following form:

only quote those final results, which are generated
through summing appropriate second-order diagrams and
then using the Lie equations. As an example, the dia-
grams summed for the I A'Aaa vertex are depicted in Fig.
4, and lead to Eq. (7a). Equations (7b) to (71) are similarly
obtained:

~I l(1)
AABB J (2) J (2) J (1)S, =(al AAAA +pl Baaa )I AAaa

and

G„' ' (kco) =
(o —(+k —kA )UA

+((zl AAAA+p~aaaa)l AAaa
l(1) l(1) J.(2)

G'+ (k,(o)=
(o —(+k —ka )Ua

where ~ is the energy.
In the logarithmic approximation the basic skeleton di-

agrams are bubbles with two parallel or antiparallel lines
which can be either AA, 88, or AB propagators. These
diagrams have the multiplicative factor (2UA ) ', (2UB)
and (UA+Ua) ', respectively, which are due to density of
states. In the following, dimensionless vertex couplings
will be used:

1 1 I ~I'.
~ UA+UB

The factor (UA+Ua) ' is produced in the AB channel;
thus, in the AA or BBchannels a dimensionless correction
factor

UA +~B UA+UBa= and P=
2UA 2UB

must be taken into account. As it has been assumed that
Ua »UA, thus, a »1 and p- —,'.

A typical diagram shown in Fig. 3 has the contribution

i f —J G +(k', co')6 ( k'+kA —ka—, (o —co')
dk dco

2m 2m.

(UA +Ua )kc
ln

17(UA +Ua ) CO

+ ABAB I AABB + AABB ABAB
l( 1 ) II l( 1 )

gl l(2)
l(2) J.(2) l(2) l(2)S

8
=aI AAAAr AABB+pI BBBBI AABB

+&I I AABB+pl aaaal AAaa
l(l) l(1) l(1) l(1)

l(2) l(2)

ar""ABAB l(2) l(1)
I I l(1)

+ AABB AABB
l(1)

~I- l(2)
= ( I ABAB ) —( I AAaa )

ABBA l ( 1) 2 l(2)
BS

gp l(1)
AAAA —l(2) —l(1) l(2) l(1)S - =2aI AAAAr AAAA+2pI AABBI „,Ba

+2+I AAAA
1"

AA
l(1)

&I- l(1)
BBBB —J.(2) —l(1) —l(2) —l(1)S =2PI I +2al „„ I

BS

+2P~ kaaa ~ BBBB

(7a)

(7b)

(7c)

(7d)

(7e)

(7

where the imaginary part is dropped, as it does not contri-
bute in the leading logarithmic approximation. In the AA
and BB channel, 1n(2UAkc/(o) and ln(2Uakc/co) occur.
Keeping only the singular term in co, all the logarithmic
terms can be replaced by in[( UA +Ua )kc/coj and the vari-
able (UA +Ua )kc/co =Swill be the only relevant one.

III. SCALING

The renormalization group is generated by reducing the
momentum cutoff kc in small steps. For the description
of the method we refer to Solyom's review article. ' We

FIG. 3. A typical diagram contributing in the leading loga-
rithmic approximation as discussed in the text.

+2r „„„r„„,+2r,„„r„„,II If l(1) l(1)

BI II

=(I ABAB) +(I AAaa ) +(I AAaa)
ABAB —l(1) 2 I I 2 l(1) 2

S AAAA l(1) 2 I I

as =a(r„„,) —p(l „„„),
S =P(l „„)— (I „„,) .

BBB —l(1)
as

(7j)

(7k)

(71)

These equations must be solved with the boundary condi-

I- l(2)
A)A ) +P(~ AABB ) +P( I A~A

aI.""
p(l BBBB ) +(z(l AABB ) +&(I AABB ) (7h)

g~ II
A ABB IIS" = —(~r „„,+Pl.)I„,)l „„as
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A+s

A--s

A+s

A -s

A+s

A+s

A -s

8+s

A+

A+s

A- -s

8 +S

8'-s

8 +S

8 +S

A+S

A+s

A--s

A+s

A s

8+

8-+s

A+-

8+-s

8-s

+

Bs

ar I I ar II
AAAA

p
ABAB

(10e)
as + as

ar, „„, ar„„i(2)
&0, 10

as as
ar„„ar„„„~(2) I(2)

+a &0, (10g)

arIIBBB ar ABAB

as as+~ (10h)

ar,',",', arg„,
BS BS

&0. (10i)

These inequalities imply that such quantities decrease in
the scaling process as the cutoff kc is reduced, thereby
decreasing S.

A third of the vertices introduced above can be elim-
inated by assuming that the interaction is rotationally in-
variant in spin space; for instance, no spin-orbit coupling
is allowed. In this case the interaction in an arbitrary
channel can be given as

8 S

A+s

8-s

8 S

8+s

A-s

A -s

8+-s

A--s

8 S

A+s

8 -s

8+-s

A -s

8+-s

ri(j) —g( ) rIi —g(~) g(2' (1 1)
~ ~ (&) (2)w"ere» parti«a«ABAB gABAB gABBA.

Using this notation the Eqs. (7a)—(71) are reduced to the
following eight:

(&)
gAABB (2) (1)

gAAAA +PgBBBB)gAABB

+( gAAAA +PgBBBB)gAABB + 4gABABgAABB
(&) (1) (2) (1) (~)

FIG. 4. Diagrams contributing the leading logarithmic
corrections to the I q'~~~ vertex are shown as an example of how
Eqs. (7) in the text are obtained.

(&) (2) (2) (&)
2(gABABgAABB +gABBAgAABB ) (12a)

(2)
gAABB (2) (2) (2) (2) (&) (&)S S

=c g A A A A gA ABB +PgBBBBgA ABB +Ag A A A A g A ABB

ar„„„„I(2)

BS

ar„„I(2)

as
rwBwBII

as
j.(2) J.(2)

as +p as

(10a)

(10b)

(10c)

(10d)

tion that the vertices r(S)
i B i at S =1 are equal to their

bare value. The bare value here means the vertices renor-
malized by only those processes which do not lead to any
infrared divergences. This system of equations contains
ten different equations, as it can be shown that the follow-
ing two quantities are scale invariants:

(rAAAA +prABAB )
—(rAAAA +pr ABBA ) =II l(2) X(2)

( rLBBB+cxrABAB ) (rBBBB+ cErABB—A ) =Il j.(2) L(2)

In general, the only statement that can be made is that
the derivatives of the following nine quantities are posi-
tive:

(&) (&) (2) (2)
+PgBBBBgAABB 2gABBAgAABB

(&)
~gAAAA (]) 2 (2) (1)S 2~(gAAAA ) +2pgAABBgAABBas

(2)
S- gAAAA (i) 2. (2) 2 (1)

BS +(gAAAA ) +P(gAABB ) +P(gAABB )

(1)
gBBBB (i) 2 (2) (i)S— =2P(gBBBB ) +2agAABBgAABB,

(2)
gBBBB (&) 2 (2) 2 ()) 2++(gAABB ) ++(gAABB )

(&)

=2(gAABB ) —2g AABBgAABB+ 2(gABAB )
(&) 2 (2) (&) (&) 2

(2)
gABBA (] ) 2 (2)

(gABAB ) (gAABB )

and the two scaling invariants are
(&) (2) (1) (2)

gAAAA gAAAA +P(gABAB 2gABBA ) Cl

gBBBB—2gBBBB+~(gABAB —2gABBA ) = CZ
(&) (2) (1) (2)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)

(12h)

(13a)

(13b)
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K+kg, s K+kg, s&a b
s, lKl &kc

a K+k, b
s, lKl &kc

K+kA ' t K+kg, la b
IKI &kC

a,+k,-b
s, lKl &kc

(14)

The charge and spin densities are characterized by the
wave vectors +2k~, +2k&, and +(k~+ks) in the A, B,
and in the combined AB channels, respectively. The most
unusual ones are the Cooper pairs in the AB channel, as
they are defined with finite momenta +(kz —ki)). The
susceptibilities will be denoted as %,j, X;jA, ;~, and 5, ;J,
where the channel indices i and j are A or B. The quanti-
ties which obey simple scaling equations are defined as'

These equations reduce to the equations given by
Menyhard and Solyom' if only one channel is considered.
It is interesting to note that the ABAB (ABBR) channel is
connected only with the AABB channel in a direct way.
Furthermore, if a »1 and only the terms proportional to
a are kept on the right-hand sides of the scaling equa-
tions, then the ABAB channel does not enter in the scal-
ings of the other channels.

The scaled coupling strengths obtained by the scaling
equations can be used to analyze the renormalization and
possible divergences of the different susceptibilities. In a
model of one-dimensional metal with a single electron
band there are four different susceptibilities which may
diverge for some ranges of the initial coupling strengths:
Peierls and spin-density susceptibilities and Cooper sus-
ceptibilities with spin singlet and spin triplet. In the
present model all of these can be interpreted with only A
or only B particles and also with a combination of A and
B particles. In the latter channels the typical operators
appearing in the susceptibilities are the following:

8 lnlsakpt Ij J (]) J (2)

8 lns
=8;j(1;jj+I;,,; )

(&) (2)~~ij (gijij +gijji ) ~ (16c)

8 ink„J (s)
(( (i) (2)

3 lns
~ij ~ijij ~~ij gijij +gijji ) i (16d)

where the arrows point to the results for the rotational in-
variant special case given by Eq. (11). The proportionality
factor 8(j is a, 1,P in channels AA, AB, and BB, respective-
ly.

IV. ANALYSIS OF THE SCALING EQUATIONS
AND DISCUSSION

We first recall the results of the lowest-order multipli-
cative renormalization calculation for the one-component
model. ' In this, only the interactions gz'z&z and g&&zan
exist, and since g~'q~~ —2gzzzz is a constant, there is
only one differential equation to study. The scaling tra-
jectories satisfy (g"') —(g' ') =const—:Co. For Co&0,
the problem scales to weak coupling with g'" and g' '

scaling to numbers, and the lowest-order results are quali-
tatively correct. For Co &0, the problem scales to strong
coupling and the method breaks down. Response func-
tions have also been studied for this model. For g"'(0,
the charge-density wave response, % at 2kF diverges
(Peierls distortion) as well as the singlet superconducting
response 6, . For g"))0 and g"'—2g' '&0, spin-density
wave response X at 2ki; diverges; while for g"'&0,
g' ' —2g' ') 0, both the singlet and the triplet supercon-
ducting response b,, and b., diverge, of which the triplet
has the stronger divergence. Monte Carlo calculations"
on the same model confirm the qualitative validity of this
phase diagram for g' "& 0.

(15)

where, e.g., u; is the Fermi velocity for the band i =A,B.
In the leading logarithmic approximation the scaling

equations can be obtained in a straightforward way:

A. The large-a approximation

In our problem, there are six coupled differential equa-
tions to analyze. This is, in general, possible only numeri-
cally. The structure of the equations is such that the
properties can be studied analytically for a»1. It is
discovered through a numerical analysis of the equations,
however, that the region of validity of such analytic re-
sults is confined to the high-energy regime from the upper
cutoff Ws to a fraction, depending upon the initial value
of gg„ss/g~„ss and g„spy)/g„„~~. For a))1, the pure(j) (2) (&) (&)

3 channels decouple leading to

() lns
=~ij (~ijij + Iijij )

(&) (2)~ij(2gijij gijij ) ~ (16a)

and

g„'~„„(S)—2g„'~~q (S)=C() ——initial values .(1) (2)

() 1HX'j(s) i(2)
w 1 ~ij ijij ~ij gijija lns

(16b) Inserting these in the differential equations for the AABB
channel, one finds the solutions
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gAABB(S)+gAABB(S) (gAABB +gAABB )(1) (2) (1) (2)

gAABB(S) gAABB(S) (gAABB gAABB )
(1) (2) (1) (2)

x(1—2agA'A'AA» ls
I

)'

(19)

approximation except at frequencies near WB. From Eqs.
(12g) and (12h) we gather that if the charge-fluctuation
channel AABB were not coupled to the ABAB channel, its
scaling properties would be identical to those of the one-
component electron gas or to the single-impurity Kondo
problem, where at a similar level of approximation,

dJi dJz
S =2JiJg, S =Ji,

dS

(20)

For gA'AAA &0, the important factor in both Eqs. (16) and
—1/2aC()

(17) is S . For short-range couplings in the A

channel (gAAAA gA——AA„), Co &0. Thus both g„ABB and(1) . (2) (1)

gAABB decrease for decreasing S.
Equations (19) and (20) can be used in Eqs. (12e) and

(12f) to study the behavior of the BBBBchannel. If the
~ ~ ~ (1) (2) (2)initial coupllngs ggggg ——ggggg

——0, g/gag tends to nega-
tive values in scaling [see Eq. (10b)], while gBBBB tends to
positive or negative values demiending on whether the ini-

tial coupling product gz'z~~g~~~~ is negative or positive
and both remain finite. Furthermore, the inequality,

I gBBBB I
& gBBBB hold~(1) (2)

Thus, a repulsive interaction in the AAAA channel and
finite initial interactions in the AABB channels induce
finite interaction in the BBBBchannels. The susceptibili-
ties due to these induced interactions can be obtained by
using Eqs. (16a)—(16d). As a consequence of the inequali-
ty

I gBBBB I
& gBBBB I gBBBB I, both the singlet and the

triplet superconducting susceptibility diverge. Further-
more, the triplet superconductivity is more divergent than
the singlet if the initial coupling product'gzzz~gzz~~ &0.
[In the latter case, as a consequence of Eqs. (19) and (20),
that product remains negative for the whole scaling re-
gion, thus, gBB'BB &0 as follows from Eq. (12e).] The va-
lidity of these results depends on the applicability of the
large-u approximation to be discussed in the following.
These results, however, show that there is a temperature
region where the superconducting fluctuations are
enhanced, independently of whether or not at low tem-
peratures couplings dropped in the o, ~&1 approximation
become important.

B. Numerical analysis of scaling equations

As mentioned earlier, the range of validity of the above
results is confined to the high-frequency regime. A nu-
merical analysis has therefore been performed. The range
of parameters covered in this analysis is rather limited
and Eqs. (12) contain more physics than is presented here.

The numerical analysis is done in two regimes.
(i) WB » WA and the initial couplings are in the order

Ig»» I
» lgAABB I

=
I gABAB I

»
I gBBBB I.

(& ) (&) (1) (2) ~ ~

take gzzzq ——gzzqz and gzzzz ——g~zzz ——0 in this regime.
(ii) WA —WB. Here the two bands are assumed to have

similar velocities, a=P= 1. Also, all the initial couplings
are assumed to have similar values.

I Regime (i): WA.« WB

The ABAB channel which does not enter the calcula-
tions for a »1 is responsible for the failure of the large-a

VBIVA= IO.O

I N I TIAL VA

( I) (2
QAAAA 9AA

(I ) (2
&Beee= ~eea

(I) (2
NABAB ~ Ae

( I) (2
~ AABB ~AA

I.O

-2. - I.5 -I.O 0.5--- -0
gn~D(

(I)~ Baca

FIG. 5. Scaling of the vertices obtained by a numerical solu-
tion of Eqs. (12) with initial parameters indicated in the figure.
D is the frequency cutoff = S'z. With positive ABAB coupling
and short-range repulsive parameters in the AAAA channel; all
the vertices scale to weak coupling.

where Jq and J, are the transverse and the longitudinal
part of the exchange interaction. We recall from Eq. (11)
that P~~~~ ——g~zz~ and I ~zzz ——gz~~~ —g~~~~ to see thel(1) (1) II

complete mapping of the uncoup/ed ABAB channel to the
single-impurity Kondo problem. Therefore, if we start
out with the exchange interaction gzzzz & 0, the scaling is
to strong coupling. This behavior is obtained in our nu-

merical results because the coupling to the AABB channel
becomes unimportant except at co close to 8~, because
these couplings rapidly go towards zero.

Most of our analysis has been done with gAABB ——gAABB
~ (1) (2)

and gz~~~ ——gzzzz. Figure 5 shows the results when
these couplings are all initially positive. Similar results
are obtained when the AABB couplings are initially nega-
tive but the ABAB couplings are still positive. Scaling to
weak coupling results and the calculations in the large-a
approximation above are valid.

In Fig. 6, we show the result for initial couplings

gA~AB
——

g&~~A & 0. They both scale to —oo with

gABAB -2gABBA, as required by (13b). The initial behavior
shown in Fig. 6 is not changed by changing initial

IgAABBI = Igy'gBB I
~high together with the AAAA

channel (for gAAAA
——gAAAA) scale ~0, while the 8888

channel starting from an initial value 0 scales towards
small negative values.

The above results are very revealing. They show that
even for the complicated problem being considered, scal-

(1) (2) (1) (2)ing for gAAAA gAAAA gBBBB gBBBB» governed by the
physics of the Kondo problem. For positive initial ABAB
couplings, scaling is to the weak-coupling fixed point, just
like the one-dimensional electron gas for the prescribed
AAAA and 8888 interactions and like the ferromagnetic
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VB/VA =IO. O

I N I T I A L VA LUES

( I ) (2)
g AAAA g AAAA

(I) (2)
g BBBB-g BBBB-0-0

(I) (2)
g ABAB g ABAB

(I) (2)
g AABB gAABB

BBBB

I 5

I,O

0.5

(I)
gABAB

—I.O

-l.5

-0-0.4 -O.P

Fig. 6. However if we take ABAB couplings near their
asymptotic large negative value with gzzzz ——2gz&zz, and
ignore the AAAA and 8888 channels in examining the
behavior of the AABB channel, the conclusion is that

I
gz'~~~

~

tends to become very large. This is seen
through Eqs. (12a) and (12b). If we feed this back into
Eqs. (12g) and (12h) for the ABAB couplings, the
behavior is unchanged from that discussed above. The
growth of the AABB channel, if it happens, is at too low a
frequency to conveniently analyze numerically. More-
over, the leading-order scaling is dubious for an analysis
of such a reversal in behavior from that found initially.

For gz'q~~ -2gz~~z & 0, the ABAB can induce instabil-
ities in the AAAA channel depending on the starting
values in the AABB channel. The behavior is rather com-
plicated and we do not pursue it in this paper.

2. Regime (ii): Wq —We

FIG. 6. Same as Fig. 5 but with attractive ABAB coupling;
ABAB vertices now scale to strong coupling, unaffected by the
coupling of this channel to the rest. The instability of the
ABAB channel is likely to have interesting consequences in the
AAAA channel in the higher-order scaling corrections.

Kondo problem. For negative initial ABAB couplings,
scaling of the ABAB channel is towards strong coupling
just like the antiferromagnetic Kondo problem. This
behavior is unaffected by the coupling to the charge-
fiuctuation channel and through it to the AAAA and the
8888 channels. In the lowest-order logarithmic approxi-
mation, the instability of the ABAB channel does not af-
fect the other channels. It is likely to do so in higher or-
der. The instability in the ABAB channel suggests that
the ground state must be reorganized. It is possible that
just as in the Kondo problem there is no phase transition
at a finite temperature.

The study of the susceptibilities in the AB channel may
help to understand the meaning of the divergencies in the
ABAB channel. Using Eqs. (16a)—(16d) one can see that
for gzzzz -2gz~~„~ —ae the smglet superconductmg(&) (2)

and the Peierls susceptibilities diverge with the same
strength. The superconducting susceptibility indicates the
formation of singlets consisting of an A and 8 electron,
and the Peierls instability corresponds to the formation of
a pair from, e.g., an A-electron and 8-hole These s. inglet
formations show strong resemblance to the formation of
Kondo singlets.

It is suggested by these calculations that the physics, in
the frequency regime being discussed, is related to the
Kondo problem. This should be considered alongside the
fact from the theoretical side, that the single fluctuating-
valence impurity and the Kondo impurity problems are
known to have the same ground state and low-lying exci-
tations. On the phenomenological side, the fluctuating-
valence solids have a Fermi-liquid behavior qualitatively
similar to the so-called heavy-fermion solids where the
charge fluctuations are negligible.

A word of caution is necessary about the passage of the
AABB couplings to zero under scaling. The AABB cou-
pling undoubtedly rapidly decreases initially, as shown in

VA/VB = I.O

I N IT I A L VALUES

( I) (2)
g AAAA g AAAA

(I ) (2)
SOL I D g BBBB BBBB

( I ) (2)
g ABAB ABBA

I ( I ) I (2)
IgAABBI AABB

DASHE
LI NES

ALL AS ABOVE
EXCEPT

I&AABBI lgAABB~ 4~
= 5. I

-3.0
g fnIurzDI

/
/

I
l

l
l

I
I

I

I
I
I

( I) (I)
AAAA BBBB

FIG. 7. Scaling for
~

co
~

& W„. In this figure, D = Wz. Re-
sults for two sets of initial parameters are shown and discussed
in the text.

As a matter of general interest, we have done a limited
numerical analysis in this regime. We have taken

(&) (&) (&) (&)
UA /UB 1 d gAAAA gAAAA gBBBB gBBBB & 0

~ ~

ggggg =ggggg, gag gg =ggggg. For posltlve ABAB and
AABB channels, the scaling is to weak coupling if the
AABB and ABAB couplings are both much less than the
AAAA and 8888 couplings. When this is not satisfied,
scaling is towards weak couplin~ for gz'&zan &g~'iiq~ and
to strong coupling for gzzzz &gzz~~. This behavior is il-(&) &)

lustrated in Fig. 7.
For negative initial couplings in the ABAB channel,

behavior similar to that discussed in regime (i) is found
for the ABAB channel, accompanied by a divergent
behavior in the AABB channel towards + ee as the fre-
quency scale is decreased. This in turn leads to divergent
behavior in the AAAA and 8888 channels.
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We have derived the leading-order scaling equations for
the two-component one-dimensional electron gas. The
limited range of parameters for which these equations
have been analyzed corresponds to a fluctuating-valence
problem. It is discovered that the renormalization-group
fiows are determined by the exchange interactions (ABAB
channel) between the two components and that the
charge-fluctuation interactions (AABB channel) do not
determine the strongest instabilities. It would appear that
the ground state and low-lying excitations of the
fluctuating-valence state, provided it is not semiconduct-
ing, are of the same nature as a model without charge
fluctuations in one of the components, such as the so-
called Kondo lattice model. This would appear to be true,
also phenomenologically.

The instabilities in the ABAB channel are likely to lead
in the next-order scaling to important self-energy correc-
tions and instabilities in the various other channels. This
would be well worth pursuing. But if, as we suspect, for
an interestirig range of parameters, the scaling is to strong
coupling, the present methods are inadequate for a com-

piete treatment. The knowledge of the manner of ap-
proach to strong coupling acquired by these methods is
however essential.

Finally, we must remark that the present calculations
are justified only in the weak-coupling limit, but the
Monte Carlo calculations" in the single-band models
show that the first-order scaling equations give correct re-
sults even in the intermediate- and strong-coupling re-
gions. Thus, the applicability of the results obtained in
the present paper is likely to be beyond the weak-coupling
region, at least, in a qualitative sense.
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