
PHYSICAL REVIEW 8 VOLUME 32, NUMBER 11 1 DECEMBER 1985

Static and dynamic real-space renormalization through series expansions
for correlation functions

J. O. Indekeu
Instituut voor Theoretische Fysica, Eatholieke Universiteit Leuven, B-3030Leuven, Belgium

A. L. Stella
Dt'partimento di Fisica, Universita degli Studi di Padova, I-35100 Padova, Italy

and Unita di Padova, Gruppo Nazionale di Struttura della Materia del Consiglio Nazionale delle Ricerche,
I-35100, Padova, Italy

J. Rogiers

{Received 25 January 1985)

The renormalization-group analysis of correlation-function series expansions introduced by Stella
et al. for computing the static critical properties of lattice-spin systems is refined by employing an
additional interaction variable, and extended to dynamical critical phenomena. The static approach
is applied to the square-lattice Ising model with nearest-neighbor and diagonal interactions, with use
of the original high-temperature series to ninth order for pair-correlation functions. The critical
point, the thermal and magnetic exponent, and the leading correction-to-scaling exponent are corn-

puted. Applications of the method to the spin- 2 Ising and XY models in two and three dimensions

are also reviewed. The possibility of basing a dynamical renormalization approach on this type of
analysis is shown. The new dynamical method, which avoids proliferation of interactions and
memory effects, is applied to the square-lattice Glauber model. The study of original series for pair
relaxation times (to eigth order in the nearest-neighbor interaction and to fourth order in the diago-
nal one) gives estimates of the dynamic exponent z.

The purpose of this paper is to present a rich variety of
applications as well as systematic improvements of a re-
cently proposed renormalization-group (RG) approach' to
static critical phenomena in lattice-spin systems. The
method implements RG maps through the scaling law for
the pair-correlation functions, in a way which is close in
spirit to the original field-theoretic RG procedure.

In its first applications, the approach made use of
high-temperature-series expansions in one interaction
variable for the correlation functions. In the present pa-
per, the analysis is extended to make use of two interac-
tions. As a consequence, better accuracy is obtained as
the introduction of an additional interaction helps to
suppress disturbing corrections to scaling at the fixed
point. Furthermore, in the space of two interactions the
fixed point and critical surface are found, much like in
standard real-space renormalization. The universality
concept then arises naturally and the leading correction-
to-scaling exponent can be computed. In this respect, the
method is more flexible than the well-known phenomeno-
logical renormalization proposed by Nightingale, al-
though the latter could be developed to a higher level of
accuracy.

The RCx analysis is now also extended to dynamical
critical phenomena, using scaling laws for relaxation
times of pair correlations. These relaxation times are

computed in the form of high-temperature series in two
interaction variables. The implementation of RG maps
then yields, in addition to the static critical quantities, the
dynamic exponent describing the critical slowing down of
the spin relaxation.

The paper is divided into two parts. The static RG is
treated first. The basic equations pertaining to the scaling
behavior of the correlation functions are discussed, and a
motivation is given for working with more than one type
of spin interactions. The RG technique is outlined with
emphasis on the group structure properties of the
transformations as a criterion for selecting the appropriate
scaling behavior. It is explained how estimates for the
critical point X, and for the critical exponents yT and yH
can be computed. An application is given to the square
Ising model with nearest-neighbor and diagonal interac-
tions. Further applications to the cubic Ising model and
the quantum XY model in two and three dimensions,
which have already been presented in the earlier work, '

are discussed in more detail.
In the second part of the paper a new method is pro-

posed to perform a RG analysis of the relaxation times of
pair correlations. An application to the square Glauber
model with nearest-neighbor and diagonal. interactions
follows and estimates for K„yz, and the dynamical ex-
ponent z are given.
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I. A STATIC RENORMALIZATION-GROUP
ANALYSIS OF PAIR CORRELATIONS

A. Correlation-function scaling

Consider a ferromagnetic nearest-neighbor Ising model
on a d-dimensional lattice of N sites. Every site i carries
a spin s; =+1. The reduced Hamiltonian is written as

H(Isj')= —A (Is I )/k~T =E g s;sJ+h g s;

and gives the reduced energy of a spin configuration [sj.
Here, &ij & denotes a sum over nearest-neighbor pairs, E is
the reduced nearest-neighbor coupling (E =J/k&T &0),
and h is the reduced external magnetic field.

The partition function is given by

Z~= gexpH(I$I )

IsI

and the free energy per spin by

f (E,h) = (AT/N—)lnZ~ .

The pair-correlation function is written as

which transforms under the RG to

f(K)=L f(K')+g(K), (1.2)

where g is a suitable function. Assuming analyticity of
the map RL and of g, the familiar scaling law for the
singular part of the free energy is derived on the basis of
(1.2).

Generalizing the concepts of critical-point scale invari-
ance to systems with inhomogeneous interactions K(r),
one may derive, by differentiating (1.2) twice with respect
to local magnetic fields, the following asymptotic scaling
law for G:

K'=RL, (K),
where L is a length-rescaling factor.

A fixed point K" of RI represents a universality class
of "critical Hamiltonians" whose K vectors are "renor-
malized" toward K*. Within the framework of real-space
RG, the standard approach to construct the map RL
makes use of a weight function Pi ( Is'I, ts J ) which asso-
ciates configurations I s'] of "block spins" to configura-
tions Isj of spins. One then derives a recursion relation
for the free energy:

G(K', r/L)=L G(K, r), (1.3)
where &

.
& denotes a thermal average with respect to

H ( Isj) and r is the lattice vector connecting sites i and j.
The correlation length g measuring the range of coherence
in the system is defined through the second moment of G:

g = g r G(r) g G(r),

where r =
~

r ~, and for r~ oo and r/g constant, G is ex-
pected to have the form (for magnetic field h =0)

G(r)~G(r/g)/r +",
where q is the critical exponent of the correlation func-
tion.

We remark that this asymptotic form for G(r) is ex-
pected to hold with an exponent different from d —2+g
when, instead of the ratio r/g, the temperature (and
therefore g) is kept constant. A renormalization-group
transformation rescales r while keeping r/g constant, and
therefore (1.1) is the relevant asymptotic form for our
purposes.

When the critical point (E' =E„h=0) is approached, g'

diverges, and therefore G becomes long ranged in space.
Within RG theory there exist several derivations of the
scaling law for the correlation function: See, for example,
Kadanoff s original work, the extensive analysis of
Niemeijer and van Leeuwen, and Wilson's review, where
the specific example of a "spin decimation" RG is treated.
In the following we will briefly discuss some aspects of
correlation-function scaling in order to motivate our cal-
culations.

Consider a generalized reduced Ising Hamiltonian
II( Is I ). The "even" interactions Ei,E2, . . . ,Eand'
"odd" interactions h~, hz, . . . , h„are represented by a
vector

for r~ co, and for K sufficiently close to the fixed point
K'. The "magnetic exponent" yH describes the renor-
malization of the "relevant" magnetic scaling field h:

implying an isotropic algebraic decay. Comparison with
(1.1) also yields the familiar relation

d +2—2yH

A further consequence of (1.3) is the following scaling law
for G in the nearest-neighbor model (with h; =0 for all i,
E;=0 for i & 1, and Ei ——E):
G(E', r/L)=L" +"G(E,r)

with E'=E, +L (E E, ), —(1.4)

for r +no, and —for Esufficiently close'to the critical
point E, =K~„which is renormalized toward K'. The
"thermal exponent" yT is the inverse of the correlation
length exponent v.

So far, our discussion has been general. When employ-
ing a special type of weight function Pl for constructing
the RG map, one can obtain a stronger scaling in the
transformation law of the correlation function than the
one implied by (1.3). With a "linear" weight function

Pl (q; [s'I, Is I)= ff [—,'(1+qs~ )],

h'=I. h .

The behavior of systems close to the "critical surface"
(i.e., the domain of attraction of K') is governed by K*.
In this way, it follows from (1.3) that, on the critical sur-
face [where g(K) = oo ],

2(yH —d)G(K,r)~r for r~~,

K= (EI,E2~. . . ~ En„h i,h2&. . . ) h„) where a denotes the sites of the new ("decimated" ) lattice



32 STATIC AND DYNAMIC REAL-SPACE RENORMALIZATION. . . 733S

which coincides with a sublattice of the old one and q is a
free parameter, it follows that

6(K', r'i) =L +"G(K,ri),
6(K', r,') =L."-'+"6(K,r, ),

6 ( K', r') =qzG (K,r), (1.5)

with r'=r/L, and both r and K arbitrary (the relative
orientation of r and r' depends on the actual value of the
rescaling L).

The RG map with the linear weight function has pecu-
liar properties which are discussed in detail by Subbarao, s

Wilson, Bell and Wilson, and van Leeuwen. ' For our
purposes, the interesting property is the role of the param-
eter q. In order that (1.5) be a meaningful transformation
law, in accordance with the asymptotic scaling law (1.3),
we must have

2 I d —2+g

Therefore, in the RG map, one expects to find nontrivial
fixed points K' only for this particular choice of q.

In the following we will assume that RG maps with a
linear weight function actually possess fixed points ca-
pable of describing correctly the entire critical surface, if
the parameter q is chosen to satisfy (1.6). As a conse-
quence, in the neighborhood of such fixed points, the
correlation function scales for all distances r, and not only
for large r's as in the general case of Eq. (1.3)

This assumption represents the following idea. Proper-
ties of 6 at asymptotically long distances in systems on
the critical surface are mapped, under repeated iteration
of the RCx map, onto short-distance properties of 6 in
systems close to K'. Starting from a Hamiltonian with
only nearest-neighbor interactions, the RG iterations gen-
erate mare-distant-neighbor and multispin interactions
which may gradually wash out the anisotropy (due to the
lattice structure) and suppress deviations from scaling
behavior, which certainly occur at finite distances. A
quantitative test hereof will be presented in the following
sections, where the RG analysis of correlation functions,
introduced by Stella et al. ,

' is generalized to incorporate
more than one interaction.

B. The renormalization-group analysis

As in previous work, ' our starting point is the scaling
equation (1.4), interpreted as the implicit definition of a
RG map X~K'(K), with a parametrical dependence on
the (a priori unknown} exponent g. With the extension of
this scheme to more than one interaction, it becomes pos-
sible to study the "universality" of critical behavior and to
compute corrections to scaling. As far as we know, this
has not previously been accomplished within RG ap-
proaches of "phenomenological" character.

In order to construct a RG map for n even interactions,

6( K', r'„)=L" +"G (K,r„) .

As n is increased, one may hope that the implied RG map
R'L"' becomes less dependent on the actual choice of lattice
vectors and possesses adequate fixed points only for g
closer to its exact value. In practical computations, it will
be necessary to use short distances v; and r . As suggest-
ed by our discussion in Sec. IA, we may expect the error
involved to become smaller as we work with more interac-
tions.

For any finite n, the system (1.7) yields a fixed-point
curve ILL, (ri), parametrized by ri. We are therefore forced,
just as in the one-parameter approach, ' to select an "op-
timal" value for ri. For this purpose we employ a previ-
ously developed technique" ' of "group-structure op-
timalization. " Let us review briefly how this works.

Suppose we choose two rescalings, I. and I.', and com-
pute the corresponding fixed-point curves KL, (g) and
KL, (ri}. We can then look for a minimum of the Euclide-
an distance in K space

'(ri) =
~
Kl (v])—KL (r})

~

by varying ri. The value ri for which the minimum
occurs is selected as the optimal one, and KL(ri'} and
KL, (ri') are chosen as the optimal fixed points for the
corresponding two RG maps with rescalings L, and I ',
respectively. In practice, these fixed points are often very
close.

To either of both optimal fixed points, the following
applies. A critical nearest-neighbor coupling E, —=E&, is
computed as the intersection of the Ei axis with the criti-
cal surface of K'. The temperature exponent yT and
correction-to-scaling exponents are computed from the
n Xn matrix V~RI."'(K,g) evaluated in (K', ri'), by stan-
dard methods.

As already mentioned, we will work with correlations at
short distances. Before describing the computations, it is
instructive to illustrate in the case of the square Ising
model where exact information is available, to which ex-
tent the behavior of short-distance correlations obeys the
asymptotic scaling law. In Table I we quote values of ri
computed from ratios of exact values ' for 6 at different

TABLE I. Values of the critical exponent g which result
from imposing the correlation-function scaling law on critical
correlations in the square Ising model at distances r=(x,y) and
r'=(x', y'}. The rescaling factor is L =

~
r

~
/

~

r'
~
.

K=(Ki,K2, . . . ,K„)~K'( K),
we choose 2n lattice vectors r&, rz, . . . , r„, r~, rz, . . . , r'„
such that r; =I.r, i =1, . . . , n, and calculate an approxi-
mation to the map

K'=R'"'(K, ri)

on the basis of the following system of equations:

(x',y')

(1,0)
(1,0)
(1,0)
(1,0)
(1,1)
(2,0)

(x,y)

(2,0)
(3,0)
(1,1)
(2, 1)
(2 2)
(3,0)

vz
vs
2

g(r, r')

0.250
0.253
0.303
0.261
0.236
0.257
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short distances, at criticality: I.et r=(x,y) and r'=(x', y')
be vectors on the square lattice, with r =Lr'; then g(r, r')
is defined as

ln[G(K„r')/G(K„r)]/InL .

The exact asymptotic value of g is —,
' . From Table I it ap-

pears clear that if one can approximate correlations
reasonably well, albeit at short distances, there is a good
chance of determining meaningful ri values already when
working with just nearest-neighbor interactions.

C. Application to the square Ising model
with nearest-neighbor and diagonal interactions

In this section we combine the technique of high-
temperature-series expansions with the renormalization
group. Suppose we have at our disposal M terms in the
high-temperature series for 6 in the nearest-neighbor
model: I

6(K, r)—= g a (r)K =GM(K,—r) (K-1/T) .
m=1

Consider, then, for given r, r', and L ( r'=i /L), the equa-
tion

GM(K', ')=I," + G (K,r} (1.8)

as the implicit definition of an approximate RG. The
fixed-point curve KL', (g) follows directly from

GM(K', r')/G~(K', r) =L +" .

Analogously, by considering r and r' with r'=r/L', we
obtain a different curve KI (g) and, by group-structure
optimalization, estimates for K, and ri are computed. In
fact, in this simple case with only one coupling K, the
fixed-point curves typically have one nontrivial point of
intersection, which is then identified with (K„g ). The
exponent yT is computed from

L =(B»K')» „e

=I.' '+"[a»-GM(K, r)]» /[~» GM(K', r')]», .

One has to be careful, however. For finite M, both GM
and K'(K, i) Yare analytic. For M~ao, GM develops a
singularity in K =K, (e.g., its derivative with respect to K
diverges logarithmically in the two-dimensional Ising
model ). In order that our estimates of K„g, and yT
converge to the correct answer, it is necessary that the
map EC' remains analytic as M—+oo. Although there is
no guarantee, evidence for this lies in the fact that Pade
approximants, which we will compute for the renormal-
ized interaction K', typically indicate that E' behaves reg-
ularly at and around E,.

In order to extract information efficiently from the
series expansions, we apply the technique of Pade approxi-
mants and compute Pade approximants not only for the
truncated series GM but also for the renormalized interac-
tions. Indeed, it is possible, with some algebraic manipu-
lation, to derive high-temperature series for K itself:

M
K'=—g c~(g)K—:K~(K,g) . (1.9)

m=1
The c~(g) turn out to be polynomials in the variable
L +" and are obtained by direct substitution of (1.9) in

(1.8), such that (1.8) is an identity in every order up to
(and including) M. For our RG maps the polynomials
c (q) are unique and have real coefficients (which need
not be so, in general). We note that, after substitution of
(1.9), (1.8) itself will no longer be an identity because the
left-hand side will contain terms of higher order than M.
Therefore, the map denoted by KM is different from the
RG map which is implicitly defined through (1.8). The
difference should become irrelevant for M~ oo. We call
the map K~ a "RG-map series" and the map defined
through (1.8) an "implicit RG map. " Pade approximants
for implicit RG maps involve Pade approximants for the
GM (cf. Ref. 1), whereas the Pade approximants for the
RG-map series are simply Pade approximants for the E~.

An interesting property of this approach is that we can
construct high-temperature series directly for the renor-
malized couplings without being hindered by proliferation
of interactions. This advantage is lacking in an earlier
high-temperature RG approach, introduced by Betts
et al. ,

15 which has been applied to both statlc15 and, re
cently, dynamic, ' critical phenomena.

In a first approximation we work with one coupling K
and choose ri ——(1,0), rz ——(2,0), and rz ——(3,0), all along a
principal axis on the square 1attice. For the G~ we use
expansions of eleventh order in the variable v (=tanhK).
These series have been published by Fisher and Burford. '

The following equation then defines the implicit RG map
(for d=2):

GM(U', ri)=L "6 (U, r ), (1.10)

TABLE II. Pade table for the critical point E, in the square
Ising model from implicit RG maps with one interaction. The
exact value is 0.441. Here and in the following tables, double
bars (=) indicate cases where the fixed-point curves have only
trivial intersections. Slashes (/) denote cases where Pade ap-
proximants have defects.

5
6
7
8
9

10
11

0.576

0.499

0.471

0.462

0.389
0.392
0.436

0.453

0.455
/
/

0.436

for length rescalings L=2 or 3, and with M & 11 in our
computations. As suggested by the data in Table I, choos-
ing all lattice vectors r; of the same orientation may help
to minimize short-distance deviations from scaling
behavior. When computing Pade approximants for the
GM, implying (1.10) on them, and analyzing the implicit
RG maps, we obtain the following results.

In Table II we present estimates for K, (to be compared
with the exact value K, =0.441). In Table III estimates
are given for yH (=2—g/2). The exact yH is 1.875. Fi-
nally, in Table IV estimates of yT (with exact value 1) are
shown: Below one another are displayed the values of yz.
corresponding to the RG maps with 1.=2 and 3 and the
yz- which can be associated in a unique way to both RG
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TABLE III. Fade, table for the exponent yH in the square Is-
ing model from implicit RG maps with one interaction. The ex-
act value is 1.875.

TABLE V. Fade table for the critical point EC, in the square
Ising model from RG-map series in one interaction. The exact
value is 0.441.

5
6
7
8
9

10
11

1.79

1.84

1.85

1.85

1.64
1.66
1.79

1.86

1.84
/
/

1.80 5

6
7
8
9

10
11

0.424
0.448

0.426
0.385

0.434
0.442

0.454
/
/

maps according to an interpolation procedure developed
in previous work. '

The following remarks apply to Tables I—IV. The de-
gree D of the denominator of the Pade approximants
takes only even values because in the series expansion for
a given correlation function the coefficients of either all
even or all odd powers of u (=tanhK) vanish. For Pade
approximants with numerators of degree N(5 and for
those entries where double bars are displayed, the fixed-
point curves vq (il} and u3 (g), corresponding to L=2 and
3, respectively, do not have a nontrivial intersection. En-
tries with slashes correspond to Fade approximants with
defects. In all entries where numbers are displayed, the
criterion of group-structure optimalization has been used
successfully to select unique values for K„y~, and yT.
The previous remarks apply, until further notice, also to
forthcoming tables.

We now proceed to use RG-map series for the renor-
malized coupling in (1.10). It is straightforward to obtain

TABLE IV. Pade table for the exponent yT in the square Is-
ing model from implicit RG maps with one interaction. The ex-
act value is 1. Below one another for given N and D:
y T(L =2), y T(L =3), and the self-consistent yT.

0 2 4 6

them on the basis of the series expansions' for the corre-
lation functions. With u=tanhK and x =L", for L =2,

v'=xu [1+6u +(16—2x )u +2(23—18x )u

+2(79—156x +4x )u + ]

and, for L =3,
v'=xv [1+12v +48u +2(76—x }u

+2(253 —36x )u + . ] .

Applying Fade approximants to these series, we obtain the
following results for K, (Table V), yH (Table VI), and yz.
(Table VII).

Apparently, these results of RG-map series are, at least
for yT, of lower quality than the results of the previous
implicit RG maps. This is possibly due to the fact that,
when (1.9) is extracted from (1.8), some high-order terms
in the GM are not involved. Therefore, information is left
unexploited. This effect is relatively more important for
smaller M.

Finally, as a last application using only one interaction
K, we have examined a different choice of lattice vectors
in which two orientations are mixed. We choose ri ——(1,0)
and r~2 —(1,1) and compute the corresponding RG-map
series for L =V 2 (x =2"~z).

0.54
0.65
1.50

0.72
0.77
1.11

1.01
1.13
1.70

1.03
1.12
1.55

0.85
0.91
1.25

0.70
0.75
1.09

0.80
0.87
1.29

u'=2xu [1+2u +(5—8x )u +16(1—3x )v

+(59—216x +128x")u + ] .

This transformation is now combined with the RG-map
series for L=2 [involving ri ——(1,0) and r2 ——(2,0)]. The

TABLE VI. Pade table for the exponent y~ in the square Is-
ing model from RG-map series in one interaction. The exact
value is 1.875.

10

0.80
0.83
1.01

0.83
0.85
0.98

0.77
0.80
1.00

5
6
7

9
10
11

1.88
2.02

2.02
1.77

1.99
2.02

2.07
/
/



7338 J. O. INDEKEU, A. L. STELLA, AND J. ROGIERS

results' for K„y~, and yr are somewhat poorer than in
the previous calculations where all three lattice vectors
were parallel. In conclusion, choosing the lattice vectors
parallel to a principal axis on the lattice appears to help
reduce the errors. However, one can readily check that
such a choice generally cuts down the number of terms
available in the series expansions.

Proceeding toward our second approximation, we intro-
duce, in addition to a nearest-neighbor coupling K~, a di-
agonal (or next-nearest-neighbor) coupling Kz. Our first
step is the derivation of two-coupling high-temperature
series for an appropriate set of correlation functions. The
technique we have employed is very similar to the one
outlined by Oitmaa, ' using graphs with multiple edges.
In Appendix A we present the coefficients which we cal-

, culated, up to ninth order (i.e., the coefficients of v w",
with u =tanhK&, w =tanhK2, and 1&m +n &9). We
denote the series expansions by

G~(v, r)= g a „(r)u w",
m+n =1

where v=(u, w).
Choosing the lattice vectors r&, r~2, and rz for L =V 2

[and r~, rv2, r2, and r2~2 ——(2,2) for L=2], we define a
RG map through the following set of equations:

Gm(v', rt) =L "Gm(v, rL, )

G~(v', r~q) =L"G~(v, r~q~ ),
with M&9. The choice of lattice vectors is a compro-

TABLE VII. Fade table for the exponent yz in the square Is-
ing model from RG-map series in one interaction. The exact
value is 1. Below one another for given X and D: y~(L =2),
y~(L =3), and the self-consistent y~.

mise: giving up the possible advantage of parallel lattice
vectors in favor of having more terms in the series expan-
sions.

Working with two sets of equations like (1.11), one for
L =v2 and one for L=2, we apply the criterion of
group-structure optimalization, as outlined in Sec. IB.
We then compute E„y~, y~, and also, in some cases, the
"irrelevant" exponent y2 ( & 0). Our computational
scheme allows us to describe the ferromagnetic regime
( u & 0 and w & 0) of the Ising model with two interactions.
In principle, the analysis could be extended to study the
entire phase diagram, including antiferromagnetic and
layered anti ferromagnetic phases. 0

At this point, implicit RG maps can be constructed
directly through (1.11) where we replace GM, in general,

by its Pade approximant of order M. Remark that this
time we are using Pade approxirnants in two variables.
For constructing these, there exist several techniques. '

We have found most convenient the generalization of the
standard "e algorithm" which serves to evaluate a Pade
approximant numerically in a chosen point (uo, wo). In
our cases, the e algorithm is initialized by computing the
partial sums of the series in triangular form [i.e.,
g~ +„,a „(r)vo wo for a partial sum of order p j.

In the following tables we present our results of the im-
plicit RG analysis with two interactions. Table VIII
shows the estimates for the critical point K, —:K~, . Below
one another are K&, 's for L =V2 and 2. These critical
points are renormalized towards the optimal fixed points
v~z and v2, respectively, which have been determined by
the group-structure —optimalization procedure. Explicit-
ly, they have been found by computing

in[
I
v~{vy) v

In order to measure how well the group-structure criterion
is satisfied, we calculate the percentage

5;.—=200[~ .~(
I
v~2(n')

I
+

I
vz (n" )

I
) l % .

10 1.51
1.57
1.40

1.74
1.66
1.94

1.99
1.87
1.30

1.65
1.69
/

1.81
1.73
1.34

1.83
1.73,
1.18 '

1.83
1.73
2.15

As suggested by previous work, ' 5;„&10% corresponds
to a successful optimalization. Table IX displays 5~;„ for
our implicit RG maps. We note that in several cases
5;„=0. This means that the two fixed-point curves in
the three-dimensional space (u, w, ri) actually have a non-
trivial intersection, leading to complete satisfaction of the
group-structure criterion. These lucky accidents are due
to the fact that the two curves are a priori constrained to
lie in a two-dimensional subspace when the lattice vectors
which enter in (1.11) are chosen in the manner. we used.
Table X shows our results for y~ and Table XI those for
yz. .. Below one another are yr's for L =M2 and 2.

A second method of analysis consists of computing the
RG-map series for u' and w':

9
u'=- g c~j(ri)u'wj,

l+J =1
9

w'= gd, J(q-)u'w~ .
I+J =1

In Appendix 8 we describe how we have calculated the
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TABLE VIII. Fade table for the critical point K, in the square Ising model from implicit RG
maps with two interactions. The exact value is 0.441. Below one another for given N and D:
E,(L =V 2) and K, (L =2).

0.38
/

0.48
0.50

0.44
0.50

/
0.54

0.42
/

0.42
/

0.46
/

0.45
0.45

0.39
0.39

/
0.45

coefficients with the help of a symbol-manipulation com-
puter program. The coefficients themselves, for L =V2
and 2, are given in Appendix C.

After applying Pade approximants with two variables
to the RG-map series, we obtain the following results.
Table XII shows the critical point K&, (cf. Table VIII).
Table XIII gives y~ (cf. Table X) and Table XIV displays

yz (cf. Table XI). In Table XV 5;„ is presented (cf.
Table IX). Note that in all cases 5;„&6%.

The present RG-map series yield Pade-approximant
tables of better quality (i.e., greater stability and smoother
trend of convergence as X and D increase while X=D)
than the corresponding implicit RG maps. Further evi-

dence, therefore, can be found by comparing the stability
of the estimates for the fixed-. point coordinates K~ and
Xz (Ref. 18).

The present analysis is also yields a table of estimates
for the irrelevant exponent y2 which describes corrections
to scaling. Table XVI shows y2 for L=2. The exact
value is —1 (cf. Refs. 5 and 23). The results for L =V 2
are worse (around —3).'

At the end of this section of applications to the square
Ising model, it appears that the results obtained with two
interactions E~ and Ez, and using ninth-order seri|;s ex-
pansions, are more rewarding than those of the eleventh-

order analysis with one interaction. This supports our as-
sumptions pertaining to scaling at short distances and
suggests that further improvement is possible, in the first
place, by adding interactions and, next, by increasing the
order of the series expansions. Considering the calcula-
tional effort involved, however, it is a lot easier to work
with just one interaction, and already then qualitatively
satisfactory results can be obtained.

D. Application to the cubic Ising model
and to the quantum (spin- 2 ) XY model

in two and three dimensions

A summary of the results presented in this section has
been given in earlier work. For the three-dimensional Is-
ing model on a simple-cubic lattice, we choose the lattice
vectors r;=(i,0,0), i= 1, 2, and 3. We use high-T series
of tenth order in U =tanhE, calculated by Fisher and Bur-
ford, ' and perform an analysis of the implicit RG maps
for L=2 and 3.

Table XVII shows the critical point K, (cf. the value
0.222 from conventional high-T-series analysis ). Table
XVIII gives yH (cf. the value 2.48 from field-theoretical e
expansions ), and Table XIX displays yT (cf. the value
1.59 from field theory '): Below one another are the yz's

TABLE IX. Pade table for 5;„(%)in the implicit RG maps for the square Ising model with two in-
teractions.

/
/
2.5
/

47
42

/
/

0.1

/
0.1

0
37
0
0.1

33
17
0

0



7340 J. O. INDEKEU, A. L. STELLA, AND J. ROGIERS 32

TABLE X. Pade table for the exponent y~ in the square Ising model from implicit RG maps with
two interactions. The exact value is 1.875.

0

4
5
6
7
8
9

/
/

2.07
/

1.60
1.90

/
/

1.74
/

1.89

1.81
1.79
1.86
1.86

1.68
1.84
1.86

1.87
1.72

1 ~ 82

TABLE XI. Fade table for the exponent yT in the square Ising model from implicit RG maps
with two interactions. The exact value is l. Below one another for given X and D: yz(L =W2) and

yr(I- =2).

0

0.90
/

0.74
0.62

0.84
0.78

0.63
0.57

0.96
0.73

0.88
0.38

0.68
0.76

0.66
0.62

0.91
0.77

0.96
/

0.40
0.69

0.52
0.37

1.07
0.80

0.80
0.62

TABLE XII. Pade table for the critical point E, in the square Ising model from RG-map series in
two interactions. The exact value is 0.441. Below one another for given N and D: K,(L =V 2) and
Z, (I.=2).

0

/
0.371

0.500
0.476

0.501
0.473

0.397
0.390

0.490
0.488

0.495
0.496

0.261
/

0.419
0.383

0.421
0.438

0.415
0.358

0.417
0.355

0.421
0.399

0.415
0.350

0.443
0.431

0.443
0.430

0.415
/

0.442
0.427

0.417
/
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TABLE XIII. Pade table for the exponent yH in the square Ising model from RG-map series in two
interactions. The exact value is 1.875.

0

3
4
5
6
7
8
9

/
1.83
2.27
2.38
1.78
2.34
2.40

1.54
/
/
/
/

/
1.81
1.82
1.82
1.82

/
/

1.81
1.83

/
1.82
1.83

1.82
1.82

1.83

TABLE XIV. Pade table for the exponent y& in the square Ising model from RG-map series in two
interactions. The exact value is l. Below one another for given N and D: yr(L =V 2) and yz {L=2).

0

1.58
1.56

2.02
1.78

2.19
1.88

1.07
1.07

2.22
1.87

2.39
1.92

1.56
1.76

1.13
1.27

1.17
0.91

1.18
1.17

1.17
1.07

1.12
1.04

1.26
1.11

1.28
1.18

1.24
1.16

1.30
1.23

1.28
1.18

1.27
1.17

TABLE XV. Pade table for 5;„(%%uo) in the RG-map series for the square Ising model with two in-
teractions.

0

3

5
6
7
8
9

/
3.9
1.5
2.3
2.2
2.8
0.9

4.0
/
/
/
/
/

/
5.3
5.6
0.1

1.4

/
/

1.1
2.1

/
1.4
0.9

0.8
1.1

1.3

TABLE XVI. Pade table for the leading correction-to-scaling exponent y2 in the square Ising model
from the RG-map series with rescaling I.=2, in two interactions. The exact value is —1.

0

3
4
5
6
7
8
9

/
—2.15
—3.36
—3.76
—1.24
—6.10
—3.79

—1.05
/
/
/
/
/

/
—1.61
—2.87
—1.19
—1.46

/
/

—1.30
—1.30

/
—2.58
—1.20

—2.12
—1.19

—1.27
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TABLE XVII. Pade table for the critical point X, in the cu-

bic Ising model from implicit RG maps with one interaction.
The expected value is 0.222.

0

TABLE XX. Pade table for the critical point K, in the cubic
quantum XY model from implicit RG maps with one interac-
tion. The expected value is 0.496.

0

3
4
5
6
7
8
9

10

0.475

0.393

0.346

0.313

0.178
0.181
0.196
0.194
0.219
0.223

0.198
0.196

3
4
5
6
7
8
9

1.53

0.749

0.728

0.605

0.411
0.451
0.446
0.420

0.429
0.423
0.423

3
4
5
6
7
8
9

10

2.00

2.39

2.70

1.97
2.03
2.16
2.12
2.34
2.40

2.16
2.14

TABLE XIX. Pade table for the exponent yz in the cubic Is-
ing model from implicit RG maps with one interaction. The ex-
pected value is 1.59. Below one another for given & and D:
yT(I- =2), yz-(L =3), and the self-consistent yT.

0

0.09
0.43
5.83

0.21
0.44
3.20

1.14
1.65
3.39

1.29
1.72
3.13

1.33
1.68
2.85

1.31
1.65
2.80

1.27
1.62
2.82

TABLE XVIII. Pade table for the exponent yH in the cubic
Ising model from implicit RG maps with one interaction. The
expected value is 2.48. for L =2 and 3, and the yz from the interpolation scheme

introduced in earlier work. ' All entries have 5;„=0(cf.
Sec. I C), except where double bars are displayed.

The spin- —,
' XY model for planar magnets and quantum

liquids (e.g. , superfluid He) has been studied extensively
by means of high-T-series expansion in two and three di-
mensions. The reduced Hamiltonian is given by

II(t s I ) = —A ( Isj)lks T=2K g (sf sj"+s~sf),
(-} ''

where the spin components s,", sf„and s,' satisfy the
angular-momentum commutation relations.

In three dimensions the model displays conventional
long-range order of the xy component of the spin below a
critical temperature T, . We perform a RG analysis using
xx correlations on a simple-cubic (sc) and a body-
centered-cubic (bcc) lattice. The lattice vectors are chosen
to be r; =(i,0,0), i= 1, 2 and 3, and r,.~~=(i,i, i), i =1, 2,
and 3, respectively. We use high-T series of ninth order
in X, calculated by Grundke. The results obtained from
the implicit RG maps are the following.

For the sc lattice, Table XX shows J, (cf. the value
0.496 from conventional high-T-series analysis ), Table
XXI gives yII (cf. the field-theoretical estimate 2.48),
and Table XXII displays yz. (cf. 1.49 from field theory ):
yT for L=2, for L=3, and the self-consistent interpola-
tion are below one another.

For the bcc lattice, the Pade tables are of the same qual-
ity as those for the sc lattice. They are reported in Ref.

0.34
0.48
1.93

1.25
1.65
3.00

1.18
1.41
2.38

TABLE XXI. Fade table for the exponent y~ in the cubic
quantum XY model from implicit RG maps with one interac-
tion. The expected value is 2.48.

10

0.44
0.53
1.37

1.30
1.43
1.92

2.68

2.49

2.83

2.62

2.08
2.41
2.33
2.12

2.18
2.14
2.13
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18. We limit ourselves here to present the case %=7 and
D=2, where best agreement is found with the expected
values. We obtain K, =0.343 (0.344 is expected ),
yH ——2.33 (cf. 2.48), and yz (L=2)= 1.21, yT
( L =3)= 1.30, and yT (self-consistent) = 1.67 (cf. 1 49).

In two dimensions, due to the continuous symmetry of
the Hamiltonian, the XY model does not display conven-
tional long-range order at T ~ 0. Nevertheless, the clas-
sical XF (plane-rotator) model exhibits a topological
long-range order at low T. A line of critical points
extends from T=O to T =T„, the vortex-unbinding tem-
perature. Along this line the correlation length g is infi-
nite and the correlation functions decay algebraically, i.e.,

2(yH —d)G-r, with an exponent y~ which varies continu-
ously between ylt ——2 for T=O and yH =1.875 (the Ising
value) for T =T„. The thermal exponent yz is constant
and takes the value yT

——0 ("temperature marginality" ).
For the quantum model, on the other hand, an analo-

gous topological phase transition and critical line are ex-
pected. Quantitative evidence, therefore, from RG cal-
culations and high- T-series expansions, is very limited.

We perform a RG analysis on the triangular and the
square spin- —, XY model. In both cases the lattice vectors
r;=(i,0,0), i= 1, 2, and 3, are chosen along a principal
axis. We use high- T series of ninth order in E, calculated
by Grundke. Our results of the implicit RG maps are
the following.

For the triangular lattice, Table XXIII shows the fixed
point K . In two cases, indicated with double asterisks,
twD fixed points are found. This means that the fixed-
point curves Kz (g) and K3 (g) have two nontrivial inter-
sections rather than one. We have interpreted the lower
K value as an estimate for K„(=J/kT„) and the oc-
currence of a second K' as an indication in favor of the
existence of a line of fixed points. Table XXIV describes
these two cases with double fixed points. One sees that
the exponent yIt corresponding to the lower K is not far
from the value 1.875 expected at T„. The yT exponents
are poor (cf. expected value zero). At the upper K they
are imaginary, except when the rescaling is taken to be —,';
we present the corresponding value as the self-consistent
yr

Table XXV shows our results for ylt at the fixed point.
The expected range is 1.875 (y~ (2. Table XXVI

TABLE XXII. Fade table for the exponent yT in the cubic
quantum XF model from implicit RG maps with one interac-
tion. The expected value is 1.49. Below one another for given
X and D: yr(I- =2), yz. (L, =3), and the self-consistent yT.

0.59
0.74
1.76

0.48
0.68
2.17

0.82
0.82
0.82

1.40
1.78
2.99

2.30
2.22
1.99

1.94
1.97
2.06

1.33
1.71
2.96

1.50
1.79
2.71

1.38
1.72
2.83

1.34
1.70
2.89

0.93
0.96
1.11

presents yT. Below one another are the estimates for
L=2, L=3, and the self-consistent value.

For the square lattice, analogous results are found. '

Again, in two cases, i.e., for (%,D) =(5,2) and (7,0) double
fixed points occur. Table XXVII shows the correspond-
ing E, y~, and yT values. The y~ exponent associated
with the lower K* is again not far from 1.875.

Finally, we remark that in cases where two fixed points
Ki and E2 are found, the corresponding yT's need not
satisfy yz jyT 2 &0 (i.e., a consistency requirement for the
RG flow between two neighboring fixed points) because
Ei and K2 belong to different RG maps (corresponding
to different values of the parameter il ).

TABLE XXIII. Pade table for the fixed point E in the triangular quantum XF model from impli-
cit RG maps with one interaction. In cases where a double asterisk is displayed, two fixed points are
found.

3
4
5
6
7
8
9

0.470
0.475

0.456
2.91

)fc Q

0.186
0.506
0.601
0.626

0.449

0.215
0.446
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TABLE XXIV. Lower and upper fixed points and the corresponding critical quantities for the en-
tries with a doule asterisk in Table XXIII.

N=6, D=2

N=7, D=2

0.71
2.00

0.66
1.58

yH

1.83
2.95

1.76
3.40

yT(L =2)

1.22
/

1.26
/

y~(I. =3)
1.16
/

1.23
/

yT(self-consistent)

0.88
0.52

1.10
2.12

TABLE XXV. Pade table for the exponent yH in the triangular quantum XY model from implicit
RG maps with one interaction. The expected range is 1.875 &yH & 2.

0

3
4
5
6
7
8
9

1.45
1.40

1.39
/
/

2.43
jfc Q

Q )fc

0.53
1.51
1.68
1.69

1.28

0.66
1.28

TABLE XXVI. Pade table for the exponent yT in the triangular quantum XY model from implicit
RG maps with one interaction. The expected value is zero. Below one another for given N and D:
yz(I =2), yT(I- =3), and the self-consistent yT.

0

7

1.28
1.37
1.73

0.88
1.16
2.44

1.23
1.45,
2.28

0.21
0.24
0.85

1.09
1.83
4.2

1.19
1.32
1.85

1.21
1.24
1.37

1.24
1.21
1.07

/
1.14
1.14

1.10
1.97
4.6

/
1.14
1 ~ 14

TABLE XXVII. Lower and upper fixed points and the corresponding quantities for the cases with
double fixed points in the square quantum XYmodel.

N=5, D=2

N=7, D=O

1.15
1.94

0.97
1.09

yH

1.88
2.66

1.37
1.14

y~(L =2)

1.88
/

—4.78
/

yT(I- =3)
1.62
/

—2.62
/

yT(self-consistent)

0.67
1.10

/
2.42
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II. DYNAMIC RENORMALIZATION-GROUP
ANALYSIS OF PAIR-CORRELATION

RELAXATION TIMES

A. The dynamical critical exponent in the Glauber model

Consider a nearest-neighbor Glauber model (or kinetic
Ising model). The time evolution of the probability
P(Is j,t) of a spin configuration Is} at time t is given by
the master equation

+ g Wz( fs j, sj)P(—Is j, sj, t—) .

The transition rates 8 obey, as usual, "detailed balance:"

WJ(Is j)P(Is j)=Wl(Is}, sj)P(Is}—, —sj),
where

P(Is}�)

is the equilibrium probability distribution
expH( [s j )/Z. Because of the detailed-balance condition,
P(Is j) is stationary. In spite of this condition, a lot of
freedom is left for choosing the form of W. In one di-
mension and for a special choice of W, the Glauber model
is exactly solvable (Glauber's solution36). No solutions
have been obtained in higher dimensions. Much attention
has been devoted to the study of the critical slowing down
af the relaxation of the order parameter, characterized by
the dynamical exponent z (or b,:zv, where v is—the static
correlation-length exponent). Exact calculations of z have
been possible only in the one-dimensional model and
at the level of the mean-field theory.

Scaling hypotheses for dynaniical critical phenomena
have been formulated by Halperin and Hohenberg.
Later, i'enormalization-group theory for critical dynamics
has been developed, combining space rescaling
( r +r'=r /L) an—d time rescaling ( t ~t'= t/L'). '

For continuous-spin systems the dynamical RG program
has yielded quantitative predictions for the dynamical ex-
ponent near four dimensions. For lattice-spin systems in
two and three dimensions less progress has been made.
One of the major problems in a microscopic approach is
the generation of memory effects in the renormalization
of the master equation. Only in the most simple cases,
such as the one-dimensional Glauber model and the
infinite-range Glauber model, has an "exact" dynamical
renormalization (reproducing the exact exponents) been
performed.

There have been numerous RG approaches for calculat-
ing the dynamic exponent in the two-dimensional Glauber
model. ' ' The accuracy has been rather limited, howev-
er, due to uncontrolled approximations. Critical analysis
of some of these approaches has shed some light on the
problexns involved * and alternative methods, avoiding
memory effects and proliferation of interactions, have re-
cently been proposed. Most RG approaches to the two-
dimensional Glauber madel have yielded values for z in
the range 1.75 (i.e., the exact lower bound ') &z & 2.3.

For comparison, we mention some of the recent results
from high-temperature series (z=2.125+0.01), Monte
Carlo simulations (z =2.1), finite-size scaling
(z =2.2+0.1), and Monte Carlo RG (z =2.23).55 In three

dimensions the need for accurate RG determinations of z
is less ronounced, because the field-theoretical esti-
mate ' z=2.0 is believed to be reliable. Estimates from
high-T series (Ref. 52), Monte Carlo RG (Ref. 57), and
real-space RG (Refs. 16 and 50) more or less agree with
this number.

AfL (K —K, ), r/L]=L +" 'A(K K„r)—(2.2)

for K=K, and r +oo. Here, we h—ave defined a relaxa-
tion time A as

A(K, r)= f G(K, r, t)dt .

Finally, a scaling law for a (normalized) relaxation time

(2.3)

~(K,r) =A(K, r)/6 (K,—r)
follows from (2.3) and (1.4):

rf L (K K, ), r/L]=L —'r(K EC„r)—(2 4)

for K-=K, and r~oo.
Now we proceed to interpret (2.2) or (2.4) as the impli-

cit definition of a RG map K~K', which, just as in the
static RG, takes the following form in the neighborhood
of the critical point:

K' —K, =L (K K, ) . —
The only difference with the static RG procedure is that
the role of the exponent g is now played by the combina-
tion q —z (working with A) or by —z (working with r).

In analogy with the statics, we praceed ta compute A
and v at short distances in a high-temperature-series ex-
pansion using one or two couplings. Using the standard
formalism for the Glauber model, ' one derives

G(K, r, t)= gs~Ie 's;}P(fs})
Is)

B. Renormalization-group analysis of relaxation times

Consider the dynamic correlation function

G(K, r, t) —= (s;(t)sj(0)),
where r is the lattice vector connecting sites i and j, and
the average is defined as

(si(t)s, (0))=ps;P(Isj)gs P(Is'j, t
~
Is},0) .

Is) Is'I

In this expression, P([s'j, t
~

Is },0) is the probability of
the configuration I s j at time t, if Is} is the configura-
tion at t=0.

For the dynamic correlation function, the following
scaling law applies:

G [L (K K, ), r/L, t/—L']=L" +"6 (K K„r, t), —
(2.1)

for K' =K„r +-oo, an—d taboo. This law also holds for
t=0 where it reduces to the static form (1.4). A time-
independent scaling law can be obtained by taking the in-
tegral over t of (2.1), taking into account that the dom-
inant contribution comes from the long-time domain pro-
vided K =-K, (critical slowing down). One obtains
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and

A(K r) = g sj I W 's; IP( Is I ),
IsI

where

Z=—$ Wj(Is I)(1—pj),

C. Application to the square Glauber model with
nearest-neighbor and diagonal interactions

»

Our first step is to derive two-coupling high-
temperature-series expansions for an appropriate set of re-
laxation times, in the form

8 4

A(v, r)=- g g a „(r)u w",
m =On =0

where m +2n (8 and, as before, u =tanhKi and
w =tanhK2. %'e expand to eighth order in v, but may re-
strict the expansion to fourth order in w, because at the
ferromagnetic fixed point w is typically of order u . This
can be checked, for example, by inspection of the fixed
points in our static RG calculation, where we worked con-
sistently to ninth order in both u and w (for details, see
Ref. 18).

The technique we employ for calculating the high-T
series makes use of the formalism outlined by Yahata and
Suzuki. For the transition rate 8' we choose a standard

1
NN

IVj(IsI)= — 1 sjtanh—~K, ask
k

NNN

X 1 —sjtanh Kz g st .

I

where k(l) labels the (next-) nearest neighbors of sj. The
calculation relies on the high- T expansion for the operator

~—1 y ~—1( V~ —1)k

k=0

where Wo ——W(u =w =0) and V =Wo —W ( V-1/T
for T~ao). When W ' acts on a spin sj, numerous
"clusters" of spins are generated through the action of V
and its powers. Finally, the thermal average of s;W 'sj
is obtained in the form

with spin-flip "operators" pj which act as follows on a
function A of the spins:

pj's ($1»$2» ~ ~ »sj —1»sj»sj +1» )

—A (si»sz». . . »Sj i, sj—»sj+i». . . ) .

Consequently, A can be expressed as a sum of static
(multi)spin correlations.

in u and fourth order in w, rj is a rational number, fj a
function of u and w which results from the action of
powers of V, and nj ——0, 2, 4, or 6 is the number of spins
in the static multispin correlation (nj =0 corresponds to a
factor 1). The calculation of these multispin correlations
has to be done to seventh order (for nj ——2), fifth order
(for nJ ——4), and third order only (for nj ——6), using stan-
dard techniques. ' ' To carry out the final summation
which yields A, we have employed the REDUCE (Ref. 60)
program for symbol manipulation.

The coefficients of the relaxation-time series expansions
are tabulated in Appendix D. Proceeding toward the con-
struction of RG transformations, we work in a first ap-
proximation with one interaction (K) only.

Both scaling laws (2.2) and (2.4) are suitable for imple-
menting the RG. We start with (2.2) and define implicit
RG maps through

A(K', r I ) =L " 'A(K, rt )

for L =@2 and 2, and using eighth-order series expan-
sions and the associated Pade approximants for A.

In complete analogy with the static methods in Sec. I C,
we also construct RG-map series. These are explicitly
given, for L =v 2, by

u'=3xuz[1+10u +(77—99x )u

+(, —2970x )u + ],
and, for L=2, by

u'= —,xu [1+50u /3+(, —99x /4)u4

+(, —2475x /2)u + ],
where x =I," ' and U =tanhK.

The analysis of the implicit RG maps yields qualita-
tively reasonable results for K, and yT, but unphysical
(negative) values for z. (Actually, z is obtained indirectly
from g —z after substituting the exact value —,

' for g. )

The analysis of the RG-map series, however, is more
satisfactory. Taking q= ~, we obtain the estimates for z
shown in Table XXVIII (cf. the expected value z=2).
The results for the critical point K, range between 0.221
and 0.351 (cf. the exact value OA41). The estimates for yT
are poor, except for %=8, D=O, and L =v 2, where

yr ——0.94 is found (the exact value is 1).
The scaling law (2.4) provides different RG maps de-

fined through

r(K', ri) =L 'r(K, rt. ),

TABLE XXVIII. Pade table for the exponent z in the square
Cilauber model from RG-map series in one interaction. The ex-
pected value is around 2.

n.

A(v, r) -=g r~fz(v) g ff sj. P([s I ),
j=1 fsJ i =1

where m is the number of terms relevant to eighth order

/
/
/

I.43

0.8S
6.6S
2.67
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TABLE XXIX. Pade table for the exponent z in the square

Glauber model from implicit RG maps with two interactions.

The expected value is around 2.

TABLE XXXI. Pade table for 5;„(%%uo) in the RG-map series

for the square Glauber model with two interactions.

&0
/

0.24
/

1.45

1.06
0.18
0.55

/
6.2
5.6

3.4
4.5

for L =W2 and 2, and using high- T-series expansions for
r derived from series for A and G. Explicitly, we obtain

r(K, ri)=2(1+9u +65u +1387u /2+ )

r(K, r~z)=3(1+8u +56u +1192u /3+ ),
and

r(K, r2) =3+32u +196u~+1424u6+

Due to the constant terms in the expansions, we cannot
construct RG-map series and perform only the analysis of
the implicit RG maps. The estimates for z are systemati-
cally too small (ranging between 0.57 and 1.05). The re-
sults for K, are reasonable (ranging between 0.212 and
0.362, and improving as N and D increase). The esti-
mates for yr are poor, and in many cases unphysical
(yr &0).

In a second approximation we introduce an additional
next-nearest-neighbor interaction. Starting from scaling
law (2.2), the RG transformations are defined through the
system of equations

A(v', ri)=L" 'A(v, rL ),
A(v', r~2) =L" 'A(v, r~z~ ),

(2.5)

for L =%2 and 2, using series expansions and Pade ap-
proximants to eighth order in u =tanhK, and fourth or-
der in m = tanhK2.

The analysis of the implicit RG maps yields Table
XXIX for z (assuming rl = 4 ). Although these estimates
are not yet close to the expected value z —=2, they are cer-
tainly much better than the unphysical ones (z& 0) found
in the corresponding analysis using only one interaction.
The results for K, and yz are poor, except for N=8 and
D=O, where also z is best. We find in this case
K, =0.495 (L =W2) and 0.462 (L=2), and yr ——1.38

(L =~2) and 1.09 (L=2). The values for 5;„are quite
large (e.g., 27% in the case N= 8, D=O).

Next, we construct, following the method outlined in
Appendix 8, the RG-map series compatible with the sys-
tem (2.5) in the form

8
u'=- g c „(rl—z)u w",

m+2n =1

and similarly a series for w with coefficients d „(ri—z).
The coefficients are listed in Appendix E.

The estimates for z (assuming rI = —,
'

) are presented in
Table XXX. The group-structure optimalization was
quite successful, as the low values for 5m;„ in Table XXXI
illustrate. We have checked' at the fixed points in our
calculations that w is indeed of order u2. Therefore, our
approximate expansion to eighth order in U and only
fourth order in w is self-consistent. Results for the criti-
cal point K&, =—K, are given in Table XXXII: below one
another are K, for L =V 2 and 2. The estimates for yr
are systematically too large (ranging between 1.56 and
2.22), Altogether, the present analysis is better than the
corresponding one with only one interaction, in spite of
the poor values for yz. .

In a last application, we implement the RG maps using
the scaling law (2.4) for the relaxation time r. The RG
equations now read

r(v', ri) =L 'r(v, rL ),
r(v', r~~) =L 'r(v, r~z~ )

for L =v 2 and 2. Here, r is a ratio of series expansions
(in two couplings) for A and G. This ratio can, in general,
not be written as an expansion. Instead of the Pade ap-
proximants for r, we use the ratios of Pade approximants

TABLE XXXII. Pade table for the critical point X, in the
square Glauber model from RG-map series in two interactions.
The exact value is 0.441. Below one another for given X and D:
K,(L =W2) and K,(L =2).

TABLE XXX. Pade table for the exponent z in the square
Glauber model from RG-map series in two interactions. The
expected value is around 2. 0.241

0.255

/
0.90
1.73

0.33
1.05

0.442
0.293

0.421
0.331

0.326
0.302
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for A and G. This leads to a complicated analysis with
ill-behaved RG maps. A few reasonable values for z can
be obtained. '

III. CONCLUDING REMARKS

The methods presented in this work constitute an origi-
nal and efficient way of combining the modern
renormalization-group strategy with the technique of
series expansions already in use for decades in the study of
critical phenomena. Even if these new methods of series
analysis cannot yet compete in accuracy with the more
traditional approaches, for many problems (such as the
two-dimensional X'F model discussed here) they certainly
can play an important complementary role.

Besides the practical advantages, the results presented
here have some general implications worth mentioning.
They suggest that the success of a real-space
renormalization-group strategy is connected with the ex-
istence' of nearly asymptotic scaling properties of the
correlation functions at short distances (see, e.g., Table I).
The absence of such properties in a given model would
make a renormalization-group approach (based as usual
on drastic truncation of the interaction space) completely
powerless. It is the scaling at short distances which enti-
tles us to represent the exact fixed point approximately in
a low-dimensional parameter space.

The dynamic renormalization approach presented here
has appealing features due to its phenomenological char-
acter: memory effects as well as proliferation of interac-
tions are avoided. Approximations sensibly improve
when an additional interaction is included. However, the
degree of accuracy of the results is not yet satisfactory, in-
dicating that short-distance scaling is less pronounced in
the dynamic than in the static properties of the correla-
tion functions in the Ising model.

Systematic improvement of numerical accuracy for
both statics and dynamics should be expected when the

'

number of interactions on the lattice is increased. In par-
ticular, the inclusion of a third interaction being either the
four-spin coupling or the third-nearest-neighbor coupling
would be meaningful and could perhaps be technically
feasible still. Another direction of systematic improve-
ment would, of course, be to go to higher orders in the
high-temperature-series expansions, but our experience in

the static renormalization indicates that this may be less
rewarding than including additional interactions. One
should realize, however, that both ways of improving ac-
curacy would considerably increase computational burden.
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APPENDIX A: HIGH-TEMPERATURE SERIES
FOR CORRELATION FUNCTIONS IN TWO

INTERACTION VARIABLES

The following Tables XXXIII through XXXIX show
the series coefficients calculated for seven pair-correlation
functions G(v, r) in the square Ising model with two in-
teractions (nearest-neighbor and diagonal) which are
denoted by v=(u, w) =(tanhK&, tanhK2).

APPENDIX B: ALGEBRAIC CONSTRUCTION
OF RG SERIES EXPANSIONS

Here we present the algebraic manipulations which un-
derlie the construction of the series expansions for the re-
normalized couplings. We restrict ourselves to the case of
two variables (u and w).

Consider the equations

~mn V™W =X Qmn V M
m+n =1 m+n =1

b'„u' w'"=x g b „u w",
m+n=1 m+n =1

where all coefficients are known and real, and x is an un-
known parameter [e.g., x =I. +" as in (1.11)]. The fol-
lowing solution is proposed:

TABLE XXXIII. Coefficients of G(v, r) for r=(1,0).

W w'

v
2

3

v4

v'
6

7

8

v'

1

0
2
0
4
0

12
0

42

0

12

44
0

196
0

0
10
0

58
0

328
0

1988

0
28
0

244
0

1988
0

72

946
0

10598

0
188

0
3476

0
482

0
12 234

0
1236

0

0
3140
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TABLE XXXIV. Coefficients of G(v, r) for r=(2,0).

U

2

3

U4

V5

6

7

V8

V'

1

0
6
0

16

46
0

0
0

12
0

56
0

200

816

2
0

48
0

318
0

1620
0

w

0
0

172
0

1536
0

10712

w4

4

558

6672
0

w'

0
0

1732
0

27 040

10
0

5160
0

0
0

15012

32
0

w'

TABLE XXXV. Coefficients of G(v, r) for r=(3,0).

w' w'

V

2

3

V4

V5

V6
7

U8

V'

0
0
0
1

0
12
0

48
0

152

0
0
0

24
0

180
0

756
0

0
6
0

174
0

1332
0

6816

0
24
0

808

7508
0

0
66
0

3248
0

36 756

0
192

0
11 824

0

0
486

0
40 534

0
1272

0
3204

0

TABLE XXXVI. Coefficients of G(v, r) for r=(4,0).

w

U

V2

V

4

V5

V6

7

U8

V9

0
0
0
0
1

0
20
0

118
0

0
0
0
0

40
0

456
0

2432

0
0

. 12
0

484
0

4564
0

0
0

120
0

3128
0

31 200

6
0

504
0

15 532
0

0
0

1896
0

66984

24
0

6236
0

0
0

19440

76
0

TABLE XXXVII. Coefficients of G(v, r) for r=(6,0).

U

2

3

4

U5

V6
7

U8

U9

0
0
0
0
0
0
1

0
42
0

0
0
0
0
0
0

84
0

1872

w

0
0
0
0

30
0

2220
0

w

0
0
0
0

840
0

27 828

0
0

90
0

8640
0

w'

0
0

840
0

54 120

20
0

3720
0

w

0
0

14760

w'

120
0
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CklX U W
k+1=1

kIXUW .
k+l =1

(82)

The coefficients ckt and dkt are determined in order that
(Bl) may be an identity in every order in u and w, as fol-
lows. After substitution of (82) in (81), the first equation
in (81) can be written as

agpgg g c gt(x)u "w g d~(x)u w =x g a~„u w"
m+n =1 k I=0 p, q =0 m+n =1

(83)

The second equation in (Bl) can be written similarly, replacing a by b. Here, the c kt and d kt are defined as follows:
For k+l&0,

ckt(x)= g ff c;, (x) m! Q (n; z!),
I(t J )Ills f =1 (

(84)

and d kt(x) is analogous, replacing c by d. The summation in (84) is over all sets I(i„j,)Ikt of m couples (t,j ) of
natural numbers, which satisfy

m m

[(i„j,)Ikt= ~ (i„j,)H IO, l, . . . , k J X I0, 1, . . . , 1I; r =1,2, . . . , m; g i, =k; g j,=l and i, +j, &0

The integer nt; 1 t is the number of times that the couple (i„j,) occurs in the set t(i„j,) Ikt. On the other hand, for

k =1=0,

c pp(x) =d pp(x) =5
An equation like (83) can be rearranged to become

00 00 s t QO

u'w' g a'„g g c kt(x)d," k, t(x)=x g u'w'a„,
s+t=1 m+n =1 k=0' =0 s+t=1

where s —k & 0 and t —I )0.
Finally, we obtain a nonlinear system in the coefficients ckt and dkt by writing the equations

(85)

xa„= g a' „g c kt(x)d," k, t(x), xb„= g b' „g c kt(x)d," k, t(x)
m+n =1 k I=0 m+n =1 k, l =0

for all s and t, after substituting (84) and (85). The following equations then result:

xato=aoidio(x)+a ipcio(x), xaoi ——aoidoi(x)+a tocot(x), xbio —— ' xbot = ' ' '

xa i i ——a otd t t (x)+a ioci i(x)+2a ptd to(x)dpt (x)+2a 2pc to(x)col(x)+a it t'cto(x)dpi (x)+cot (x)dip(x) ]

etc. These equations can be generated by, e.g., a FORTRAN program. Then, the unknowns ck~ and dk~ which are polyno-
mials in x are found analytically with the help of the REDUCE (Ref. 60) program for symbol manipulation. After finding
the solutions up to a given order M, they are substituted in (Bl) as a check. Equation (Bl) should then be identically
satisfied up to order M

It is important to note that in our cases several ak~ and bkI are zero. As a consequence, the equations above can be
solved one by one and the solutions are real and unique.

TABLE XXXUIII, Coeffirients of G(v, r) for r=(1,1).

U

U

3

U4

U'
6

7

US

U9

0
0
2
0
4
0

10
0

32
0

1

0
10
0

34
0

132
0

596

0
0

40
0

200
0

1120
0

2
0

134
0

984
0

7612

0
0

428
0

4376
0

4
0

1302
0

18 056

0
3856

0

12
0

11 114

42



32 STATIC AND DYNAMIC REAL-SPACE RENGRMALIZATION. . . 7351

W

TABLE XXXIX. Coefficients of 6{v,r) for r=(2,2).

W

V

2

3

V4

v'
6

V
7

V8

V9

0
0
0
0
6
0

24
0

76
0

0
0
6
0

76
0

342
0

1328

1

0
36
0

518
0

2780
0

0
0

166
0

2644
0

17 510

6
0

584
0

11 548
0

0
0

1912
0

46 104

16
0

5856
0

0
0

17 376

46
0

TABLE XL. Coefficients of A(v, r) for r=0 (autorelaxation
time).

W W W4

V2 64 1120
3

17 528
9

912 74 368
9

1480
3

87 952
9

V8 91 808
27

TABLE XLI. Coefficients of A(v, r) for r=(1,0).

W W

3

v' 174
3842

3

12

252
8936

3

56
5530

3

228

TABLE XLII. Coefficients of A(v, r) for r=(2,0).

1
2

V4

0
3

50
436

3250

816
27 424

3

W

6
312

205 910
27

W

0
5192

3

60
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TABLE XLIII. Coefficients of A(v, r) for r=(1,1).

w

TABLE XLIU. Coefficients of A(v, r) for r=(2,2).

W W4

1
2

0
6

60

462

3392

2
56

884
256 808

27

0
1094

3
72 232

9

22
5464

3
2

V8

30
360

79 976
27

3
24

624
222064

27

0
204

175 790
27

12 116
9

50

APPENDIX C: HIGH-TEMPERATURE SERIES FOR STATIC RG TRANSFORMATIONS

Presented here are the nonzero coefficients cI,&
and dk~ of the series expansions for the renormalized couplings

9 9
u'=- g ck~(x)u w' and w'=- g dk~(x)u "w~,

k+1= 1 k+1 = 1

vvhcre

u =tanhK&, w =tanhKz, and x =L~ (d =2) .

For L=v2,
co, =x, czo —2x, dzo ——x, do&

—2x (1—x), cz, ——2x (5—2x),

cos =2x (3x —4x +1), dq~
——4x (3—2x), c@&——4x (1—2x), cqq =4x (9x —16x +10),

d~=2x (3—4x)~ dye =2x (3x —20x +24) do4 =4x ( —2x +3x —2x + 1)

c4~ ——2x (39x —gox +17), czar
——2x ( —14x +102x —140x +67),

co5 ——4x(6x"—14x +15x —gx+1), d&& ——gx(3x —12x+7),
dz, =4x ( 16x '+ 30x z —44x +43), c6o ——2x (30x' —32x +5),
czz —gx ( 21xs+ 123x~ —160x +25),

czar

—4x (60x —168x +300x —284x + 107},

d6O
—2x (11x z —16x +8), dye ——2x ( —98x +240x —328x + 159},

dqq
—2x(17x~—16gx +264xz —308x +279), do6 ——2x( —15x +34x —40x +28x —12x+5)

c,—4x ( 85xs+357x& —27()x +33}, cq) ——6x (169x~—620x + 1308x —1224x + 164),

cps ——2x ( —Sgx 5+ 708x~ —1620x +2310x —1932x +651),

co7 —4x(15x6—Sgxs+114x —120x +72x —26x+3)~ d6i=gx( —34x +glx 59x +25}

dye —16x (17x —138x +234x —219x +96),

d&&
—4x( 90xs+238x —4gQx +546x —516x +433), cso=gx( —29x +57x —3x +4}

c6z ——4x (561x —2344x +4257x —2456x +280),

c~——8x ( —145x s+ 1584x —3976x +5790x —4428x +547),

c„=g„(105x' 464x'+1326x' 2O26x'+2181x' —1580x +482),

dso —2x ( —72xs+ 102x ~ —56x + 23), d6z ——2x (409x —2592x +3816x —2064x +810),

d~ —4x ( —467x s+ 1618x"—4140x s+ 5277x —4048x + 1668),

dzs —4x (39x6—518x5+1162x~—1848x + 1875x —1610x +1290),

dos —4x( 21x7+7gx —15gx +1'74x —112x +51x —20x+8),

cs) —4x (643x ~ —2452x +2829x —1286x + 149),

css ——4x ( —1175x5+ 11 327x~ —2g 536x +3S 169x —16916x + 1903),

c~5 =4x (129gx 6—7514x5+27 885x ~ —50496x +57 756x —38 230x +4514),
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cz7 =2x ( —6x +2404x —9524x +22 192x —29 932x +28 866x —19440x +S557),

cp9 —2x ( —6lx —12x +724x —1632x + 1832x —1276x . +588x —184x +21 )

dst =8x (137x —608x +603x —266x + 102),

d63 ——Sx ( —668x +2803x —6852x +7395x —3502x + 1339),

d45 ——16x(117x —1408x +3509x —5966x +6288x —4259x +1690),

dzz ——4x( —336x +1404x —4060x +6174x —7120x +6210x —4896x+3753) .

For L=2,

czp =xi cpz =2x& dpz =xi cz& = 12x, dz& ——6x, c4p ——6x, czz ——4x ( 12—x)

c~ ——4x (1—2x), d4p ——2x (3—x), dzz ——4x (9—2x), d~ ——2x (3—4x),
c4&

——Sx (7—3x), cz3 ——4x (43 —24x), d4i ——4x (19—12x), dz3 ——2x (83—48x),

c6p ——2x (3x —12x +8), c4z ——6x (6x —84x +53), cz4 ——6x (13x —84x +93),
cp6 =2x (30x —32x + 5) d6p =24x ( 1 —x)~ d4z =2x (3x —264x +259)

dz4 ——Sx (3x —50x +73)y dp6 ——2x (1 lx —16x +8), c6$ ——8x (27x —92x +25),
c43 ——8x (117x —547x + 192), cz5 ——4x (270x —600x +433), d6i ——2x (18x —256x +171),
dg3 ——4x (72x —860x ~661), dz5 ——4x (99x —392x +478), csp ——2x (54x —120x +23),
c6z ——4x ( —7x +1044x —2334x +405), cq4 ——12x ( —14x +921x —2250x +SS6),
cz6 ——4x ( —85x + 1242x —2174x + 1290), cps ——Sx ( —29x +57x —33x +4),
dsp=4x( 2x +9x —34x +19), d6z=4x( —16x +324x —1310x +695),
d44 ——4x ( —49x +1026x —4434x +2887), dz6 ——8x ( —34x +249x —659x +732),
dps ——2x ( —72x + 102x —56x +23), csi —24x( —7x + 168x —253x +34),
c63 —8x ( —252x +6459x —9672x + 1339), c&5 ——Sx ( —765x +9753x —16 946x +3380)

czz ——4x ( —1392x +5718x —7504x +3753), dsi ——8x ( —48x +219x —364x +166),
d63 ——2x ( —1176x +9954x —18 944x +8755), d4s ——24x ( —204x + 1313x —3330x + 1921),
dz7 —12x ( —288x +797x —1424x + 1448)

APPENDIX D: HIGH-TEMPERATURE SERIES FOR RELAXATION TIMES IN TWO INTERACTION VARIABLES

Tables XL through XLIV show the series coefficients calculated for five relaxation times A(v, r) in the square Glauber
model with two interactions (nearest-neighbor and diagonal) which are denoted by v=(u, w) =(tanhK&, tanhKz). Trivial
zeros are not shown.

APPENDIX E: HIGH-TEMPERATURE SERIES FOR DYNAMIC RG TRANSFORMATIONS

Presented here are the nonzero coefficients cki and dki of the series expansions for the renormalized couplings
8 8

u'= g cki(x)u "w' and w'= g dki(x)u "w',
k+2l =1 k+2l =1

where u =tanhKi, w =tanhKz, and x =L" '(d=2).

For L =~2,
cpl =x czp =3x dzp =3x /2 dpz =3x ( 1 —x), czar =x (28 —9x)

I

cp3 ——x (7x —18x + 1 1), dz& ——6x (4—3x), c&p ——3x(10—9x ), czz ——x (63x —198x +, )

d4p
——x(25 —27x), dzz ——12x(x —14x +13), dp4 ——6x(2x +4x —1 ix+5),

c4, i
——x (207x —834x +442), cz3 ——x (63x +660x —1539x +, ),
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dgI ——12x (6x —57x +34), ding
——4x (108x +.252x —969x +649)/3,

c6p ——3x (81x —240x +77), c42 ——x (5103x +44 550x —103221x +36 116)/9,
d 6p ——x ( 567x —4320x + 1744)/8, d 42 ——x (93474x +217 863x —894 888x +411 820) /108,
c6I ——2x (26 244x + 160704x —285 52Sx +64 202 )/27,
d 6I

——x (7803x + 11 646x —43 146x + 13 712)/3, esp ——x (2430x +8010x —10 503x + 1696),

dsp =x ( 1 1 7 18x +8415x —27 432x +6500) /4

For I.=2,

c20 ——3x /2, cp2 ——3x, d02 ——3x /2, c2) ——24x, d2I ——1', c4p ——25x,

cq2 ——3x (52—9x/2), cp4 ——3x (10—9x), d&p ——3x (5—9x/4), d22 ——3x (34—9x),
dp4 ——x (25 —27x), c4I ——12x (34—9x), c2~ ——4x (649—324x)/3, dq~

——24x (13—9x),
dp3 —2x ( 3029—1 944x) /9, c6p ——x ( 1 89x —1080x + 1744)/8

c42 ——x (15 309x —339 228x +411 820)/108, d6p ——45x (4—Sx),

dg2 ——x (729x —96 714x +87 895)/27, c6i ——2x (1701x —10 152x +6856)/3,
d6I ——8x (729x —24543x + 13 879)/27, c8p ——Sx (945x —3096x + 1300)/4,

d8p ——x (6561x +29 160x —414 396x + 159952)/108 .
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