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Theory for the nucleation of a crystalline droplet from the melt
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An expression is derived for the nucleation rate of a crystalline solid from its melt. In particular,
the dynamical prefactor for the nucleation rate is obtained, using Langer s field theory of nucleation.
The analysis makes use of the formalism of Ramakrishnan and Yussouff, as extended to solid-melt
interfaces by Oxtoby, Haymet, and Harrowell. The theoretical result can be tested experimentally.

I. INTRODUCTION

In this paper we shall derive an expression for the rate
at which crystalline droplets nucleate from a supercooled
liquid matrix. Nucleation, the most commonplace of
first-order phase transitions, has been the subject of con-
siderable interest recently. ' Homogeneous nucleation in-
volves the decay of a metastable state, e.g., a supersaturat-
ed solution, by the spontaneous occurrence of large
thermal fluctuations, that is, through the formation of
droplets of the stable phase. Droplets which are larger
than a critical size grow, and thus the stable phase results.

A description of this process requires a dynamical
theory. The classical theory of Becker and Doring has
two main features: a phenomenological description of the
critical droplet, and a Smoluchowski equation for the ki-
netics of a cluster of a given size. These ideas have been
generalized and extended in statistical physics. Cahn and
Hilliard have obtained a description of the critical drop-
let through an examination of the saddle point of the
coarse-grained free-energy functional. A first-principles
theory of the kinetics of nucleation, which generalized
earlier work by Landauer and Swanson, has been provid-
ed by Langer. We should also note that many experi-
mental ' and numerical studies" of metastable states
have been undertaken.

These theories, either explicitly or implicitly, apply to
systems where crystal structure is unimportant, for exam-
ple, liquid-vapor systems. An early theory for nucleation
in solid-melt and solid-solid systems, which is based on
the Becker-Doring theory, is due to Turnbull and Fisher. '

Qur purpose here is to extend Langer's theory of nu-
cleation to solid-melt systems, and so to generalize the
earlier work of Turnbull and Fisher. It is worth noting
that a fundamental question, which we shall not address,
concerns the origin of the crystal structure from the in-
teratomic potential. Instead, that crystal structure is sim-
ply assumed from the beginning, following work which
we discuss below.

An equilibrium statistical-mechanical approach to
freezing, that is, the solid-melt transition, was first given
by Kirkwood and Munroe. ' This involved an approxi-
mate solution to the equation for the density in the
integral-equation hierarchy. A self-consistent solution
was found for the first-order phase transition from melt
to solid. Since the analysis involved uncontrolled approxi-

mations (e.g., replacing the pair-correlation function by its
liquid-state form), however, the implication of their re-
sults was not clear. Recently, Ramakrishnan and Yus-
souff' ' have been able to reformulate the freezing
problem in a manner somewhat analogous to the early
work. They introduce order parameters corresponding to
the crystalline structure of the solid phase. ' Then, by
treating the solid as an inhomogeneous fluid, they obtain a
form for the free energy by standard liquid-state methods.
Although they assume the crystal structure, a partial ex-
planation of the origin of that structure is provided by an
examination of three-body correlation functions. Their
results, for body-centered-cubic lattices like sodium and
face-centered-cubic lattices like argon, are in reasonable
agreement with experimental work.

This theory has been extended in a series of papers by
Oxtoby, Haymet, and Harro well' to describe the
solid-melt interface. They obtain an expression for the
surface tension, and, in particular, an expression for the
free energy of a critical droplet, in the manner of Cahn
and Hilliard. The work of Oxtoby et al. appears to have
certain limitations, however, which affect the present
work. Basically those limitations are as follows. Because
the crystal structure is assumed in the theory, some of the
behavior intrinsic to a crystal is poorly represented.
Hence, for example, surface reconstruction cannot
presently be handled. Such effects are thought to be
unimportant for solid-melt systems, but this means that
the theory cannot be extended to, e.g., the study of solid-
solid nucleation. To handle these effects would require a
rather substantial generalization of the equilibrium
theories of Refs. 14—20.

Herein, we concentrate our efforts on the kinetics of
nucleation in the solid-melt system. Thus, our treatment
is complementary to the work of Harrowell and Oxtoby
on the free energy of a droplet. We obtain the rate at
which crystalline droplets nucleate from the melt. That
expression can be tested'experimentally. The theory is
probably best applicable to the study of the alkali metals
such as sodium, potassium, and rubidium, to which the
Ramakrishnan-Yusouff theory has already been success-
fully applied. The results are presented in a quite general
form, however, and should be relevant to a wide class of
solid-melt systems. The outline of the remainder of this
paper is as follows.

In Sec. II we briefly review some of the results of
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Langer's field theory of nucleation, and the formalism of
Ramakrishnan and Yussouff, of which we shall make use.
The dynamical prefactor for the nucleation rate is calcu-
lated in Sec. III. Following the program of Ramakrish-
nan and Yussouff, we continue to treat the solid as an in-
hornogeneous fluid. The circumstances under which this
is justifiable, and the limitations of such a treatment, are
discussed in the text. In Sec. IV the result for the statisti-
cal prefactor is presented, following which we present the
expression for the nucleation rate. The predictions of this
result are qualitatively sensible. The feasibility of an ex-
perimental, or computer-simulation, test is discussed. Fi-
nally, we examine the limitations of our approach and dis-
cuss directions for future research.

II. BACKGROUND

remainder of this section, we discuss some formal results
of the theory of metastable states of which we shall make
use.

We briefly review some of the results of classical
theory ' before discussing Langer's field theory of nu-
cleation. In the droplet model the free energy of a spheri-
cal droplet of radius R is written

4~+ 2~ g 3Qp
3

(2.3)

where o is the solid-melt surface tension and AI is the
free-energy difference, per unit volume, between the crys-
talline solid and the melt. From Eq. (2.3), small droplets
will minimize the free energy by getting smaller, while
large droplets will get larger. The critical droplet size R*
at which a crossover occurs is given by

The order parameters in the Ramakrishnan-
Yussouff' ' formalism for the solid-melt transition are
introduced in the following way. The density p of the
solid is written as

p(r)=pi (1+q)+ QPGe' (2.1)
6

from which one obtains

(2.5)

where p~ is the density of the liquid, g is the fractional
density change upon melting, [P~ j are the Fourier coeffi-
cients of the solid, and [ GJ are the reciprocal-lattice vec-
tors of the crystalline solid. Since g and PG vanish in the
liquid phase and are nonzero in the solid, they are identi-
fied as the order parameters. A free energy is then con-
structed by expanding in the quantity [p(r) —p~] in a
density-functional theory. The input to the theory is pro-
vided by the known liquid-state properties (that is, the
structure factor) and the crystallographic basis for the
solid.

Oxtoby, Haymet, and Harrowell' have generalized
this approach to allow for inhomogeneities. In their treat-
ment,

v) ~q(r)

+g —,'&G IG ~PG I'
0

(2.2)

In Eq. (2.2), f is the (gradient-free) bulk free energy calcu-
lated by Ramakrishnan and Yussouff, ICO and [EG[ are
temperature-dependent constants, and 0 is the unit vector
in the Cx direction. From this, Oxtoby, Haymet, and Har-
rowell have obtained the surface tension' and, in par-
ticular, the free energy of the critical droplet for nu-
cleation.

A shortcoming of this approach is evident immediately.
Because the crystal structure of the solid is built into the
theory, there is no mechanism for any reconstruction of
the crystal. We will return to this point later in this pa-
per, since it is the major limitation of our results. For the

PG~PG(r)
The free energy which is obtained can be written in the
following way:

3

b,F(R*)=
(b.I )

(2.6)

Roughly speaking, then, the probability that a fluctuation
corresponding to a critical droplet (which will grow and
form the stable phase) will occur is exp[ —~(R ")/kz T]
where kz is Boltzmann's constant and T is temperature.
The rate at which droplets nucleate is proportional to this
factor.

A more rigorous approach has been given by Cahn and
Billiard, where the free energy at the saddle point, corre-
sponding to the critical droplet, was calculated. Their
treatment avoids the local equilibrium assumptions impli-
cit in Eq. (2.3) above (i.e., the assumptions that the free
energy can be decomposed into two additive parts and
that the interface has no significant thickness). Harrowell
and Oxtoby have extended the approach of Cahn and
Hilliard to the free energy given by Eq. (2.2) above

A first-principles field-theoretic approach to nucleation
has been given by Langer, who generalized the earlier
work of Landauer and Swanson. In his theory, the nu-
cleation rate I involves the analytic continuation of the
free energy into the metastable state. ' One way to ex-
press the formal result is that

—cled' (R )/k~ TI =KQoe (2.7)

In Eq. (2.7), ~ is the free energy at the saddle point
which was discussed above. The quantity Qo is called the
statistical prefactor. A formal expression for it is given in
Refs. 5—7. Essentially, Qo gives the amount of phase
space accessible for a critical droplet fluctuation. Thus, it
is proportional to the volume of the system. It will be dis-
cussed further in Sec. IV.

The quantity in Eq. (2.7) most interesting for our
present purposes is a. This is called the dynamical prefac-
tor, since it gives the initial growth rate for a critical
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droplet. In the following section we derive an expression
for a..

Conservation of momentum implies that the velocity
field u(r, t) satisfies

III. THE DYNAMICAL PREFACTOR
C}

at
mp(r)u (r, t) = —V P. , (3.1)

To calculate a for the crystalline droplet nucleating
from the supercooled melt, we will follow the related
work by I.anger and Turski2&, 25 and K.awasaki26 concern-
ing liquid-vapor systems. Our analysis, as noted earlier,
makes use of the dynamical formalism appropriate for an
inhomogeneous fluid. Before beginning our deriva-
tion, it is useful to discuss the physical rationale for this.

As the critical nucleus grows, its kinetics principally in-
volves thermal diffusion from the surface of the solid
droplet into the liquid. Since it is this diffusion into the
melt which we want to describe, rather than diffusion into
the solid, it is reasonable to treat the problem by consider-
ing the dynamics of a nonuniform fluid. Another way to
put this is as follows. By simplifying the dynamics of the
solid droplet in this manner, we will, of course, obtain a
poor description of intrinsically crystalline dynamical
properties, such as transverse sound waves and Rayleigh
surface waves. These are, however, of negligible impor-
tance compared to the modes in the liquid matrix; excita-
tions of the solid are unlikely because they involve wave
numbers of order 1/R, as compared to excitations in the
liquid, which involve wave numbers of order 1/L (where
L is the volume of the system). This is in agreement
with the intuitive picture that the droplets grow by diffus-
ing latent heat into the supercooled melt rather than back
into the droplet. An explicit demonstration of this for a
liquid-vapor system is given in Ref. 24. This is not to say
that our treatment gives a complete description of the
solid-melt surface properties during nucleation. In fact,
our analysis has some important limitations which we
shaH discuss later.

To derive an equation of motion for the time-dependent
radius of a droplet (following Turski and Langer ) we
must first obtain a set of "boundary conditions" for the
long-lifetime thermodynamic variables near the solid-melt
interface. These conditions implicitly contain the equa-
tion of motion for the nucleated droplet, as we shall see.
Firstly, from the Navier-Stokes equation, the solid-melt
surface tension is introduced. Next, by integrating the
continuity equation, the velocity of the crystalline
droplet s interface is obtained. Thirdly, from considera-
tion of the equation of thermal conduction, the latent heat
at the nonequilibrium interface is introduced. Finally, the
nonequilibrium Gibbs-Thomson condition for the tern-
perature field is obtained from the behavior of the chemi-
cal potential at the interface. We begin by considering the
Navier-Stokes equation.

where m is the mass, and P is the pressure tensor, where
we are neglecting viscosity. The derivation proceeds by
considering the quasistationary limit, where Bmpu/Bt=O,
and separating P into two parts: a bulk piece, which is
well behaved at the interface, and a surface piece, which is
sharply peaked at the solid-melt interface, but vanishes in
either of the two bulk phases. This will lead us to the
analogue of the Laplace-Young condition in the solid-
melt system for the pressure differential over an interface.
Our derivation will be somewhat schematic, since these
manipulations are already well known from the study of
liquid-vapor interfaces.

We will simplify our analysis by considering a small re-
gion of the droplet's surface. Then we can introduce
Cartesian coordinates, r—:(x,y, z), of which we will choose
the z axis to be orthogonal to the interface. The z com-
ponent of Eq. (3.1) then gives

Pbulk B Psurface
Bz Bz

(3.2)

P, Pi f dzp—(r)——B 5F
z=0 Bz 5p

d p(r) B 5F ~ 5F
z=o p( Bz 5g G 5pG

(3.4)

where the second approximate equality follows from Eq.
(2.1). (The effects of temperature are not present in the
integrand, because they are not surface effects, and so
they appear implicitly on the left-hand side of the equa-
tion. ) Linearizing Eq. (3.4), we have

where P is the zz component of P. We have ignored off-
diagonal parts of the pressure tensor since the liquid state
cannot support a shear, and shear waves in the solid are
irrelevant, by virtue of the argument given at the begin-
ning of this section. It can be shown that the surface part
of the pressure can be written as

Bp surface

=p(r) F(g,p, T)—, (3.3)
Bz Bz 5p r

where 5/5p denotes a functional derivative, and F is the
surface part of the free energy (to simplify notation, we
will now drop the "surface" superscript). Thus, integrat-
ing Eq. (3.2), using Eq. (3.3), over the interface (which we
will assume to be a small region located about z=O) we
have

p, p, = fdz fdr'P—, p(r) B 5F, 5F5g(r')+ g 5pG(r')e
pI 3z 5g5g . 6 5p 65pG

(3.5)

where 5g and 5pG are the small variations about which q and p are linearized in the interfacial region. They will be dis-
cussed below. Cross terms involving B f/BrIBpG have been ignored to simplify notation; they do not affect the deriva-
tion. There are no 5 I'/5p G5pG terms in the free energy. ' Integrating this equation by parts, and making use of
the form of p(r) from Eq. (2.1), we have
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dpGdg + PG
dz 6 dz

5q(r')+ g 5pG(r')e6F, 5F
6g 5g 5p 65pG

(3.6)

The contribution from the gradient of exp(i G.r) has been
neglected in comparison to the gradient of pG, which
should be large in the surface region. Also, that term
clearly does not involve a variation at the interface.

We now identify the variations of g and pG with the
excitations corresponding to a uniform translation of the
interface. Such a translation will leave a fiat interface in-
variant, while it will correspond to the most simple
growth mode of a spherical droplet. For example, we
write the fluctuation in g as

5ri=q(z +g) ri(z)=—(de/dz, (3.7)

where g(x,y, t) is the displacement of the interface. Simi-
larly,

Finally, we Fourier-transform the x-y plane with the
kernel exp(iq„x+iq~y) and obtain from Eq. (3.9), using
Eq. (3.10) and the form of F given in Eq. (2.2),

P, P~-—gq f dz f dz' Ko

dPG dPG
(3.12)

The terms involving f and gradients with respect to z van-
ish for the following reason. The solution for two coexist-
ing phases separated by a flat interface is implicitly given
by

'6F 5F
5p 6~g dp G /dz . (3.8)

In principle, the two g s in Eqs. (3.7) and (3.8) will be dif-
ferent. Nevertheless, since the interfacial region has been
assumed to be of small extent, this difference is negligible.
Using these expressions in Eq. (3.6) above, we obtain

d 6F d 5F=0 and
dz 5g(z) dz 5pG(z)

(3.13)

P, P~= g f—dz f—dr'
5r)5q dz dz'

5 F ~PG ~PG+
5p G 5pG 8z dz

(3.9)

Since the vanishing contributions in Eq. (3.13) are propor-
tional to the q=0 limit of the integrand of Eq. (3.9), we
obtain the result given by Eq. (3.12). The term in the
large parentheses of (3.12) is, however, the Oxtoby-
Haymet-Harrowell surface tension cr, ' which we have
simplified somewhat. Thus, we have

P, P(=gq o, — (3.14a)
The terms of order exp(i G r), with nonzero G, are negli-
gible because they are rapidly varying in comparison to
the other contributions. A specific approximation, which
we shall use subsequently, clarifies this. We will assume
that the reciprocal-lattice vectors at the surface of a grow-
ing droplet are, on average, randomly oriented (or, to be
more precise, this applies to the vectors on the surfaces of
an ensemble of growing droplets). Thus,

GG=(GG)=-,'I (3.10)

at the surface of the droplet, where I is the unit tensor and
the angular brackets denote an ensemble average. This as-
sumption limits us to systems where there is a negligible
anisotropic contribution to the surface tension (this is the
case in, for example, sodium ). It will give an inadequate
description of a crystalline solid where faceting, or strong
anisotropy, plays an important role in the phase transi-
tion, as is the case in solid-solid nucleation. However, it
should be a reasonable approximation in the solid-melt
system, except possibly at very large undercoolings. In
any case, from Eq. (3.10) and a cumulant expansion, we
obtain

eiG R (eiG R) e —6 R /2 (3.11)

at the droplet's surface, where R—:Rr, and 6=
~
G~.

The last inequality follows because G is of the order of a
lattice constant, and R is large.

or, since gq is the curvature of the interface,

Ps —Pl 2o /R (3.14b)

for a large spherical droplet of radius R. This provides
the equation of state for the interface, which is usually
called the Laplace-Young equation. It should be noted
that Eq. (3.14) is the analogue of the solution of the eigen-
value problem at the droplet interface, given by Langer
and Turski for the liquid-vapor system. Furthermore, it
is now implicit that we are considering an isotropic sur-
face tension, -since the droplet is spherical, so we have
made the approximation noted in Eq. (3.10) above. An
anisotropic surface tension will lead to a nonspherical
droplet, as determined by, for example, the Wulff con-
struction. ' Of course, averaging over an ensemble of crit-
ical droplets, which would be randomly oriented in the
melt, will lead to some averaged value of that surface ten-
sion. Zia and %'allace have discussed some of the ways
in which this can affect a first-order phase transition.

Equation (3.14) is not an unexpected result from this
formalism. . It does show, however, some of the limita-
tions of our results. In principle, the Laplace- Young
equation for a solid-liquid interface should involve the
surface stress o.'. This is identical to the surface ten-
sion o. in a liquid-vapor, or binary fluid system, but there
can be differences at a solid interface. One reason for this
is that the surface can cause a "reconstruction" of the
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bulk, so that the pressure deep within the crystal is not the
equilibrium pressure. This effect is not naturally present
in this formalism, since we assume a crystal structure.
The surface is modeled only by decreasing the intensity of
the Bragg peaks due to the G's near the interface. Thus,
strictly speaking, the result given above is only true in the
limit

t
C7 —0

0
(3.15)

Gibbs has suggested that this may be a reasonable ap-
proximation in the limit where the solid can be considered
incompressible, which is indeed the limit we are consider-
ing. In any case, the effect of a non-neghgible
[1—(o'/o)] on nucleation would be of interest, particu-
larly in solid-solid systems where elastic effects play an
important role. Note, for example, that o' can be nega-
tive, unlike the positive-definite surface tension. Surface
stress is briefly discussed again below, in the text follow-
ing Eq. (3.29).

The velocity of the interface of the growing droplet can
be obtained from the continuity equation

5p(r, t) = —V p(r)u(r, t)= — p(r)u (r, t), (3.16)
d

Bt dZ

where the second approximate equality uses the fact that
gradients along the surface are of order 1/R, and so are
negligible, u is the z component of u, and 5p is the fluc-
tuation in p. Close to the interface, we make use of Eqs.
(3.7) and (3.8) to express the right-hand side of this equa-
tion as

again neglect gradients along the interface. Integrating
this over the interface gives

BP
(ut —u, ) T

aT
dT
dZ p~

dT
dZ

(3.21)

where 0+ and 0 denote, respectively, a position slightly
above the interface in the melt and a position in the solid
below the interface, and we are assuming that

r5P(r'), BP (3.22)

T(r) =T„r&R (3.23)

in the interfacial region. The quantity in large
parentheses will be obtained below.

To evaluate the right-hand side of Eq. (3.21), we require
the form of the temperature field in the two phases. In
the simplest case, T(r) must satisfy Laplace's equation
in the two phases. Physically, we must have the follow-
ing. Far from the droplet, in the melt, the system must be
at the temperature T, to which it had been supercooled.
The crystalline droplet, however, will be in local equilibri-
um at a higher temperature T„because of the latent heat
which has been released, Note, in particular, that T, the
supercooled temperature of the melt, is the nonequilibri-
um quantity which will equilibrate to T„ through the
thermal diffusion of latent heat. The solution of
I.aplace's equation which is consistent with these
boundary conditions is

pt + g e' ' =— p(r)u (r, t) .Bg d v] dPG;G. , d
Z ~ Z dZ

Integrating this over the interfacial region z=0 gives

Bg pt
(ut —ug —uq

ps

(3.17) T(r) =T+(T,—T) , r &R+-R
7"

where we have changed notation slightly. To be con-
sistent, B/Bz and z =0+ in Eq. (3.21) should be replaced
by B/Br and r =R +—. Thus, using the result above to
eliminate ut —u, in Eq. (3.18), we have

or

(3.18)BR Pl+u, = (» —u, ),
ps R pt

where u~ and u, denote the velocities in the two bulk
phases, liquid and solid, respectively,

p, (R)=pt 1+g+Q pGe'G (3.19)
Ci

and ri and pG are the bulk solid values of the order pa-
rameters. We shall set u, to zero, which corresponds to a
choice of an inertial frame. We have not set p, (R)=(p, ),
as in Eq. (3.10) above, because this is not a good approxi-
mation to make in p, —pI, when g is small.

From the heat equation, for the time dependence of the
temperature field in the quasistationary limit, we ob-
tain25, 27, 28

BR pt
Bt p, (R) pt R(TBP/B—T)0

(3.24)

SIA[= — f dzA + g e'6'dpG

p, (R) pi dz —
G dz

(3.25)

which projects a quantity A onto uniform displacements
of the interface. Thus, we have

It remains to relate (TBP/BT)0 to the latent heat, and
T, —T to the pressure difference over the interface, and so
to the surface tension.

To evaluate ( T BP/BT)0, we introduce a surface projec-
tion operator S. The appropriate choice is

Jd 5P(r') du &d T
5T(r) dz' dz2

(3.20)

T

dq BP
dz

p, (R)—p( dz BT

This equation asserts that the temperature generated at
the interface is thermally conducted away, which gives the
minus sign, where A, is the thermal conductivity, and we

PG;o.,T BPdpG . QP

dz BT
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Furthermore, we write BP/BT in terms of volume and
structural dependences as'

BT BT G 0 G i)T

so that, after doing the integral, we obtain

(3.26)

aP Pi
BT o pg(R) —pt dT

(3.27a)

where we again have no "unmatched" favors of
expi(Cx R), by virtue of the arguments presented earlier.
From Refs. 14, 18, and 19, the quantity in the large
square brackets is proportional to the latent heat, i.e.,

r

BR 2io T 1 1 1

Bt i'p,'(I+q)' R R' R
(3.30)

The physical picture implied by this equation is the fol-
lowing: large droplets grow, while small ones shrink. The
rate-limiting process for the dynamics will involve drop-
lets of radii slightly larger than the critical droplet.
Linearizing around R* gives R —R' cc e"' for those drop-
lets, where

rate, which we obtain below, to involve the positive-
definite cr rather than the (possibly negative) o'. Nonethe-
less, it is not obvious what effect a large negative surface
stress would have on the nucleation rate, and as we have
mentioned above, this question cannot be answered with
the formalism which we are using here.

The equation of motion for a droplet of radius R can
now be obtained from Eqs. (3.24), (3.27b), and (3.29):

r

T = [pt(1+re)l],BP (3.27b)
2A,o T

1 p((1+re) (R*)
(3.31)

where / is the latent heat of fusion, which can now be
used in Eq. (3.24) for BR /dt.

Finally, to obtain T, —T we have followed the local
equilibrium arguments of Turski and Langer. Since this
involves only a transcription of that treatment, with simi-
lar generalizations to those given above, we will merely
present the result, after a short discussion. The physics
behind the algebra proceeds as follows. First note that the
chemical potentials P, (R) and P~(R) in the crystalline nu-
cleus and the liquid matrix are equal. [Note, however, our
discussion following Eq. (3.29) below. ] Furthermore, the
chemical potentials are equal when the two phases coexist
across a flat interface. Thus, ' we may write

P (R)
(3.28)

By integrating the Gibbs-Duhem equation (or rather its
appropriate generalization for a solid), one then obtains a
relationship between P, and PI, and T, —T. Eliminating
PI in terms of the critical droplet radius R*, and P, by
use of the Laplace-Young equation, Eq. (3.14), gives

2' T 1

Ip((1+g) R *
1

R
(3.29)

[Alternatively, one may proceed by again considering the
Navier-Stokes equation (3.1) above, but for the time
dependence of the velocity field, rather than the momen-
tum density. This serves to eliminate the density piece
which was studied above, and, from the remaining tem-
perature piece, Eq. (3.29) can be obtained. ]

For the same reason as we discussed following Eq.
(3.14) above, this result is only correct to order 1 —(cr'/cr).
In fact, it should be noted that the chemical potential is
difficult to define at a solid-liquid interface. An ad-
ditional factor of 2(o.' —o)/R enters the equation for the
equality of the chemical potentials across a spherical sur-
face of radius R. If we put the factors of cr' in "by
hand, " we find that they cancel in intermediate steps, the
eventual result still being Eq. (3.29). This is, perhaps, not
surprising. One would naturally expect the nucleation

is the dynamical prefactor for the nucleation rate. Fur-
ther discussion of this result will be deferred to the fol-
lowing section.

For late times, after the birth of droplets no longer
plays an important role, Eq. (3.31) is apparently consistent
with R -t'~ Lifshitz-Slyozov growth. In that case, the
dynamics proceeds by large droplets growing at the ex-
panse of small droplets, by condensation and evaporation
from their respective surfaces. An important qualifica-
tion of this is that anisotropies, defects, and lattice
mismatches, which will certainly play important roles in
the late-time dynamics, are absent from our treatment.

IQp—
2 3/2

2 erg

k, T

4

(4.1)

where L, is the volume of the system, and we have intro-
duced

IV. STATISTICAL PREFACTOR AND DISCUSSION

We shall now present the result for the statistical pre-
factor Qo, without derivation. The treatment is the same
as that given by Langer and Turski for the liquid-vapor
system. Basically Qp has two parts: a piece proportional
to the volume of the system (which is the most important
contribution), arising from the Jacobian of the transfor-
mation from spatial coordinates to an order-parameter
description, and the fluctuation corrections to the critical
droplet's free energy ~(R') [Eq. (2.6)]. To simplify the
analysis, we have followed Harrowell and Oxtoby and
considered a "one-order-parameter description. " This is
thought to be a reasonable approximation for body-
centered-cubic solids, like sodium or one of the other al-
kali metals. The single order parameter p& is chosen so
that its corresponding reciprocal-lattice wave number

~

Cx
~

is in the position of the observed first peak of the
structure factor for the supercooled melt. A11 other JUG

are set to zero. Furthermore, following Ref. 20, we as-
sume that Ko-0 in Eq. (2.2). It is then quite straightfor-
ward to obtain the statistical prefactor, which we find to
be
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Q2

K] Qp~

—2

(4.2)
—hA /kB T —~/kB T

e Xe (4 3)

which is a small "correlation" length. This, then, com-
pletes our analysis. For the remainder of the paper, we
shall discuss our results.

Using the results for ~(R *), ~, and Qo derived above
[in Eqs. (2.6), (3.31), and (4.1), or with the more complete
expression for b,F given by Harrowell and Oxtoby ], we
obtain the nucleation rate I from Eq. (2.7). Our main in-
terest here concerns the dynamical prefactor ~. The result
above is qualitatively sensible: The nucleation rate is fas-
ter for transitions which are almost second order (i.e.,
where l is small, as in the alkali metals), and is slower
when the thermal diffusivity, which is proportional to the
thermal conductivity A, , is small (as is the case for noble
solids, compared to metals).

We would expect these same tends to be seen experi-
mentally, although it should be noted that nucleation ex-
periments are notoriously difficult. This is because of the
exponential factor in I, which tends to make the results of
a detailed theory (in particular, the form of v) difficult to
observe. Nonetheless, a rigorous experimental or
molecular-dynamics test "of theory could be performed
on, for example, a system with an anomalously small, or
strongly-temperature-dependent, thermal conductivity. ' "
In such a system, it is the dynamics which effectively lim-
its the rate of nucleation of the solid droplets, rather than
the volume factor from Qo. All the quantities necessary
for a test of theory (particularly cr and l), with the excep-
tion of A, , can be calculated from this formalism. '

This is important for o, since the solid-melt surface ten-
sion is difficult to measure and, indeed, is often obtained
experimentally from nucleation rates. (Also, since there is
no critical point here, we cannot appeal to universal criti-
cal behavior to simplify the form of expressions like o, as
was done for liquid-vapor systems. ) Despite the pos-
sible difficulty of experiments, however, we stress they
would be of great interest: At present, there is no experi-
mental test which can distinguish the results of Langer's
first-principles theory of nucleation from those of classi-
cal theory.

One difficulty which complicated interpretation of ex-
perimental data for fluids was as follows. There, experi-
mentalists often measured a "completion time" rather
than a nucleation rate, that being the time taken for drop-
lets to grow to an experimentally detectable size. ' ' '

That growth period was of importance because of critical
slowing down in the fluids. A fundamental theory of the
simultaneous birth and growth of droplets remains a diffi-
cult and unsolved problem, though some progress has
been made. Although the present theory only applies to
the birth of droplets, it is important to note that this may
be separable from the growth stage in some solid-melt sys-
tern: According to numerical simulations, " the growth
regime can be extremely rapid, and so the rate at which
macroscopic droplets form may indeed be limited by the
nucleation rate, thus rendering a test of theory somewhat
more tractable.

The result we obtain generalizes the expression derived
via classical arguments by Turnbull and Fisher

where h is Planck's constant, AA is an activation energy
for diffusion, and N is the number of particles. This may
be compared to Eq. (2.7) and the subsequent results [Eqs.
(2.6), (3.31), and (4.1)]: The term in the large parentheses
is the dynamical prefactor, while N is the statistical pre-
factor. There is an important difference in the expres-
sions for z: Turnbull and Fisher express the diffusivity as
an undetermined activation energy for diffusion, while in
Eq. (3.31) we write it explicitly in terms of the conductivi-
ty, and the field-theoretic expressions for the surface ten-
sion and the latent heat. This statistical-mechanical form
for x is the main new result of our first-principles treat-
ment and provides an important generalization of the re-
sult of classical theory. Our result for I is similar to that
of Turski and Langer for the liquid-vapor system. It
should be noted, however, that implicit in the expressions
for o and l [Eqs. (3.12) and (3.14), and (3.27)] is the
structural information about the crystalline nucleus. In
fact, these quantities can be, and indeed have been, '

calculated from this formalism, as we have mentioned
above.

Let us now turn to some of the limitations of our treat-
ment. The first qualification is standard. ' It is not
clear whether fluctuations have been correctly taken into
account in the expression for the solid-melt surface ten-
sion. That is, should o., in the expressions above, be inter-
preted as the bare or renormalized surface tension. The
special difficulty here is that the ingredients of the theory
include the experimental (and thus, of course, the "renor-
malized") structure factor of the melt. For the time being
we will simply assume that the difference between the
bare and renormalized o's is negligible. Although this is
an important conceptual problem, it probably is not of
significant consequence compared to .the related problem
discussed below: the description of the crystal.

While our treatment should provide a reasonable
description of a crystalline droplet nucleating from the
melt, several aspects concerning the description of the
crystal will handicap generalizations to other problems.
For example, one cannot handle surface reconstruction
with this formalism, or any of the physics involved with
defects in the crystal structure. Thus, the above approxi-
mate description cannot be extended to a solid-vapor in-
terface. Anisotropic stresses and modes in solids are not
present in the dynamical formulation. Thus, nucleation
of a liquid droplet in a superheated solid cannot be
described, nor can solid-solid nucleation. Late-time
dynamics, which must involve, for example, lattice-
mismatch effects, cannot be correctly described. Higher-
order effects, involving modes in the crystalline nucleus,
cannot be adequately explained by this formalism. Also,
as we have noted several times in the paper, a subtle point
not present in the analysis is the possible difference be-
tween surface stress (the mechanical difference in pres-
sures at an interface) and surface tension (the surface free
energy per unit area). All of these remarks have
their source in the somewhat artificial treatment of the
solid by liquid-state methods. Properties involving the
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crystalline structure of the nucleated droplet, and, in par-
ticular, the origin of that crystal structure, thus require
further theoretical analysis for a complete and satisfying
description encompassing solid-solid and solid-vapor sys-
tems, as well as solid-melt nucleation.

Despite these qualifications, we believe that this work
provides a useful first step towards such a complete
theory. %'e have shown that Langer's field theory of nu-
cleation can be applied to study the birth of a crystalline
droplet from a supercooled melt. Our work extends the

previous program of Ramakrishnan and Yussouff and of
Oxtoby, Haymet, and Harrowell, for the freezing transi-
tion, and generalizes the classical theory of Turnbull and
Fisher. An experimental test of the result would be of in-
terest.
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