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Free-feririion approach to the commensurate-incommensurate transition
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The existence and stability of the incommensurate phase in a lattice-gas model of Si adsorbed on
W{110) is studied using domain-wall arguments and the free-fermion approximation. The incom-
mensurate phase observed in a previous Monte Carlo study is shown to be stable above both the
(5X1) and (6)&1) phases in agreement with the general prediction for (p&1) phases. The
commensurate-incommensurate transition lines from the ordered {5)&1) and (6&(1) phases to the in-

commensurate phase are calculated using the low-temperature free-fermion approximation. The re-
sults are shown to be in good qualitative agreement with results from previous Monte Carlo simula-

tions.

I. INTRODUCTION

In a previous paper, ' the phase diagram for the system
consisting of Si on W(110) based on a lattice-gas model
(using pair interactions obtained from field-ion micros-
copy ) on a centered-rectangular lattice (see Fig. 1) was
studied —using both Monte Carlo simulation techniques
and transfer-matrix scaling. In this study, ordered (5 X 1)
and (6X1) phases were predicted in addition to the

p (2 X 1) phase which had been observed (at low coverage)
in the field-ion-microscopy studies. In addition, an in-
commensurate phase was found to exist in the region
above the (5X1) and (6X1) phases and possibly in the re-
gion between them at low temperature (see Fig. 5). In this
paper we explain the existence of this incommensurate
phase as being due to walls between ordered regions.
These walls (and their corresponding kinks) are the low-

lying excitations of the system for values of the field h

near the degeneracy field h* where the (5X1) and (6X1)
phases become degenerate. The stability of the incom-
mensurate phase with respect to dislocations is also stud-
ied and good qualitative agreement for the
commensurate-incommensurate transition lines at low
temperature is found. We note that in what follows, we
sketch only the basic outline of the calculation, which was
performed following the approach of Villain and Bak in
Ref. 3. For further details, the reader is referred to Refs.
3 and 4.

II. MODEL
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Hamiltonian consists of a strong attractive (ferromagnet-
ic) interaction in the J3 direction combined with strong
repulsive interactions in the J4 and J2 directions. The
ground states thus consist essentially of ferromagnetic
chains running in the J3 direction, which are repelled by
the J2 and J4 interactions and which are weakly attracted
via the J6 interaction. It is the competition between the
repulsive J2 and J4 interactions and the attractive J6 in-
teraction which is responsible for the incommensurate
phase in our model.

For the field in the range 0 ~ h ~ h*, where h*=24.7 is
the value of the field at which both the (6X 1) and (5X 1)
ground states become degenerate, ' the ground state is the
(6X1) phase shown in Fig. 2(a). For h*&h &73.05, the
ground state is the (5X1) phase. This may be viewed [see
Figs. 2(b) and 2(d)) as a (6X 1) phase with a domain-wall
density of —,, where a wall essentially consists of a region
in which the chains which characterize the (6X1) state
move one step closer together in the b direction. Thus,
the energy of the (5 X 1) phase can be written as the energy
of the (6X 1) phase plus the extra contribution due to the
walls. The wall energy consists of two parts: (a) the extra
energy due to pair interactions at the walls and (b) the de-
crease in magnetic field energy due to the extra spin densi-

The Hamiltonian for our lattice-gas model includes six
pair interactions (see Fig. 1) and can be written (in Ising-
spin language) as
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where the s; are Ising spins (s;=+1), h is a magnetic
field, and the pair interactions are Ji ——0, J2 ——38,
J3 ———50, J4 ——47.5, J5 ——10, and J6 ———5 meV. This
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FKx. 1. Diagram showing first- through sixth-nearest-
neighbor interactions. The vectors a and b indicate the primi-
tive lattice vectors of the centered-rectangular lattice.
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citation. Similarly, for h &h0 the (5 X 1) state (wall densi-
ty equal to —,

'
) will be favored energetically but due to

thermal fluctuations the equilibrium wall density will be
less than —,'. Therefore, the equilibrium state of the sys-
tem will consist of regions of the pure (6 X 1) state
separated by domain walls with a wall density q between 0
and —,'. Thus, the system will be incommensurate in the b
direction —a uniaxial incommensurate state. (In the limit
q goes to zero, the incommensurability or deviation of the
wave vector q; characterizing the periodicity in the b
direction from its commensurate value q, is given by
q; —q, =2m.q/6. ) At low temperature the free energy of
the system may be simply regarded as the free energy of a
system of domain walls, with the wandering entropy of
the walls (due to kinks) providing the stabilizing force for
the incommensurate phase. Thus, the equilibrium wall
density q is directly determined by a competition between
the energy of formation of a wall (E ) and the wandering
entropy of walls due to kinks.

In Figs. 3(a) and 3(b) we show the two types of kinks
(K 1 and K2) which are the lowest-energy excitations of a
wall. Configurations of walls with kinks like those shown
were observed in the Monte Carlo studies in the incom-
mensurate phase. We note that, as far as the field-energy
contribution of a kink is concerned, one cannot, strictly
speaking, calculate the energy of a single kink —since, de-
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FICi. 2. (a) Picture of a 24)&24 portion of the ordered (6&(1)
phase (coverage equals 0.5) taken from Monte Carlo simula-
tions. Solid diamonds indicate Si adatoms while the spaces indi-
cate vacant adatom sites. (Dashes serve merely to separate
sites. ) (b) Ordered (5)& 1) phase (coverage equals 0.4), as seen in
Monte Carlo simulations. Arrows indicate walls. (c) The {6)&1)
phase (mapped onto a rectangular lattice) showing uniaxial or-
dering. (d) The (5 &(1) phase (mapped onto a rectangular lattice).
Dashed lines represent walls (wall density equals —,

' ).
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where E~ is the wall energy per unit length in the b direc-
tion. Thus, one obtains

E~=h*—h .
For sufficiently low temperature (kzT « J3) and h near
h0 (h & h 0, E~ &&kii T) the dominant excitation of the
(6X 1) phase will consist of walls produced by thermal ex-

ty at the walls [see Fig. 2(d)]. At the degeneracy field k0,
the extra pair-interaction energy of a wall is exactly can-
celed out by the extra magnetic field energy contribution.
Thus, at h0, the energy of a wall is zero and the (6X1)
and (5X1) phases are degenerate at zero temperature.
Formally, one may write
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FIG. 3. (a) Kink of type K1 shown on centered rectangular
lattice. Ez& ——J4 —J3—h=97.5 meV —h. (b) Kink of type K2
shown on centered rectangular lattice. E~2—2J3+h =50
meV+ h.
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pending on the boundary conditions there will be an addi-
tional contribution to the energy of a kink at the
boundary. However, one can calculate the energy of a
pair of kinks, since for a pair of kinks (such as a left and a
right kink) the boundary contribution no longer exists.
The energy of a single kink is then taken to be the energy
of such a pair divided by 2. Figures 4(a) and 4(b) illus-
trate the energy calculations for a pair of kinks of types
K 1 and E2. The results are

/

Ez2= —J3+~
(4)

We note that the energy of these kinks (X 1 and X2)—in
contrast to previous studies ' ' —is a function of the field
h. The field dependence is perhaps more clearly seen
when the kinks are mapped, onto a rectangular lattice as in
Figs. 4(c) and 4(d). In what follows, we shall assume that
the dominant excitation for a given value of the field h is
the kink with lowest energy —which we shall denote as
Ek. We note that near the degeneracy field h* (h*=24.7
meV), which is where we expect our low-temperature ap-
proximation to be applicable, K 1 has energy Ez &

——72.8
meV and K 2 has energy Ez 2

——74.7 meV. Thus, both
types of kinks have approximately the same energy at h*.
Therefore, our system at low temperature (for a given
value of the field h) can be approximately mapped into a
system of walls and kinks with a given kink energy Ek.
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III. FREE-FERMION CALCULATION

g'=[(x +p)/6] . (6)

In order to perform the calculation of the free energy of
our system of walls and kinks we first map the system
from a centered-rectangular lattice to a "rectangular" one
where a path in a zigzag horizontal direction [see Fig.
2(a)] becomes the x coordinate while the y coordinate cor-
responds to the vertical direction. In this new coordinate
system the existence of a wall and of the two types of
kinks can be more clearly seen [see Figs. 2(c), 2(d), 4(c),
and 4(d)]. We now perform a mapping from the "rec-
tangular" coordinate system with coordinates x and y to a
new system with coordinates g and y using the following
transformation:
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Here, p refers to the number of the first wall to the left of
the point (x,y) in the "rectangular system", and [ ] means
to use the integer part. This transformation maps our
original rectangular system with dimensions Xz and X
(for a system with v walls) to one with dimensions X~ and
(N„+v)/6. In this new coordinate system, the minimum
distance between walls and the kink-step distance become
equal to one (in units of the lattice constant). This
transformation enables one not to have to worry about
wall crossings since they are now taken care of automati-
cally using the free-fermion formalism.

In the limit of low temperature (no dislocations), the
partition function corresponding to a system with v walls
may now be written as

N
Z(v)=Eo exp( 13&E )C(&), —

FIG. 4.' (a) Diagram showing calculation of energy for pair of
kinks of type K 1. Thin-dashed line indicates wall. Extra bonds
are indicated by solid lines ( —J3 and J4) and thick-dashed lines
(J4). Dashed arrows indicate motion of occupied sites to remove
pair of kinks {straight wall). Note that there is one extra occu-
pied site (denoted by + ) thus creating an energy contribution of
—2h to the kink-pair energy. Counting the contributions to the
kink energy due to the extra bonds (times 2), and remembering
the factor of 4 in the definition of the pair interactions [Eq. (1)]
we get the result in Eq. (4). (b) Diagram showing calculation of
energy of pair of kinks of type X2. Energy due to extra bonds
is again shown by labeled heavy bonds. Arrows indicate motion
of occupied sites to remove kinks. Dashed circle indicates ener-

gy contribution ( +2 h) due to extra empty (spin down) site. In-
cluding the contributions to the kink energy due to the extra
bonds, we get the result in Eq. (5). (c) Pair of kinks IC 1 [same as
(a)] mapped onto rectangular lattice. (d) Pair of kinks K2 [same
as (b)] mapped onto rectangular lattice.
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commensurate-incommensurate transition from the (5 X 1)
phase:

600—
P( h * h—) = —( —,

'
)exp( PE—k ) (h & h ~ ) . (12)

T(' K) 400—

200

l0 20 h 30 40 50 60 70 80

FIG. 5. Phase diagram for our model of Si/W(110). The
solid line indicates Monte Carlo simulation results taken from
Ref. 1. (Large dots are an extrapolation of Monte Carlo data. )

The small-dotted line indicates free-fermion results obtained
from Eqs. (11) and (12). IC denotes the incommensurate phase.

where E is given by Eq. (3) above, C (v) reflects
boundary effects that can be neglected in the thermo-
dynamic limit, and Eo is the largest eigenvalue of the
transfer matrix e which serves to create (destroy) walls
(i.e., introduce kinks) as one travels in the y (time) direc-
tion. Using the free-fermion formalism, in which walls
are represented as fermions so that no two walls may
cross, the transfer matrix e may be written as

6=exp y pc (g)c(/+1)+c (g'+1)c(g)

—vP(h —h*) .

Minimizing this expression as a function of the density of
walls q (q =v/N„) is equivalent to minimizing the free en-

ergy and gives

0 = (1/6m. )sin I 6qvr/(1+q) I

+ I 1/(1+q) I cosI6q~/(1+q) I
—3, (10)

where 2 =P(h ~ —h)/2y. Equation (10) has nontrivial
solutions for A in the range ——,

'
& A & 1, which corre-

sponds to q in the range —, & q & 0. Setting q =0 (A = 1)
in Eq. (10) we get an equation for the commensurate-
incommensurate transition from the (6X1) phase to the
incommensurate phase:

P(h* —h) =2 exp( PEk) (h & h*) . —
Setting q = —,

' (A = ——', ) we get the equation for the

where the fermion operator ct(g) Ic(g) I creates (destroys)
a wall at position g' and y =exp( —PEk) is the Boltzmann
factor for the kink of lowest energy Ek. Evaluating Eo
by diagonalizing e one gets the following expression for
the partition function as a function of the number of walls
iso

y(&. +v) . 6~&
Z(v) =exp X» sin

3m' N +v

The solution of these two equations is plotted in Fig. 5,
together with our Monte Carlo results for the (5X1)-
incommensurate and (6X1)-incommensurate transitions.
The steepness of the (5X1) and (6X1) commensurate-
incommensurate transition lines at low temperature ex-
plains why it was difficult in the Monte Carlo simulations
to see clearly the incommensurate phase in between the
two ordered phases at low T. We note that this treatment
ignores the possibility of higher-energy excitations, such
as double kinks, and thus our results are expected to
overestimate the transition temperature at low tempera-
tures. However, as pointed out in Ref. 1, strong finite-size
effects (pinning of the incommensurate phase) in the
Monte Carlo study also lead to an overestimation of the
transition temperature (see solid line in Fig. 5). Thus, it is
not surprising that, in Fig. 5, the Monte Carlo results are
actually somewhat above our results obtained from Eqs.
(11) and (12) (in the low-temperature region where the
free-fermion approximation is expected to be valid). In
addition, the possible effects of dislocations on the stabili-
ty of the incommensurate phase have been ignored. In the
following section we consider the effects of dislocations
on the stability of the incommensurate phase near the
commensurate phase in the same manner as was done by
Villain and Bak.

IV. STABII.ITY OF INCOMMENSURATE PHASE

g=+(1+q) (13)

Substituting the value of q appropriate for the (6X1)-
incommensurate transition (q =0) we see that this gives a

Following the work of Villain and Bak on the axial
next-nearest-neighbor Ising model, it can be shown that
in the long-wavelength limit (ignoring dislocations), the
free energy for the incommensurate phase can be ex-
pressed in terms of a Hamiltonian which is equivalent to
that for the XF model. Kosterlitz and Thouless have
shown that the incommensurate or floating phase charac-
terized by this Hamiltonian is unstable with respect to the
formation of vortices (i.e., dislocations) if the correlation-
function exponent q is greater than —,'. Thus, if the value
of q near the commensurate-incommensurate transition
lines for the (5X1) and (6X 1) phases is less than —,', we

expect the incommensurate phase to be stable above both
commensurate phases. General arguments for such
models as the p-state chiral clock model and the sine-
Gordon model' (which are expected to exhibit transitions
in the same universality class as those for (p X 1) adsorbed
phases") give a value of g=2/p . Thus g is less than —,

for p =5,6, and therefore we would expect the incom-
mensurate phase to be stable above the (5X 1) and (6X1)
phases in the low-temperature approximation. Using the
free-fermion approximation, we have calculated the value
of the exponent g at low temperature as a function of the
wall density q. Our result is
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value of g in agreement with the general form (for p =6).
Similarly, substituting the value of q = —,

' [near the
(5 X 1)-incommensurate transition] gives the value g =—„,
again in agreement with the general formula. Thus, we
conclude that the incommensurate phase is indeed stable
above the (5 X 1) and (6X 1) phases. Hence we have shown
both the existence and stability of the incommensurate
phase which was previously predicted from our previous
Monte Carlo study. We note that since the incommensu-
rate phase is stable above both the (5X1) and (6X1)
phases, the incommensurate-disorder transition does not
extend to zero temperature as in Refs. 3 and 4. Thus, a
low-temperature or perturbative estimate of the

incommensurate-disorder transition due to dislocations as
performed by Villain and Bak is not expected to be valid.
We note that, at the temperatures at which dislocations
are expected to appear, the structure of the chains be-
comes more disordered and more complicated kink struc-
tures (seen in the Monte Carlo study) are expected to ap-
pear.
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