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Molecular dynamics calculation of elastic constants
for a crystalline system in equilibrium
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We have performed molecular dynamics calculations for a crystalline system in equilibrium to
show that by using a fluctuation formula involving the internal stress tensor it is possible to calcu-
late the elastic constants at the ambient temperature with ease and accuracy. The method also al-
lows one to calculate the elastic constants when the system is subjected to an arbitrary external
stress.

The molecular dynamics method developed by Parrinel-
lo and Rahman' furnishes a means for studying structural
phase transformations in solids; such transformations are,
of course, non equilibrium processes. However, this
molecular dynamics method can also be used to calculate
the equilibrium properties of a system; the trajectories
generated by the equations of motion belong to an ensem-
ble with constant enthalpy 0, constant thermodynamic
tension t, and constant particle number N, or briefly an
(H, t,N) ensemble; the equilibrium properties may there-
fore be calculated by using the fluctuation formulas of the
(H, t,N) ensemble. The details are given in Ref. 2 where it
has also been shown how the formulation becomes
relevant for the theory of finite elasticity.

It was shown by Parrinello and Rahman (see Ref. 2 for
details) that the (isentropic or adiabatic) compliance ten-
sor Sjkt is given in terms of the strain fluctuations by the
equation

k~T
&(~;t~kt) =&~rj~kt &., &~;, &.,—&ekt &.,= S,ktBv V IJ

where e,j is the strain tensor, -and V the equilibrium
volume of the N particle system.

However, it has been found by Sprik et al. and by oth-
ers that from the point of view of convergence to statisti-
cally significant results Eq. (I) is unsatisfactory.

We present in this paper an alternative approach which
shows much greater promise of producing desirable re-

sults even with molecular dynamics runs of only moderate
length.

In Ref. 2 we discussed not only the (H, t,N) ensemble

but also the (E,h, N) ensemble; the latter is a generaliza-
tion of the familiar (E, V, N), i.e., the microcanonical, en-

semble; in the (E,h, N) ensemble the 3 && 3 matrix h, to be
defined below, is kept constant; this keeps not only the
volume (=deth) constant but also holds fixed the shape
of the periodically repeating molecular dynamics cell con-

taining the X particles.
In the (E,h, N) ensemble, as shown in Ref. 2, the adia-

batic elastic constants C,jkI can be expressed in terms of a
fluctuation formula involving fluctuations in the internal

stress tensor P. Several other average quantities also in-
tervene and one needs to give some notational details.

The constant matrix h has as its columns the elements
of the vectors a, b, and c which span the molecular
dynamics cell; h =(a,b, c). For simplicity we assume the
potential energy of the system to be pair-wise additive; the
pair potential is denoted by u (r). Let P denote r 'u' and

f denote r (u" —X). The internal stress tensor is then

1+ P f (rab )Xabixabj Xabkxabl
Vp b av

(3)

Equation (3) is obtained from results in Ref. 2 by using
appropriate values of the averages involving particle mo-
menta only. The more general relation which gives the
elastic constants for a system under stress will be given
below [see Eq. (4)]. One further remark before we present
the results of our calculations.

Under an arbitrary state of stress the molecular dynam-
ics cell will adopt a certain shape and volume (using the
Parrinello-Rahman form of molecular dynamics); in addi-
tion the particles in the cell will take on positions which
can be quite varied when there is more than one atom per
Bravais unit cell. To make use of Eq. (4) for determining
elastic constants under an arbitrary state of stress an effi-
cient procedure is to make an (H, t,N) calculation first at
the desired stress and temperature; this will furnish an
average for h and for all particle positions x, . These are
then the input values in the (E,h, N) calculation of the
elastic constants at the same temperature using Eq. (4).

ij QPaiPaj i ~a g ~(rab )XabiXabj
a b &a

p„. being the momentum components, x,b the vector join-
ing a and b of length rab, and V the volume containing
the X particles.

Then the adiabatic elastic constant C;Jk~ is given, under
conditions of zero stress, by

Vp 2%kg T
Cij kl ~(Pjul ) + '(~ l~j k + oi'k ~j I )

k~T Vo
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TABLE I. Elastic constants in units of Nk&T/Vo for our molecular dynamics run and Cowley's
Monte Carlo run. Cowley's results are for a reduced temperature of 0.3 while the temperature of the
molecular dynamics run was 0.298. For the C&2 and C44 elastic constants we give only the symmetry-
averaged quantity. For argon (eo ——.120 K, o =3.4 A), Nk&T/V =11.7 MPa. The value of PV/Nk&T
was —0.03+0.03 for the molecular dynamics run while Cowley gives 0.02+0.02 for his Monte Carlo
run. The time step At was equal to 0.005 which for argon corresponds to about 10 ' sec. The reduced
density of the system was 0.934.

Time Cz2 C3
( C)1+C22+ C33 )

3

( C»+ C»+ C»)
3

( C44+ Css+ C66)

3

50002 t
100005t
15 000ht
200002 t
25 000ht
30000ht
35 000ht
40000ht

187.6
185.3
185.9
185.4
185.8
185.4
185.0
185.1

179.8
180.9
181.5
181.5
181.6
181.8
181.6
182.3

185.9
184.1
182.6
182.6
181.9
182.2
182.1
182.6

Molecular dynamics data
184.4+4. 1

183.4+2.3
183.3+2.3
183.2+2.0
183.1+2.3
183.1+2.0
182.9+ 1.8
183.3+ 1.5

93.7+2.8
93.7+ 1.6
94.2+ 1.7
94.5+ 1.1
94.2+0.9
94.7+0.9
94.9+0.9
94.8+ 1.0

84.4+2.3
82.4+ 1.1
82.4+ 1.9
82.8+2.2
83.0+ 1.6
82.7+ 1.4
83.0+ 1.5
82.9+ 1.4

=25 0006.t

'Reference 5.

Monte Carlo data'
182.0+0.5 94.1+0.5 82.2+0.2

TABLE II. Specific heats at constant volume and pressure in
units of Nk~ and adiabatic and isothermal bulk moduli in units
of Nk& T/Vo for our molecular dynamics run and Cowley's
Monte Carlo run. These data correspond to the same conditions
as the data in Table I.

Time

5 000ht
10000ht
1S000ht
20000ht
25000ht
30000ht
35 000ht
400006t

Molecular
2.82
2.86
2.83
2.81
2.85
2.78
2.80
2.77

B,

dynamics data
3.53 123.9
3.63 123.6
3.55 123.9
3.51 124.0
3.59 123.8
3.45 124.3
3.49 124.1

3.43 124.3

99.0
97.5
98.7
99.3
98.2

100.2
99.6

100.4

=25 000ht

'Reference 5.

Monte Carlo data'
2.82 3.53 123.4 98.6

We have employed Eq. (3) in various (E,h, N) molecu-
lar dynamics runs and find that the elastic constants are
determined accurately and efficiently. In Table I we
show, along with other quantities, the three elastic con-
stants C», Cz2, C33 calculated using Eq. (3) for a molecu-
lar dynamics system consisting of 500 particles forming a
fcc lattice and interacting via the nearest-neighbor
Lennard-Jones (12,6) potential. The calculation is for zero
pressure and a reduced temperature of about 0.3. Various
other thermodynamic quantities were also calculated dur-
ing this run and are displayed in Table II.

Cowley has calculated various quantities in a Monte
Carlo calculation using 108 particles interacting with the
nearest-neighbor Lennard-Jones potential at a temperature

of 0.3. Cowley does not give C~~, C22, and C33 separately
but only their average - which he identifies as
C)) ——(C))+Cp2+C33)/3. Cowley's calculations corre-
spond to roughly 25000 molecular dynamics time steps
according to the estimates made in Ref. 3.

The formula used by Cowley to calculate elastic con-
stants may be obtained from Eq. (3) by identifying CJki as
the isothermal elastic constants and interpreting averages
as canonical ensemble averages. In this way all momenta
can be integrated out of the resulting equation, which is
then in a form suitable for a Monte Carlo calculation.
The resulting formula for the elastic constants in the
canonical, or ( T,h, X), ensemble was first given by Squire
et al. (see also Wallace et al. ). A direct transformation
between the (E,h, &) fluctuation formula (3) and its
( T,h, X) counterpart can be obtained by using generalized
ensemble theory. W'e shall discuss this latter point in de-
tail in a later paper.

It is clear from the results of Table I that Eq. (3) fur-
nishes a very efficient method for calculating elastic con-
stants in molecular dynamics. The error quoted, for the
symmetry averaged C~~ in our calculation, is found from
the mean-square deviation of the three numbers which
make up the symmetry averaged C». Cowley's error was
determined by breaking the Monte Carlo chain into seg-
ments and calculating the quantity ( C~ ~ +CQ2+ C33 )/3
for each segment. The relative efficiency of the molecular
dynamics and Monte Carlo calculation of elastic constants
needs to be investigated.

Looking in detail at our calculation shows that if one is
only interested in 5% accuracy for the elastic constants
then the molecular dynamics calculation need only be run
for 2000 time steps. The other two elastic constants, C&2
and C~4, as well as other thermodynamic variables like
specific heats, showed this same rapid convergence and
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TABLE III. Elastic constants for our system under tensile loading in units of XkBT/Vp. The
stretch of the system is 5% along the [001]direction. The temperature of the system is 0.299. The ouiy
component of the stress that is nonzero is the 33 component where the 3 axis is parallel to the [001]
direction. As the system is stretched its area perpendicular to the [001] direction decreases. The re-
duced density of the system is 0.909.

Time

5 000ht
100006,t
150006,t

C11

180.6
180.6
179.5

C22

181.9
179.4
178.7

Molecular dynamics data
107.2 123.6 59.2
106.2 122.9 62.5
104.7 121.2 61.6

Cz3

60.7
61.9
60.9

49.0
50.7
51.1

Css

48.7
49.5
50.0

101.7
102.1
104.1

+ ~ab Sabi Sabj Sabng Sa
b&a av

(4)

where M = —(V/2)h 'I'h' ', s,s; is a scaled coordinate
related to the real coordinate by x,b;

——h;Js,bj, 6 is the
metric tensor G =h'h, ho is value of the matrix for the
case of zero stress, and h is its value when the system is
under the prescribed stress. The values of ho and h to be
used in Eq. (4) are obtained by carrying out appropriate
(H, t,N) runs as already discussed above.

In Table III we show the calculation of the elastic con-
stants using Eq. (4); the system was stretched by about
5% along the [001j direction by the application of a suit-
able tension. For argon this load would be 62 MPa for
nearest-neighbor interactions. The rapid convergence and

precision.
The generalization of Eq. (3) to the case of a system

with nonzero stress applied to it has the form
—I —1 —1 —1

~Oh Oip h Oj q ~ Olr ~ Oms Cpqrs

5(M,iMI )+2NkBT(G ;1Gil '+-Gl, IGJ.1)--
kgT

accuracy of this calculation was the same as the previous
case of zero stress, Table I. Notice that the elastic con-
stants for this calculation show the necessary tetragonal
symmetry Th. e differences between the elastic constants
in Table I (zero stress) and Table III (finite stress) are re-
lated to the higher-order elastic constants of the material.

The ( T, h, N) ensemble fluctuation formula for elastic
constants has the same form as Eq. (4) except that we
must identify the elastic constants as isothermal and the
averages as canonical ensemble (T,h, N) averages. On
performing the momentum averages in the (T,h, N) for-
mula corresponding to Eq. (4) one obtains a result suitable
for calculating elastic constants at finite stress in a Monte
Carlo calculation. The results in this paper are, apparent-
ly, the first accurate calculation of elasctic constants using
molecular dynamics.

We shall publish a more detailed discussion of our cal-
culations in a later paper.

One of us (J.R.R.) thanks H. W. graben and M. J.
Skove for helpful discussions and the Research Corpora-
tion for support of this project.
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