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The recently reported magnetic properties of amorphous (a) Mn-Zr alloys exhibited two remark-
able and unexpected results. First, while Ni, Co, and Fe display no local magnetic moment when
alloyed with Zr in metallic glasses, Mn has a local moment in a—Mn-Zr. Second, the existence of
the Mn local moment does not result in a spin-glass interaction. These results can be understood by
the study of the magnetic properties of @a—Cu-Zr-Mn alloys presented here which shows that the ab-
sence of spin-glass interaction in a—Mn-Zr is not due to the amorphous state but to a mixing of
the Zr and Mn d bands. This explanation suggests that a spin-glass interaction should exist when
the transition-metal host for Mn displays a low density of d states at the Fermi level (Er). Indeed,
among transition metals, W has the lowest density of d states at Er, and W-Mn alloys exhibit a
spin-glass transition. The susceptibility of this new spin glass was measured in low ac field and in
both low and high dc fields. The spin-freezing temperature (Tsg) increases essentially linearly with
Mn content up to 34 at. % Mn where massive antiferromagnetism sets in.

I. INTRODUCTION

- We recently reported' the magnetic properties of amor-
phous (a) Mn-Zr alloys which exhibited two remarkable
and unexpected results. First, while Ni, Co, and Fe
display no local magnetic moment? when alloyed with Zr
in metallic glasses, Mn has a local moment in a—Mn-Zr.
Second, despite the existence of a Mn local moment, no
spin-glass interaction could be detected in amorphous al-
loys with 1—67 at. % Mn. What is meant here by the ab-
sence of spin-glass interaction is that while in Cu-Mn,
Ag-Mn, etc. there exists a distribution of exchange wide
enough and strong enough to lead to spin freezing into a
random configuration, in a—Mn-Zr the distribution may
be wide enough but the overall exchange is too weak to
give ordering. In order to understand whether the absence
of a spin-glass interaction is caused by amorphousness or
by an interaction between the Mn and Zr d states, a study
of the magnetic properties of a—Cu-Zr-Mn alloys will be
presented here. Indeed, Cu-Mn is an archetypical spin
glass® and the disappearance of the spin-glass interaction
in the ternary alloys with increasing Zr content should
shed some light on the absence of such interaction in
a—Mn-Zr. 1t is, by the way, doubtful that the absence of
spin-glass interaction in a—Mn-Zr alloys is due to amor-
phousness, since amorphous Au-Si-Mn alloys displayed
spin-glass transitions very similar to those of crystalline
Au-Mn.*

The present study is divided in two parts. The first
part deals with the ternary a—Cu-Zr-Mn alloys and
shows the dependence of the spin-freezing temperature
(Tsg) and of the manganese spin state as a function of Zr
content at fixed Mn content. The second part consists of
an extensive study of the magnetic properties of a new
spin-glass alloy: W-Mn.

II. EXPERIMENTAL PROCEDURE

All the Cu-Zr-Mn and Ti-Mn films were sputtered
from arc-melted master alloy cathodes onto sapphire sub-
strates mostly at 260 K and in a few cases at 77 K. The
W-Mn films were sputtered from three different types of
cathodes: a grooved tungsten rod with manganese molten
in the grooves, a manganese disk with a variable number
of tungsten wires wrapped around, and pressed powders.
In the latter case both 325 and 100-mesh powders were
used, tumbled and pressed in the form of a disk. The re-
sulting disk which crumbles easily was consolidated by
sintering for 1.5 h at 1100°C in a hydrogen atmosphere.
The W-Mn films were deposited at 260 and 77 K. The
sputtering powder was 15 W (1500 V, 10 mA) for films
deposited at 260 K and 2.25 W (1500 V, 1.5 mA) for films
deposited at 77 K. Mo-Mn films and Cr-Mn films were
sputtered from pressed powder cathodes prepared in a
similar manner to the W-Mn cathodes. The structure of
the films was established by x-ray diffraction and their
composition was determined by x-ray fluorescence
analysis calibrated by atomic absorption analysis.

The deposited films were then scraped with a sapphire
slide in order to avoid magnetic contamination. The sus-
ceptibility of the resulting flakes was measured in a high
dc magnetic field using the Faraday method, in a low dc
field (3 Oe) in a susceptometer using a superconducting
quantum-interference device (SQUID), and in a low ac
field (4 Oe) at 10 kHz.

III. EXPERIMENTAL RESULTS
AND DISCUSSION

A. Study of ternary (Cu;_,Zr, )o.oMny ; alloys

The major results of this study are shown in Fig. 1,
which displays the well-known susceptibility cusps
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FIG. 1. Temperature dependence of the ac susceptibility as a
function of the amount of substituted Zr in (Cu;_,Zr, )o.oMng ;.

characteristic of a spin-glass interaction for a crystalline
film of the archetypical Cu-Mn spin-glass® and for amor-
phous Cu-Mn-Zr films. Since, as shown in Fig. 1, the ter-
nary amorphous (Cu;_,Zr,)ooMny; alloys display a
spin-glass transition for x <0.2, it is clear that the ab-
sence of spin-glass interaction in a—Mn-Zr cannot be
linked to the amorphous state. This point will be further
discussed in the discussion of the magnetic properties of
crystalline Ti-Mn alloys. Furthermore, it is also clear
from Fig. 1 that the spin-glass cusp has almost vanished
when 20 at. % Zr is substituted for Cu. This is further
discussed in Fig. 2, where one notices that with increasing
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Zr the spin-state (S) decreases smoothly from that of
Cug oMny ; to that reported! for Zry oMng ;. On the other
hand, the spin-freezing temperature (Tsg), which corre-
sponds to the maxima in the susceptibility curves of Fig.
1, remains constant for amorphous films up to the disap-
pearance of the spin-glass transition which occurs for Zr
concentrations larger than 20 at.%. The constancy of
Ts; reflects the fixed Mn concentration, and the decrease
in S can be understood in terms of the decrease in the Mn
moment by the mixing of the unfilled Mn and Zr d bands.
This latter point can be further reinforced by the sum-
mary of magnetic parameters obtained by the Faraday
method listed in Table I.

The data described in Table I pertain to two different
types of ternary alloys: for substituted Zr concentrations
of 5 at. % and more the films are amorphous; when less
than 5 at. % the films are crystalline even when deposited
at 77 K. However, as shown in Table I, the magnetic
properties vary smoothly with increasing Zr concentra-
tions irrespective of the structural state of the films. Only
the binary CugoMng; alloy displays a high positive
Curie-Weiss temperature (®) as previously reported”$ and
a low Van Vleck—temperature—independent contribution
Xo- Even a small 2.5 at. % Zr substitution increases X, to
a large value similar to that reported for a—Mn-Zr al-
loys.! The low value of X, for Cu alloys is due to the
filled Cu d band, and the increase in X, with Zr substitu-
tion is due to the presence of an unfilled Zr d band.
Indeed, a progressive increase of X, with increasing Zr to-
wards the value of pure Zr has been previously reported in
Cu-Zr alloys.? But the most striking effect shown in
Table I is the progressive decrease in p.g (pesr and © are
determined from the high-temperature slope of a Curie-
Weiss fit over the temperature range AT specified in
Table I) with increasing Zr concentration, and below a
value of p.y of approximately 3.9up (S=~1.5up) the spin-
glass interaction disappears. It is clear from Table I that
this effect is independent of the structure of the film since
an amorphous film with 5 at. % Zr substituted has the
same p.y value as a crystalline film with 2.5 at. % Zr. At
a concentration of 50 at. % of substituted Zr, the magnet-
ic properties of the ternary alloys become similar in all
respects to the binary a—Mn-Zr alloys:' i.e., as the Curie-
Weiss fit is extended to lower temperatures both p. and
® decrease while the temperature-independent contribu-
tion X increases. This reflects the antiferromagnetic pair-
ing of many Mn spins at low temperatures. One should
note from Table I that such a behavior is not observed in
the ternary alloys with x <20 at. % which display a spin-
glass transition (Figs. 1 and 2). A comparison of the mag-
netic properties of the two amorphous ternary alloys with
x =20 at. % Zr and x =50 at. % Zr (Table I) clearly es-
tablishes that the disappearance of the spin-glass transi-
tion in @—(Cuy_,Zr, )o.oMng ; and the absence of a spin-
glass transition in @—Mn-Zr is not caused by the amor-
phous structure but by a decrease in the Mn spin-state as
a result of the mixing of Zr and Mn d bands.

Another interesting point revealed by the data shown in
Fig. 2 is the opposite behavior of films and the master al-
loy cathodes used in their deposition: In the latter case
Tsg increases while S remains essentially constant with
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TABLE 1. Magnetic properties of (Cu;_,Zr, )o.sMny ; alloys.

Zr content x Tp? Deft -0 Xo X300k AT®
(at. %) (K) (ug) (X) (10~¢ emu/mol) (10~% emu/mol) (K)

0° 260 4.33 -30 89 987 150—350
4.45 —24 58 100—350

4.67 —16 —-0.7 75—350

2.5¢ 260 4.39 3 704 1470 60—300
442 4 695 50—300

4.49 6 670 40—-300

2.5¢ 77 4.18 0 308 1056 60—300
4.24 2 291 50—300

4.29 4 279 40—300

5 260 4.51 -7 236 1140 50—300
4.50 -7 242 40—300

10 260 4.31 1 195 963 80—380
4.32 1 194 40—380

4.39 3 170 25—380

15 260 4.20 3 369 1110 50—300
4.20 4 360 40—-300

4.26 5 349 30—300

20 260 3.87 10 240 845 80-310
3.87 10 240 40-310

3.84 9 247 25-310

3.97 13 208 15-310

50 260 2.59 18 248 507 40—-300
2.47 12 271 25—-300

2.32 6 304 10—300

*Temperature of deposition.
®Temperature of Curie-Weiss fit.
“Crystalline films; all other films are amorphous.

increasing Zr concentration. This results from the fact
that Zr is insoluble in both Mn and Cu and, consequently,
in these phase-separated cathodes, increasing Zr implies
an increasing Mn-to-Cu ratio, which leads® to an increase
in Tsg. This result stresses the necessity of obtaining
single-phase alloys by film deposition. This point is fur-
ther demonstrated in Fig. 2 by the values of S and T
for the 2.5 at. % Zr crystalline film which fall in between
those for crystalline CugoMng ; and those for the amor-
phous alloys films.

The absence of a spin-glass state has also been observed
in Ti-Mn films. Contrary to the Mn-Zr films,! these

films are crystalline. X-ray diffraction reveals that the
Ti-Mn films are a solid solution of Mn in Ti with an [011]
preferred orientation. Consequently, the absence of spin-
glass interaction which is now observed in single-phase
crystalline alloys is again attributed to a mixing of Mn d
states with partially filled Ti d band. This point is sup-
ported by the high-field magnetic properties of crystalline
Ti-Mn alloys shown in Table II, which can be seen to be
very similar to those a—Mn-Zr alloys.! Indeed, as the
Curie-Weiss fit is restricted to lower temperatures, both @
and p.g decrease while X increases. Furthermore, similar
to a—Mn-Zr alloys, increasing the Mn content increases

TABLE II. Magnetic properties of various Mn alloys.

Tp* Deft -0 Xo X300 K AT®

(K) (up) (K) (10~ emu/mol) (10~ emu/mol) (K)
TigyMnys 77 2.45 30 218 623 40—300
1.80 6 590 10—100
TisoMnsg 77 1.04 17 2510 2860 20—-300
CrgoMnyg 260 1.19 45 652 1150 50—300
Cr 260 1.09 43 382 810 50—300
Mog,Mng 260 3.89 7 561 .0 1067 10—-300
Wo1Mng 260 5.23 1 6.4 1062 20—300

*Temperature of deposition.
®Temperature of Curie-Weiss fit.
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the antiferromagnetic pairing, as shown by the decrease in
Petr and the increase in X,

In conclusion, the absence of a spin-glass interaction in
certain Mn—transition-metal (TM) alloys (TM=Ti,Zr) is
caused by a mixing of the Mn d states with the partially
filled TM d bands. Such mixing effect cannot obviously
take place in the canonical spin glasses Cu-Mn, Ag-Mn,
and Au-Mn because the host TM’s (Cu, Ag, and Au) have
a full d band. However, one may still observe a spin-glass
interaction even when the host TM has a partially filled d
band, as long as the density of d states at the Fermi level
is small. A measure of this density of d states is the
specific-heat parameter y, which is 3.36 and 2.77 mJ/g-
at. K2 for Ti and Zr, respectively, but is minimal for ele-
ments in column VIB: 1.42, 1.83, and 1.01 mJ/g-at. K?
for Cr, Mo, and W, respectively.7 In particular, this sug-
gests W as the most likely candidate for a spin-glass alloy
with Mn because the density of d states is a minimum at
the Fermi level, and may, therefore, not perturb the Mn d
band. This possibility will be examined in the next sec-
tion.

B. A new spin-glass alloy: W-Mn

The W-Mn films, whether deposited at 260 or 77 K, are
a crystalline solid solution of Mn in W with a [110] pre-
ferred orientation. Using the single diffraction peak of
the films as an interpolation between the W(110) peak and
the Mn(330) peaks yields a Mn concentration within 10%
of the concentration obtained by atomic absorption
analysis.

The possibility that the low density of W d states may

55 W-128at. % Mn
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FIG. 3. Temperature dependence of the ac susceptibility as a
function of applied dc magnetic field.
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FIG. 4. Temperature dependence of the ac and dc suscepti-

bilities; the dc susceptibility was measured in both zero-field-

cooled and field-cooled modes. One should also note that the dc

susceptibility was obtained from M /H and not from the slope
of the M, H curve.

not perturb the Mn d band is supported by the data
shown in Table II. Indeed, the high p.r and the low X,
value measured on Wq;Mny are very similar to the corre-
sponding values for Cu-Mn alloys (Ref. 3 and Table I).
As a result, W-Mn alloys exhibit a spin-glass transition
(Figs. 3 and 4). Figure 3 displays the typical ac suscepti-
bility peak and the rounding off of the peak by the appli-
cation of a dc magnetic field. One may notice that even
with Hy =0 the peak is still somewhat rounded. This
smearing of the peak is undoubtedly due to the fact that
the films are sputtered from fairly inhomogeneous
cathodes, which results in a composition spread of about
+10% from the average composition quoted for a given
film. Since, as shown in Fig. 5, dTsg/dCp,~1, such a
concentration spread could easily account for the 2—3 K
width of the peak shown in Fig. 3. The typical irreversi-
bility displayed by spin glasses is depicted in Fig. 4:
When cooled in zero field, the low-field (H =3 QOe) dc
susceptibility is identical within experimental error to the
ac susceptibility; when cooled in a field, the dc susceptibil-
ity becomes irreversible, although the spin-glass peak is
still observable. The irreversible data shown in Fig. 4
(H 001 =3 Oe) represent the instantaneous measurement of
the susceptibility after cooling in 3 Oe to a given tempera-
ture. Removing the cooling field results in a slow decay
of the irreversible magnetization with time. The decay
was observed over a period of 10 min. One notices also in
Fig. 4 that the field-cooled curve and the zero-field-cooled
curve diverge above Tsg. This could arise either from the
compositional inhomogeneity of the films discussed above
or from an upward curvature at low field of the M-
versus-H curve. The spin-glass properties of the W-Mn
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system are summarized in Fig. 5. The value of Tgg de-
pends only weakly on Tp: Films deposited at 77 K have
a lower Tsg than films deposited at 260 K, but the con-
centration dependence of Ts; remains essentially the
same. The antiferromagnetic pairing increases with in-
creasing Mn content as shown by the decrease in p. up
to 34 at. % Mn, where the spin-glass state disappears to be
replaced by massive antiferromagnetism.

Since Cr and Mo also display a low density of d states
at the Fermi level (although appreciably higher than W),
one should also seek a spin-glass interaction in Cr-Mn and
Mo-Mn alloys. However, no such interaction was found
in either alloy. In the case of Cr, which next to W has the
lowest density of d states, it is not surprising since the
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host is itself antiferromagnetic. Indeed, as shown in Table
II, the magnetic properties of CrgoMn,, are very similar to
those of pure Cr and are strongly antiferromagnetic: low
Per and high negative ® and high X, values. This is in
agreement with the antiferromagnetic behavior previously
reported in bulk Cr-Mn alloys.®® In the case of Mo,
which has the highest density of d states in column VIB
(approximately twice that of W), the magnetic properties
of Mog,Mng (Table II) are intermediate between those of
W-Mn and those of Mn-Zr. Like Mn-Zr, Mo-Mn has a
high X, value and, interestingly, the value of p. for
Mog,Mn, is precisely the value where the spin-glass in-
teraction vanishes in (Cu;_,Zr,)ooMny,; alloys (see
x =20 in Table I). Consequently, only W has a low
enough density of d states to leave the Mn d states unper-
turbed.

IV. CONCLUSIONS

The absence of a spin-glass interaction in Mn-Zr and
Mn-Ti alloys as well as the disappearance of this interac-
tion in Cu-Mn-Zr alloys with increasing Zr concentration
has been linked to a mixing of the Mn and Zr or Ti par-
tially filled d bands. This model has led to the discovery
of a new spin-glass system: W-Mn. The spin-glass in-
teraction can exist in this system because, although W
also has a partially filled d band, the density of d states at
the Fermi level is minimal.
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