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The theoretical framework and the details of calculations of nonasymptotic critical behavior,

above T„previously published for n =1, are presented and extended to the cases n =2 and 3. The

complete description of the real preasymptotic critical domain &p, , needs only three adjustable pa-

rameters. We show that the P model at infinite cutoff is sufficient to obtain this description. The
higher-transient and finite-cutoff effects in &p, , affect only the adjustable parameters. A precise
nonperturbative treatment of the P field theory exactly for d =3, in the spirit of the Parisi work,

yields nonasymptotic functions of temperature which, including all the quantitative universal

characteristics of the critical behavior in Np, „are adapted to a suitable comparison with experi-

ments. We emphasize that this work allows a determination, within the experimental accuracy, of
the size of &p„„and an appreciation of the effects of the higher corrections to scaling. We also

give the estimates for n =1, 2, and 3 of a new universal combination of amplitudes (R~ ) which
cr

concerns the specific heat alone.

I. INTRODUCTION

In two previous papers' we presented the theoretical
results for precise nonasymptotic critical behavior ob-
tained with the pure scalar (n =1) P model exactly for
d =3. We proposed explicit theoretical functions of tem-
perature for the complete set of measurable singular quan-
tities (the correlation length g, the susceptibility X, and
the specific heat C) in the disordered phase along the crit-
ical isochore. These functions exhibit, as they must, a
crossover between the Wilson-Fisher (near the critical
temperature T, ) and mean-field (very far from T, )

behaviors which seems like that observed in real systems. "
However, it follows clearly that this crossover is not truly
realistic because of the physical limitations of the model
used. We emphasized, in agreement with the general
statements of the Wilson renormalization-group (RG) ap-
proach, the conditions of applicability of our nonasymp-
totic functions for an improved analysis of experimental
data. The use of a minimal set of adjustable parameters,
inherent to the physics of critical phenomena, associated
with the great accuracy of the work, allow an estimate—
within the experimental accuracy of the temperature
domains corresponding, respectively, to the asymptotic
(pure lower law) and preasymptotic (first confluent
correction) regimes. Indeed the control of the conver-
gence of the Wegner expansion (power-law expansion)
that we have obtained, allows an illustration (see Fig. 4 of
the present paper) of the cascade structure ' induced by
the progressive relevance of the various degrees of free-
dom as one moves far away from T, . Within the P
model used, only the first two steps are completely repro-
duced.

To a certain extent we think that we grant the

experimentalist's wish which has been well expressed by
Debye: "I would like the theoretical people to tell me
when I am so and so far away from the critical point then
my curve should look so and so." Indeed, it is very diffi-
cult (approach of T„gravitational effects) to measure the
critical singularities in the very vicinity of the critical
point (CP) where the pure scaling behavior is dominant.
Therefore, early on experimentalists were led to introduce
corrections to scaling' in fitting their data farther from
T„where, in particular, the gravitational effects are
negligible. However, a question then arises: To what
distance from T, can such a power-law expansion be
valid?

There is no genera1 theoretical answer to this question
owing to the great complexity of quantitatively describing
the whole critical domain. Wilson and Kogut have
shown that this complete description would require con-
sidering an infinite set of degrees of freedom. Neverthe-
less, it seems now well established that the number of
relevant degrees of freedom decreases as one approaches
the CP and only one (the P coupling) is essentially needed
to reproduce the critical behavior within the preasymptot-
ic critical domain (&v„„).

In the Wilson terminology, the other degrees of free-
dom (higher-transient and finite-cutoff effects) are called
irrelevant variables in &v„» (in contrast to the relevance
of the P coupling). In reality, this is true only if one lim-
its the description, within &~„„,to the universal features
(critical and subcritical exponents, combinations and ra-
tios of critical and subcritical amplitudes). If one tries to
obtain the complete description of &v„„,then the infinite
set of degrees of freedom will contribute to the nonuniver-
sal features (amplitudes) and we are faced with a very
complicated problem.
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We claim that the minimal set of adjustable parameters
introduced in Refs. 1 and 2 contains all the nonuniversal
features in Wz„„. In the present paper we give the
theoretical and technical details of our work and extend it
to the cases n=2, 3.

Before explaining the organization of this article, we
will indicate the main differences between our work and
those" which have also tried to get nonasymptotic critical
behavior from the P model.

(1) Instead of working within the e expansion of the p-
renormalized theory' ' (referred to, in the following, as
theory I) we use the massive theory' directly for d =3
(theory II). In 1973, Symanzik' showed that theory I ir-
remediably generates spurious infrared (ir) singularities
which affect the critical amplitudes. Arguing that theory
I is only valid infinitesimally close to d =4 and could
never give information on critical behavior at d = 3
without treating the above ir singularities, Parisi ' pro-
posed the use of theory II which has no such problems.
The drawback is the necessity for a numerical nonpertur-
bative treatment (the renormalized integrals of Parisi).
Although this proposal was first used to obtain precise es-
timates' ' of the critical exponents, it takes on its full
significance in a global determination of the critical
behavior. Indeed, theory I also yields a precise knowledge
of the critical exponents' but, as stated above, should fail
when critical amplitudes are considered. It must be real-
ized that the high-order perturbative series computed by
Nickel et al. ' at d =3, within theory II, which gave the
first precise estimates of the critical exponents, contain all
the information needed for a precise and complete deter-
mination of nonasymptotic critical behavior. We have
achieved this and, using the resummation methods intro-
duced by Le Guillou and Zinn-Justin, ' we obtained func-
tions more accurate than those obtained in theory I to
small orders in e.

(2) In addition to the above technical aspects, we en-
deavor to give a physical meaning to the explicit functions
of temperature that we have obtained within the field-
theory (FT) approach. This requires considering the ef-
fects of all the degrees of freedom usually neglected in the

model (higher-transient and finite-cutoff effects). We
stress the fact that one may give a general meaning to the
FT approach beyond the formal e expansion. In particu-
lar, in Ref. 20 we showed that the specific-heat case could
not be completely understood within a FT approach re-
stricted to the vicinity of d =4. In Refs. 1 and 2 we
described the critical behavior, inside &~„„,with only
three free parameters. This description is valid because
the introduction of the irrelevant operators leads simply
to a multiplicative renormalization of our free parameters.
We have recently shown that there exists a universal con-
straint (R~ ) on the specific heat in a given phase which

CI

corroborates this description of &z„„. Our numerical
study allows estimations of Rz is the cases n = 1, 2, and

C1

3 (see Sec. V). Owing to the accuracy of our calculations
and the precise consideration of the consequences of the
fundamental hypothesis of the RG approach, we think
that we supply experimentalists with a theoretical descrip-
tion of D~„„which will allow a better comparison be-
tween the theoretical predictions and experimental data.

At this point we summarize the developments presented
below. In Sec. II we emphasize the finite-cutoff and
higher-transient effects within the'FT framework by ex-
tending the usual perturbative hypothesis to a nonpertur-
bative form. We show that the P" model at infinite cutoff
is formally efficient in accounting for the critical behavior
in W~„„with only three free adjustable parameters. In
Sec. III we point out thai the massive FT at d=3 is well
adapted to curing the ir singularities of the critical theory
in the e-expansion scheme. We also introduce explicitly
the P model at infinite cutoff at d= 3 and we show the
necessity of a nonperturbative treatment. In Sec. IV we
present the technical details of this treatment to get the
nonasymptotic critical behavior of g, X, and C from the
series at high orders of Ref. 19. Finally, in Sec. V we dis-
cuss the interest of our results in relation to the experi-
ments. Two appendixes contain general considerations
dealing with the basic hypotheses of the RG approach
(Appendix A) and with the physical relation between the
renormalization of FT and the critical limit (Appendix 8).

II. P MODEL, FINITE-CUTOFF,
AND HICxHER- TRANSIENT EFFECTS

A. Preliminaries

In this section we show that the FT approach allows a
complete determination of the nonuniversal features of
the preasymptotic domain (W~„„). In other words, we
want to justify completely the introduction of the single
three free parameters of the Refs. 1 and 2.

In practice, the FT framework appears to be very effi-
cient for calculating any universal features within N~z„„
(i.e., up to the first confluent correction to scaling) where
the higher transient (such as the P coupling and others)
and the finite cutoff effects are a priori neglected. ' The
calculations are then greatly simplified. The main justifi-
cations * ' of this approach have essentially been made
within the e-expansion scheme. However, as said in the
Introduction and recalled in more detail in Sec. III, this
scheme presents spurious ir singularities' essentially due
to the definition of the critical theory (zero-mass theory).
Starting from the observation that the proposal of Parisi'
to use the massive FT directly in d =3 gives good esti-
mates of the critical exponents' ' we shall assume that
the renormalization transformations of FT have a funda-
rnental significance outside of any perturbative approach.
The FT approach to critical phenomena does not seem to
us to be justified only by the existence of a renormalized

FT at d =4.' Consequently, the infinite cutoff limit
and the elimination of the higher transients must be justi-
fied independently of the situation at d =4. Our main as-
sumption in this section is the following: Despite techni-
cal difficulties in introducing the critical theory, we as-
sume that the RG equation for the p-renormalized corre-
lation functions' with a finite-cutoff, has a fundamental
meaning for any d and beyond any perturbative or ap-
proximate scheme.

We show that from hypotheses consistent with the re-
cent theoretical developments (Newman and Riedel ' and
Symanzik ), the higher transient and finite-cutoff effects
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in &~«» may be well controlled. Let us first briefly re-
call the general results which seem now well established
by considering, for example, the susceptibility X.

00

X(t)=Xot r 1+ g a„t "
n=1

(2.1)

in which y, b,
&

(usually noted b, or cov) are, respectively,
the dominant critical and subcntical universal exponents
and are given by the P model. Recently, ' the exponent
bq (also universal) has been determined using a truncation
of the exact RG equations of Wilson and Kogut includ-
ing the higher-transient couplings, while the estimation of
y and b, were found to be in agreement with the FT ap-
proach. '

Within the pure P model, the WE reads

(2.2)

for which the set tnt] is a subset of the set Ib,„l of Eq.
(2.1). One sees that, even if the P model reproduces an
infinite power-law expansion, it cannot reproduce the
complete Eq. (2.1) as soon as the first correction to scaling
is no longer quantitatively dominant. As stated in the In-
troduction, the critical-to-classical crossover behavior ex-
hibited by the P model, once the expansion (2.2) is
resumed, is not realistic.

The definition of &„«„coincides with the experimen-
tal values of r [r=(T T, )/T, ] for—which the corre-
sponding WE (in terms of r) may be truncated after the
first correction. The link between the expansions [(2.1) or
(2.2)] and real critical behavior (described in terms of r)
comes from the hypothesis of analyticity for the scaling
field t as a function of the physical parameters (tempera-
ture T and the field H conjugated to the order parameter).
In the vicinity of T„one thus has

t =a,r+O(r', ~H') (2.3)

in which ao is some unknown constant characteristic of
the physical system considered. Any scaling field which
verifies Eq. (2.3) is called a linear scaling field. Substitut-
ing Eq. (2.3) into Eq. (2.1), one sees that the situation
beyond the first correction, in real systems, is very com-
plicated to describe quantitatively. Let us illustrate this
by considering the three-dimensional Ising case.

Owing to the small value' of b, (=0.5), the first correc-
tion may be well distinguished from the others provided
that r is sufficiently small. Beyond this term, one has
three corrections of a similar temperature dependence (but
with different amplitudes): that controlled by b, z [-1.05
(Ref. 21)], that controlled by 2b, (=1) and the first analyt-
ic correction coming from the O(r ) term in Eq. (2.3)
(whose exponent is one). In an analysis of experimental
data, it is unlikely that one can distinguish between these

B. Wegner's expansion and real systems

The general form of X within the whole critical domain
may be expressed in terms of a scaling field t through the
formal Wegner expansion (WE):

three higher correction terms. The excessive number of
adjustable parameters (the nonuniversal amplitudes) need-
ed then would prevent any improvement in the determina-
tion of the asymptotic pure power-law behavior. Furth-
ermore, the convergence of the expansion could never be
completely controlled owing to the fundamental asymp-
totic nature of the RG approach expressed by Eq. (2.3).

C. Cutoff and higher-transient effects

It follows from the preceding subsection that the P
model contains the universal characteristics of W~„». In
this part we show that the influence of the higher tran-
sients and the finite cutoff within the amplitudes does not
fundamentally change the results obtained from the P
model at infinite cutoff. These irrelevant degrees of free-
dom induce only a change in the definition of the adjust-
able parameters of Refs. 1 and 2 without increasing their
number. This important point greatly simplifies the glo-
bal quantitative description of the critical behavior in
~pre».

To account for the effects of the finite lattice in the
computational calculations for quantum chromodynamics
(QCD), Symanzik, at a purely theoretical level, recently
showed that the higher transients and the cutoff have
similar effects. The higher-transient couplings can be ad-
justed to eliminate completely the nonzero-lattice (finite-
cutoff) effects in the whole critical domain. Of course,
this adjustment does not correspond to the physical situa-
tion of critical phenomena where the couplings and the
cutoff characterize a given system and are independent.
However, this means that one may study the nonuniver-
sality in Wz„», at least qualitatively, by considering, in
addition to the P coupling, only a finite cutoff which will
mimic its own role and that of the higher transients.

We shall recall the main steps of the FT approach by
retaining a finite cutoff A in the correlation functions,
even in the renormalized theory. We shall consider the
soft-mass renormalization scheme' (the p renormaliza-
tion), which requires defining the theory at the CP. '3 In
this scheme the RG equation has a simple form, but prob-
lems occur when explicit calculations are attempted per-
turbatively, for some dimensions below four' (except in-
finitesimally close to four). We shall thus remain at the
formal level and assume that this scheme expresses
correctly the fundamental ideas of the RG approach
beyond any approximate framework.

The FT framework admits, at least formally, the pos-
sibility of dealing with a finite cutoff A.

The starting point is the P bare Hamiltonian which has
the following form:

~Id'oI = I &"&[
—[(~4o)'(x)+ ohio'(x)]+(g, /4!)$4(x) I .

(2.4)

Since we shall not perform explicit calculations in this
section, we formally suppose that the cutoff occurs in a
sharp manner in the Feynman integrations on the loop
variables q (i.e., 0(q (A).

In Appendix A we recall the physical meaning of the
bare Hamiltonian (2.1). In particular, all the bare quanti-
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ties $0, ro, and go are measured in units of A [see Eqs.
(A14)]. Moreover, asymptotically close to the CP the pa-
rameters ro and g0 have Taylor expansions around
(along the critical isochore H =0) by the hypothesis of
analyticity:

ro roe——+&o(T Te—)+O((T T~—) ) (2.Sa)

go ——const+0(T T, )—. (2.5b)

The bare correlation functions I I)
' ({q,p J; ro, go, A)

will represent the physical correlation functions in the vi-

cinity of the CP (see Appendix A). In the following we
shall not repeat the superscript (L,X) of the correlation
functions except when explicit values of L and X are con-
sidered. The renormalization transformations, which de-
fine the renormalized correlation functions I z ( {q,p I;
t, u, p, A) are the following:

0o(x) =[Z3(u p)]'"0z(x»
uo ——p'uZ1(u, p)/[Z3(u, p)]

r()/A =r(), /A +p tzp(u&p)/Z3(u&p) &

(2.6a)

(2.6b)

(2.6c)

in which p=p/A and uo ——go/A' are dimensionless. It
will be useful in the following to deal with dimensionless
correlation functions that we shall denote by I 0 and I z
with

I o({qpI'ro go A)=A I o({q/A p/AI; ()/A, uo),

p "I g ({q/ij, ,p/pI;t, u,p)
[z(up)]()v/2L)[z(up)]L

& I 0({q«,P/AI;r, /A', u, ). (2.8)

I g({q,PI;t, u, )M, A)=)(t '"I'~({q/p, ,p/pI;t, u,p), (2.7b)

1n wh1ch DI.)v =&—2L —X(d —2)/2. The bare and renor-
malized correlation functions (for N & 0) are thus related
as follows:

p + 8'(u, p)
tB ~ L+XP(u, p)

v(u, p)Bt v(u, p)

XI g({OI;t,u,p)=0, (2.11)

may be described similarly whether considered at the
length scale 1/A (the bare theory) or at any length scale
1/p greater than 1/A (the renormalized theory) through a
change of the normalization of the physical parameters
(the field $0, the coupling go and the distance to the CP
r p = ro —rp ). At the CP no relevant length other than
1/A is available and the choice of p is arbitrary. In our
notation this means that p=p/A is arbitrary.

At this stage it seems that p and A play a similar role.
However, this is not true since A has a physical origin
while p is really arbitrary (it has a theoretical origin). In
particular, the bare theory cannot be considered as a par-
ticular renormalized theory but as a reference which de-

fines the physical parameters and correlation functions
(see Appendix A).

The left-hand side of Eq. (2.6b) contains the fixed phys-
ical parameters uo (and implicity A through the p' factor
of the right-hand side). Hence, the two new parameters u

and p are also fixed once p (or p) is chosen (arbitrarily).
The critical limit corresponds to ro~ro, at uo (and A)
fixed. From Eq. (2.6c) it follows that for the renormal-
ized theory the critical limit is t~0 at u and p fixed.

The problem solved by the RG theory is that of resum-
mation of the ir divergences which occur order by order in
the perturbative expansion in powers of uo (or u) when

ro ro rp&
——(or t) go—es to zero. The definition of the re-

normalized theory, through Eqs. (2.6)—(2.9), does not, by
itself, solve this problem but implicitly contains its solu-
tion owing to the arbitrariness of p (or p). The differen-
tial RG equation is obtained by expressing the p (or p) in-

dependence of the bare correlation functions. To simplify
the notation, let us consider the correlation functions at
zero momenta ({q,p I

= {OI). The derivative of Eq. (2.8)
with respect to p at fixed rp Qp and A yields

r

The case %=0 is presented in Appendix 8 (see also Ref.
20). The renormalization functions Z;( u, p) (i = 1 to 3)
are defined by subtraction conditions which may be
chosen as'

[BI ~
' '(p; O„u,p, A ) /Bp ], ,= 1, (2.9a)

(0,4)~R (P 1 &P2&P3&P4 o u i A) I,., (4s 1) ~/3— .
J EJ

(2.9b)

I'~ "(q p(,p2, o u, u») I,2, 2 „~,„„

in which

8'(u, p) =p(Bu /Bp)„

and

v(u &p) [2 7]3(u &p)+ F2(u,p) J

P(u&p) =
2 v(u&p)[d —2+F3(u&p)],

with

g;(u, p) =pBln[Z;(u, p)]/Bp
~
„(i=2, 3) .

(2.12)

(2.13a)

(2.13b)

(2.14)

while ro, (the critical bare mass) is defined such that the
inverse susceptibility vanishes:

I ()
' '(0;r()„g(),A)=0. (2.10)

The inverse length p is arbitrary. Its introduction is a
consequence of the hypothesis of scale invariance at the
CP which is expressed by the relations (2.6). These rela-
tions express the fact that at the critical point the system

Up to now no reference to any approximate framework,
such as the e expansion, is needed to obtain Eq. (2.11). If
we assume that the bare correlation functions I 0 are
known, then so are the renormalized, by using Eqs. (2.8)
and (2.9). The reference to the e-expansion scheme comes
usually in the next steps. '

The infinite-cutoff limit that one usually considers
within the renormalized theory (A —+ Oo at u and )u fixed)
corresponds here to p~0 at u fixed. Knowing that the
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universal characters of the critical behavior are expected
to be independent of A, one considers a priori this limit
within the renormalized theory. The main argument is its
nonobvious existence at d =4 which appears essential in
the e-expansion scheme owing to the necessity of calculat-
ing some (primarily) divergent Feynman integrals at d =4
and at infinite cutoff. However, it is not necessary to take
a priori this limit. %'e shall show that the calculation at
an effective infinite cutoff comes without having set
1/A=0. As already stated, A is a finite parameter which
characterizes the microscopic structure of a given physical
system (1/A is of the order of the range a of the molecu-
lar forces) and cannot be set equal to zero

Let us look at the solutions to Eq. (2.11). Equations
(2.6) show that the three variables t, u, and p are not in-
dependent; for fixed bare parameters, t and u are func-
tions of p. Hence, the correlation functions I'0( IOj;t, u, p)
are defined on a plane and the characteristic curve method
may be applied. We introduce the flow parameter A, and
the functions u(A, ), t(iL), and p(A, ) such that

A, dp/dk, =p,
A.du/dk= W(u, p),
Adt /d A, = t ,/v( u,p)—,

(2.15a)

(2.15b)

(2.15c)

with the initial conditions u(1) =u, t(1)=t, and P(l}=p.
It is then simple to find that the solutions of Eq. (2.11)

have the following property:
A,

I z(IOj;t, u, p) =exp —I dx Id —[I.+NI3(x)]!v(x) j

Xl g([0j;t,u,P) (2.16)

p(A, ) =Ap . (2.17)

Hence these hypotheses concern ihe quantities listed above
at p=O (i.e., p=O). Let us recall them.

Having fixed t(A, ) by the matching condition,

t(A, )=o, (2.18)

with o a strictly positive arbitrary number, Eq. (2.15c) de-
fines k as a function of t which goes to zero as t provid-
ed that v=v(u, O) has a finite positive value. The fixed-

in which P(x) and v(x) stand for P(u(x),p(x)) and
v(u(x), P(x)). The relation (2.16) shows that there is a
family of solutions to Eq. (2.11) the members of which
differ by the values of their arguments and by an ex-
ponential factor.

The flow parameter A, may then be chosen in such a
way that t(A, ) remains fixed when the critical limit t~O
(at u and p fixed) is considered. The hope is that
I R(IOj;t, u, p) will remain free of singularity while the
singular behavior of the left-hand side of Eq. (2.16) will be
entirely reproduced by the exponential factor. To obtain
this result one needs hypotheses on the nonperturbative
properties of the various functions W( u, p), P( u, P),
v(u, P), and I ~(IOj;t, u, P). They are well known' in the
case where the infinite-cutoff limit (p —+0) is considered
a priori. The solution of Eq. (2.15a) with the initial con-
dition p(1)=p gives

point value u* is the zero of the function W(u, O) that
u (A, ) reaches when A, goes to zero. More precisely one as-
sumes that

W(u(A), 0}—to[u(A) —u "], (2.19)

I g(tOj;t, u,p)=I ~(IOj;t, u, O)+O(p '),
with F2 ——52/v. Hence, from Eq. (2.11) we obtain

(2.20)

W(u, p) —co(u —u *)+O(sup[p "',(u —u '
)2]),

A, —+0 (2.21)

with Q)2) 67.
The corrections to scaling generated by a finite cutoff

are obtained from Eq. (2.16) when A. goes to zero by ex-
panding the p dependence around p=O. Equation (2.20)
and the fact that A, -t" show that the correction terms are
of the same kind as those generated by the higher tran-
sients of the form t ' as stated by Symanzik.

The corrections to scaling induced by the finite cutoff
(p&0) may thus be neglected within &~„„since b,2& A.
However, the cutoff p remains present inside the ampli-
tudes which depend on the initial condition of Eqs. (2.15).

In particular, the approach of u' by u(A, ), when A, —+0,
will also depend on p and not only on u. This can be seen
from Eqs. (2.15b) and (2.21) and the initial conditions

with a positive co = [dW(u, O)/du ] ~

From this, the asymptotic critical behavior of
I z(IOj;t, u, O) is obtained from an expansion around u'
(A, =O) of the right-hand side of Eq. (2.16), the function
I g( IOj;o, u, O) (and all of its derivative with respect to u)
being well defined at u =u" and o&0. The successive
powers of u —u* then generate confluent corrections to
the scaling behavior of the form t" (n=1,2,3,. . .) with
6=catv.

These correction terms, that we shall call "of the pure
model, " do not involve all the corrections of a real crit-

ical behavior. The higher transients will also generate
corrections to scaling. Let us call b,2 the exponent of the
greatest one. Recent numerical estimates ' show that
hz& b, and 5 is found to be in agreement with the esti-
mates obtained within the FT approach. ' In addition to
the higher transient effects, there is that of the finite cut-
off neglected a priori in considering p=O (and thus also
p} in the renormalized theory.

Indeed p must be kept constant, with only p(A, ) going to
zero when the critical limit t~O (i.e., A, —+0) is taken [see
Eq. (2.17}]. In order to appreciate the influence of the
corrections generated by a nonzero p(A. ), the only argu-
ment usually given is valid perturbatively and for a di-
mension d near four: the p dependence for small p is of
order

p
lnp in the renormalized correlation functions at

d =4. In order to treat completely the finite-cutoff ef-
fects we must make some hypotheses, similar to those
concerning the existence of u* given above, without refer-
ence to perturbative theory or to the proximity of dimen-
sion four. The work of Symanzik and the results of
Newman and Riedel, ' already mentioned, suggest the fol-
lowing hypotheses.

As p goes to zero, with t and u fixed, the renormalized
correlation functions are such that
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u(1)=u, p(1)=p. One easily obtains

i
u(A, ) —u*

i

—c(u,p)A,
" .

A,~o
(2.22)

Usually, when p is considered to be zero, one obtains
the coefficient c(u, O) which, in the case where u-u',
has the form

c(u, O)-
i
u —u*

i
. (2.23)

The constant c(u,p) controls the amplitudes of the
corrections of the pure P model. In the case of Eq.
(2.23), there would exist a value of u (and thus of uo) for
which all these corrections vanish, in particular the first,
whatever the value of p. In fact, Eq. (2.21) shows that the
function W(u, p) could not be zero at u =u" as long as p
is different from zero, and hence c(u*,p) is in general dif-
ferent from zero. We recall that p represents here the role
of an infinite set of degrees of freedom and it is very un-

likely that nature arranges them in such a way that
c(u*,p)=0, although not impossible. In this latter case,
the correction induced by the pure P model vanishes, but
there will remain the analytic corrections and those in-
duced by P. The fixed-point theory corresponds to u = u "
and all the other couplings equal to zero with p. In that
case all the corrections to scaling vanish whatever the dis-
tance to the CP, and there remain only the analytic
corrections. This is an ideal situation which cannot be
thought of as being physical since the cutoff may never be
infinite in a real system. Consequently, the fixed-point
theory can be considered only within the renormalized
(unphysical) theory.

The expression of the two first terms (leading and first
correction) of the power-law expansion of the renormal-
ized correlation functions is obtained by an expansion
around u =u* with P set to zero, of Eq. (2.16). Following
the usual ' considerations and notation we obtain

I z([OJ;t, u, p) —p X Y* (X tlo) ~I'(tOI;o, u*,O)
t~o

X [1 c(u,p)(X*t—/cr) [(v'd —NP')/6+(in[I ~(IOI;o, u, O)])'] (2.24)

in which the notation (f)' means df /du and v' stands for
dv(u, O)/du (similarly for P'). The quantities X' and Y*
are the values at A, =O of the functions X(A, ) and Y(A, ) de-
fined as

X(A, ) =exp I dx[1/v —1/v(x)]/x (2.25a)

Y(A, ) =exp I dx[P/v —P(x)/v(x)]/x (2.25b)

with v(x)=v{u(x),P(x)) and /3(x) =P(u(x), P(x)). The in-
tegrations from 1 to 2, indicate that X(A, ) and Y(A, ) de-
pend on the initial conditions of Eqs. (2.15), and thus on u

and p. Hence X and Y depend also on u and p as
LNc(u,p). Apart from the dimensional factor p, these

three constants carry all the nonuniversality of the critical
behavior.

The universality of combinations or ratios between
asymptotic and correction ' amplitudes comes from
this particular structure. One may easily check that the
return to the bare (physical) theory corresponds only to a
multiplicative change of these nonuniversal factors by us-
ing the inverse renormalization change indicated by Eqs.
(2.6)—(2.8). The o dependence explicitly written in Eq.
(2.24) expresses only the arbitrariness introduced in deriv-
ing the solution to Eq. (2.11).

We recall that the dependence on the cutoff, in the
nonuniversal factors, also summarizes the effects of all
the higher degrees of freedom. Hence, we claim that all
the nonuniversality within W~„„may be reproduced
through four adjustable parameters related, respectively,

D
to (a) a dimensional factor [p in Eq. (2.24)]; (b) a tem-
perature scale (X'); (c) a field scale ( Y*); (d) the strength
of the confluent corrections [c(u,p)]. Let us make some
remarks about c(u,p).

(i) The corrections of the pure P model have the fol-
lowing general form:

g a„(o)[(X*t/o) c(u,p)]",
n=1

in which a„(u) are numbers such that the combination
[a„+i(o)]"/[a„(cr)]"+' is universal for any n This .prop-
erty is only valid within the pure P model.

(ii) As long as we limit ourselves to this model, it is
clear that the adjustable parameter c(u,p), if nonzero,
may be eliminated through a redefinition of p, X, and
Y . Of course c(u,p) could vanish, but it is unlikely be-
cause of its dependence on all of the couplings, and not
merely on

~

u —u
*

~

as usually thought. Hence, the
number of adjustable parameters is reduced to three.

One thus has the confirmation of the validity of the
description of &~„„in terms of the three free parameters
proposed in Refs. 1 and 2, related, respectively, to the fol-
lowing:

(1) a length scale (noted go in Refs. 1 and 2), which
fixes the dimensional factor p L~;

(2) a temperature scale (noted 8) related to X*;
(3) a field scale (noted +) related to Y*.
From now on, we can limit our study of W~„„ to the

pure P model at infinite cutoff, since the higher tran-
sients and the cutoff induce only a redefinition of the free
parameters which, by their nature, must be determined
from experiment. I.et us stress the fact that this infinite-
cutoff limit corresponds to p=O and thus concerns the
bare theory at A= ao (we recall that p=p/A). Neverthe-
less, the cutoff dependence of the bare theory has two fun-
damentally different origins (as recalled in Appendix A):
first, the lattice structure and second, the physical effect
of the long-range correlations between the fluctuations at
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the CP which is expressed in the dimensionalization of all
the bare (physical) quantities in terms of A [in particular

DLin the p factor of Eq. (2.24), see Appendix A]. The
infinite-cutoff limit of the bare theory, in which we are in-
terested, corresponds to the continuous limit of a zero lat-
tice spacing and thus to A —+ ~ with all bare quantities
(rp, gp) fixed. In the next section we show how this can be
realized together with the presentation of the advantages
of working within the massive FT directly at d =3.

III. PARISI APPROACH

In this section we present the fundamental technical ar-
guments which led us to work within the massive FT
directly for d =3 as proposed by Parisi. '5 We want first
to discuss the infinite-cutoff limit of the bare theory
which is alluded to at the end of Sec. III.

A. Infinite-cutoff limit of the bare theory
below four dimensions

In order to avoid confusion we must emphasize that
this limit taken for the bare theory (at gp and rp fixed) is
not contrary to custom. In practice, the usual infinite-
cutoff limit (for the renormalized theory) is equivalent to
an implicit definition of a bare theory at infinite A. It
amounts to setting p (=p/A) equal to zero and not only
A, =O (i.e., not only P=O) in the renormalized quantities of
Sec. II, while p is kept nonzero. From the preceding sec-
tion it follows that the two bare theories (A finite or infin-
ite) are equivalent in &~„„up to a change of the three
adjustable parameters.

Of course a finite cutoff is essential in the RG ap-
proach ' (see Appendix A). The infinite-cutoff limit,
which facilitates the calculations, is only justified after the
renormalization procedure has been set up (see Sec. II).

For d =3 (but also for other rational values of d below
four' ) the bare theory presents ultraviolet (uv) diver-
gences reminiscent of those of the two-point correlation
function (at zero momentum) for d =4. A mass shift is.
sufficient to eliminate them and must be differentiated
from the true renormalization process related to the intro-
duction of the Z s of Sec. II. Indeed, this latter renor-
malization expresses the fundamental scale-invariance hy-
pothesis of the RG approach (see Sec. II C) while the mass
shift is useful for defining the critical parameter (scaling
field):

rp =ro —roc (3.1)

rp, is the critical bare mass defined in Eq. (2.10) which
corresponds precisely to the subtraction condition of all
the ultraviolet (uv) divergences of the bare theory below
four dimensions.

At d =4, the mass shift in the renormalization process
of field theories cannot be distinguished from the other re-
normalizations (Z s) since only uv divergences are con-
cerned. In the critical limit one is only interested in the
resummation of the ir divergences which occur when rp
goes to zero (at gp and A fixed). For dimensional reasons
the quadratic uv divergences summed within ro, are com-
pletely disconnected from the ir divergences. Gn the oth-
er hand, the uv divergences summed w'ithin the Z s are

linked to the ir ones (and vice versa) through logarithms
of A/rp (A and ro have the same dimension while gp is
dimensionless, hence A/rp is the single dimensionless
quantity that can be constructed with A and r p).

Consequently, since the mass shift is disconnected from
the critical limit, ro, may be used, as counterterm, to de-
fine the bare theory for d =3 for infinite A. It does not
matter that ro, is infinite since it will never appear after-
wards, rp being the single bare mass useful in the RG ap-
proach (scaling field).

A coherent theoretical scheme for the definition of a
bare theory for d =3 and A infinite would follow these
steps:

(1) In order to avoid the uv singularities which occur at
d=4 —2/k (k=1,2,3,. . .) (in particular at d =3), one
makes an analytic continuation in d (Refs. 14 and 29) (di-
mensional regularization). One may thus drop A and deal
with I p(Iq, p};rp,gp, e) in which @=4—d is different from
the above rational values.

(2) One then eliminates the pole at @=1 by mean of a
mass shift, introducing a new bare mass r o defined by

ro =r o +5ro(e) (3.2)

in which 5ro(E) subtracts the pole at e= i. The new bare
correlation functions I p(Iq,p};rp,gp, e) are then well de-
fined at d =3 (e=l). They are formally equal to the
correlation functions expressed in terms of rp as long as e
does not take the above rational values. They will now be
considered as the physical correlation functions. This
essentially means that the bare quantities have dimensions
expressed in terms of the microscopic length a —1/A:
rp -A and gp-A'. This distinction in the role of A is
explained in Appendix A.

(3) One introduces a critical parameter (scaling field):

with rp, defined by

I o'"(IO}'ro go &)=0

(3.3)

(3.4)

at d =3, r o, is finite and in principle calculable. One also
has

(Iq I } r' g ~}=Pp(Iq p};ro gp ~) (3.S)

(4) One then considers the renormalization transforma-
tions of the field Pp, the coupling constant gp, and the
critical parameters r o which introduce the Z s.

(S) After obtaining the critical behavior of the renor-
malized correlation functions I z(Iq,p};t,u, p, e), one re-
turns to the bare correlation functions I p( Iq p} r p gp E)
by means of the inverse renormalization transformations.

(6) The cutoff dependence is then reintroduced through
the three adjustable parameters of Refs. 1 and 2 (see Sec.
II) to obtain the realistic bare correlation functions within~press.

However this program, although correct in principle, is
not adapted to practical calculations, owing to the. pertur-
bative nature of the F'T' approach. The reason is that, as
we shall see below (Sec. III 8) the critical bare mass ro,
cannot be determined perturbatively. This is one of the
difficulties, already noted in the Introduction, associated
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with the definition of the critical theory (zero-mass
theory). In the following subsections we shall recall the
origins of these problems and show how the massive FT
framework circumvents them.

B. Spurious infrared singularities
and the critical bare mass for d & 4

FKJ. I. Graph which gives a pole at e= I and generates all
the ultraviolet divergences of the P field theory at d =3.

From now on we shall deal with the bare correlation
functions I 0( I q,P I; ro, go,e), dimensionally regularized.
Within the e-expansion scheme it is usual to consider the
critical bare mass ro, as being identically zero. The per-
turbative equation which defines ro, has the following
form:

with fz(1) a well-defined number. We find

D(e) =go '[fz( 1)/(e —1)—fz( l)ln(ro /go ')

+Ct+O(e —1)]+5ro(e), (3.9)

rp y ro ~k(~)go(1—ke/2), k

k=1
(3.6)

in which C~ is a constant.
The elimination of the pole at e = 1, gives

5ro(e) = —go fz(1)/(e —1) (3.10)

D(e) =gp(1'p )' 'az(e)+5ro(E) (3.7)

no longer have a pole at @=1. For this, we perform an
expansion around @=1 of D(e) knowing that

where ak(E) represents the Feynman graph contributions
of order k and has poles' at @=2/k (k= 1,2,3, . . .).

One easily sees in Eq. (3.6) that the series which defines
ro, will be identically zero provided k@&2 for any k.
%'ithin the e expansion it is formally the case and one has
7 p =0 at each order. However, this supposes infini-
tesimally small e and prevents the possibility of setting
e= I in the results without having prescribed the way the
singularities of the correlation functions located at the ra-
tionals E=2q/p and generated by the massless bare
theory (ir singularities) have been circumvented. As Parisi
claimed, ' the e-expansion scheme could never give any
quantitative information on the critical behavior without
an additional hypothesis on the resummation of these ir
singularities. This limitation, however, concerns only the
critical amplitudes and not the determination of either the
critical exponents, which requires only consideration of
the poles at @=0 (d =4) through the Z s, or the universal
amplitude combinations. This is well illustrated by the re-
cent work of Le Guillou and Zinn-Justin. '

As mentioned in the preceding subsection, the dimen-
sional regularization provides an analytic continuation
which allows an approach to d =3 without the difficulty
of the ir singularities of the massless theory. Only the uv
singularities located at @=1 (d =3) are of importance.
These singularities can then be absorbed in a redefinition
of the bare mass [Eq. (3.2)]. Let us give explicitly the
mass shift at d =3 already introduced in a previous pa-
per.

The coefficients ak(e) in Eq. (3.6) have, in particular,
poles at e= 1 generated by the simple divergent graph (or
subgraph) drawn in Fig. 1. The value of this graph, G(e),
contributes linearly to Eq. (3.6) through az(e) which has a
simple pole at @=1. I.et us perform the change of mass
given by Eq. (3.2) 'such that 5r0(E) subtracts only the poles
at a=1. Owing to the superrenormalizable character of
the p theory at d =3, . 5ro(e) will have only one term,
determined by requiring that the combination

and a finite D(1),

D(1)= —gofz(1)ln(rp /gp)+Ct . (3.11)

The bare correlation functions, expressed in terms of ro
and go at d =3 are then finite and obtained from the rela-
tion

I 0(Iq,pI;rp, go)=lim I p(Iq p I rp go E)'
g—+1

(3.12)

with rp defined by Eqs. (3.2) "nd (3.10).
The drawback is the nonanalyticity in the coupling con-

stant which appears through logarithms of go in Eq.
(3.11). This is a consequence of gp being the single
dimensioned parameter (at the CP) once A is eliminated.
For the same reason the bare critical mass ro, at d =3
has the form

2I.o ——ao (3.13)

in which M is a number which cannot be determined per-
turbatively. ' In the next subsection we show that the
massive FT framework circumvents these difficulties. '

C. Massive field-theory framework

To study the critical behavior, it is not necessary to de-
fine the theory at the CP and especially the critical bare
mass from which arise the problems indicated above. It
seems incompatible with the perturbative FT approach, to
use a linear (analytic in temperature) scaling field as criti-
cal parameter. It is preferable to introduce, as critical pa-
raineter, a quantity which already contains a nonanalytici-
ty (nonlinear scaling field) such as the inverse correlation
length (or the inverse susceptibility).

The massive FT corresponds to this choice. UsualIy
the nonlinear scaling field (the mass, see below) is intro-
duced at the level of the renormalized theory. From Sec.
III B we must differentiate the mass shift which subtracts
the poles at a=1, from the other renormalization steps.
The procedure for defining a massive theory for d =3 can
be seen as follows.

Starting from the bare correlation functions
I 0(Iq,p I;ro,go, e), we perform the mass shift

~z(E) =fz(E)/(E —1) (3.8) (3.14)
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in which 5m is defined by the condition

r' ' '({Oj;m2+5m', g, ,e)

ro' '({pj;m +5m, go, e)
Bp

2=m (3.15)

In this case, m is the inverse of the correlation length.
It is easy to realize that 5m plays a role similar to that of
5rp(e) previously introduced in Eq. (3.2). In other words,
it eliminates all the poles at @=1. We thus obtain a bare
theory finite at d =3 in terms of the nonlinear scaling
field m, the correlation functions of which will be noted
I p( {q,p j;m, gp). We emphasize that the two bare theories
at d =3 introduced up to now (with r p and m) are identi-
cal through a finite shift of the mass at d =3:

with

ro({q p j'"o g)=r({q p j'm g) (3.16)

r p
——m +.lim [5m (e) —5rp(e)] .

@~1
(3.17)

po(x) =[Z3(g)]' QR(x),

gp ™gz&(g)/[Z3(g)]
[(bo(x)] = [Z3(g )/Z2(g)][JR (x)]R

(3.18a)

(3.18b)

(3.18c)

in which the subscript R refers to renormalized quantities,
while the renormalized and bare correlation functions are
related by

r ({q,pj;m, g, &)=[z,(g)]""- [z,(g)]'
XI' ({q,p j;m,g, e) . (3.19)

The renormalization functions Z;(g), i =1 to 3, are
usually defined by the following equations

rR' (p;m, g e)
i

r'R~'~'( {Oj;m, g, e) =m'g,

r,""({Oj;m,g, &)= 1 .

(3.20a)

(3.20b)

(3.20c)

These equations are called subtraction conditions in the
language of field theorists who are interested in the situa-
tion at d =4 and in the renormalized theory. It seems to
us simpler to write the explicit definitions of the Z s
which, from Eqs. (3.18)—(3.20), read

[Z3(g)] '= I o' '(p;m, go, e)
i

[z,(g)]-' =r,""({o j;m,g„e)/g, ,

[Z,(g)]-'=I,""({Oj,m, go, e) .

(3.2la)

(3.21b)

(3.21c)

Equation (3.16), which relates the formulations in terms
of linear (r p) and nonlinear (m) scaling fields will be im-
portant in the following to return to the description in
terms of r through Eqs. (2.5), (3.1), and (3.2). The advan-
tage of dealing with I"p({qp j'm gp) is that they are free
of logarithms of gp and may be calculated perturbatively.

Up to now we have realized the three first steps of sec-
tion IIIA. The fourth step is the introduction of the re-
normalization process which relates the bare quantities to
the renormalized ones and reads for any d:

From this we see clearly that the Z s are finite dimen-
sionless functions of gp/m [ol of g through Eq. (3.18b)]
at d =3. It is precisely this way that the high-order series
have been calculated' at d =3 to obtain the estimates' '
of the critical exponents. Before recalling the steps which
led, from knowledge of the Z s to these estimates, let us
make some comments on the significance of the renormal-
ization process introduced by Eqs. (3.18).

The Wilson RG approach is based on the hypothesis of
scale invariance at the CP. This means that the descrip-
tion of the system in terms of the physical parameters
(T T„—H, and couplings) at a given length scale (here
the microscopic scale 1/A for the bare theory) is
equivalent to that made at a macroscopic length scale (the
correlation length g=m ') through a change of normali-
zation of the physical parameters.

Equation (3.18b) relates the two length scales A '
(gp is

order A') and g=m ', while the renormalization of the
coupling up ——go/A' is performed through Z&, and the
new coupling is designated by g. Equation (3.18a) corre-
sponds to a redefinition of the magnetic field h of the
bare theory (see Appendix A on the introduction of the
field h) through Z3. This renormalization is customarily
written as a renormalization of Pp(x) coupled to h in the
Hamiltonian. It is indeed equivalent since Pp is an in-
tegration variable within the partition function so that a
change in the normalization of Pp then corresponds to a
change of h. For the same reason, Eq. (3.18c) which in-
troduces Z2 corresponds to the renormalization of the
linear scaling field r p (or rp) expressed here as a renor-
malization of the square of the renormalized QR(x) to
which it is coupled. Equations (3.18) define the renormal-
ized physical parameters (attached to the length scale g) in
relation to the bare ones (h, up, r p) (attached to the length
scale A '). The definitions of the Z s [Eqs. (3.21)] are
then suggested by the similarity of the problems solved by
field theorists for d =4 and those raised by the critical
limit at any d. We stress the fact that this similarity
could not be understood without having first expressed
the scale-invariance hypothesis through Eqs. (3.18) or
similar ones. The reference to d =4 is only a guide, and
Eqs. (3.21) may be used for d =3.

In Sec. II we used a different renormalization scheme:
the so called p renormalization. ' In that scheme one
tries to describe the situation at the CP. In that case no
relevant length scale other than A ' is available (g' is in-
finite); the arbitrariness of the length scale p,

' expresses
completely the scale-invariance hypothesis at the CP.
This contrasts with the massive framework, in which it is
only approximately formulated (the CP is not yet
reached). This explains why the RG equations take a
simpler form in the p scheme than in the massive scheme.
However, as already mentioned, the CP is a singular point
whose description is an idealization. The p scheme allows
the complete expression of the consequences of the
fundamental-theoretical ideas, but some difficulties arise
when explicit calculations are made within it (see Secs.
IIIA and IIIB). The massive scheme is more realistic
since, as in real systems, the CP is only asymptotically ap-
proached. If the fundamental formal ideas of the RCx ap-
proach may be useful in understanding the critical
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lY(g) =co(g —g')+O((g —g*)') (3.23)

with positive co.
The critical exponents are obtained from the functions

A)3(g) and r)2(g) defined as'

»[Z3(g)],G

8g
(3.24)

92(g) = ~(g)»[Z2(g)]
8g

whose values are estimated at the fixed point g *:

(3.25)

(3.26a)

(3.26b)

The other critical exponents are then obtained via the
scaling laws which are automatically verified in FT. For
example, the exponent v of the correlation length is

behavior in real systems, then we assume that the con-
clusions of Sec. II may be correct for the massive theory
when m goes to zero. Consequently, consideration of
the massive theory at A= ~ directly at d =3, as intro-
duced in this section, is justified to obtain the critical
behavior.

Let us now recall briefly how the critical-exponent esti-
mates have been obtained within the massive theory. In
the massive theory, the-critical limit corresponds to I~0
at go fixed. Hence, Eq. (3.18b) defines the renormalized
coupling g as a function of temperature such that the
combination gZ~(g)/[Z~(g)] goes to infinity as m
(e~O). The essential hypothesis usually made is that g
reaches a finite value (g*) when m~O. Following the
standard presentation, g' is the single nontrivial zero of
the function W(g) defined by'

W(g) = —e(d lnIgZ~(g)/[Z3(g)] I /dg) ' . (3.22)

Near the fixed point g*, W(g) is supposed to behave as

IV. NONASYMPTOTIC CRITICAL BEHAVIOR
FROM MASSIVE FIELD THEORY AT d =3

In this section we show in detail how the nonasymptot-
ic critical behaviors for the physical quantities g, X, and C
of the disordered phase presented' and used in previous
papers, have been obtained. We first present the principle
of the method which is based on a nonperturbative treat-
ment of the RG equation. This was made possible by the
high-order perturbation series calculated by Nickel, Mei-
ron, and Baker' and the method of resummation of the
divergent series introduced by -Le Guillou and Zinn-
Justin' (Sec. IV B). The precision of our numerical treat-
ment together with -the direct calculation in the bare
theory (dimensionally regularized as in Sec. III) allows a
comparison with experiments and, in our opinion, will irn-
prove the experimental tests of theoretical predictions (see
Sec. V).

A. Principle of the method

Our starting point is the massive P FT at infinite cut-
off presented in Sec. III C which is considered directly at
d =3. The renormalization functions Z;(g) (i = 1—3) cal-
culated by Nickel et al. ' correspond to the bare correla-
tion functions at infinite cutoff after the mass renormali-
zation at d =3 [Eqs. (3.21)]. From these definitions and
the considerations of Appendix A, one easily verifies that
the physical g and X are respectively given by

—1 =Pl

'=m /Z3(g) .

(4.1a)

(4.1b)

We drop the factor 1/co in the definition [Eq. (A9) of
Appendix A] of X ' for the sake of clarity. It will be re-
stored in Sec. V when comparison with real systems will
be envisaged.

Equation (3.18b) defines m as a function of g at go
fixed. At d =3 it reads

v= (2—r)+ g2) (3.27) go =mgZi(g)/[Z3(g)] (4.2)

The computation' at d = 3, of the series Z;(g) (i = 1,2,
and 3) to sixth order in powers of g, provides the series
for W'(g) and for the critical exponents at the same order.
The divergent nature of these series has been character-
ized by the determiriation of the large-order behavior of
their terms. This has suggested resummation methods of
the series whose details may be found in Ref. 17. The
zero of the Wilson function JF(g) is then evaluated,
which gives a numerical verification of the hypothesis of
the existence of g'. Finally, the series for ~, g, and g2
are resummed for g=g'. The study of various resumma-
tion methods in several cases has suggested criteria for es-
timating error bars. '

As recalled in Sec. IV, the resummation method and
the principle of error-bar determination are independent
of value of g. This allows a systematic numerical study of
the approach of the CP via the approach of g* by g. It is
the subject of the next section to show that. this can be
done, with a similar accuracy as for the exponents, for
the three measurable quantities g, X, and C using the
series computed in Ref. 19.

go is a constant proportional (at d =3) to the inverse of
the microscopic length a or 1/A (see Appendix A). It is a
characteristic of the real system considered and will be an
adjustable parameter (see Sec. V). From Eqs. (4.1) and
(4.2) one obtains the dimensionless (starred) expressions
for g' and X, in terms of g:

g* =gZ i (g) /[Z3 (g) ]
X*=g [Z&(g)] /[Z3(g)]

in which

(4.3a)

(4.3b)

P =No

& =&So .

(4.4a)

(4.4b)

When m~0 at go fixed (as one approaches the CP), g
goes to the fixed point g* defined as the first nontrivial
zero of W(g), which, at d =3'reads

W(g) = —(d InIgZ~(g)/[Z3(g)] [ /dg)

Hence the renormalized coupling constant g plays the
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This linear scaling field no longer appears explicitly in
the massive theory. It is, however, accessible from Eq.
(3.21c) which, from the definition of the P insertions, and
Eqs. (3.14)—(3.17) and (4.6), may be written as

[~1o' ({0]'tgo)/~tl„=+[Z2(g)] (4.7)

Using the Eq. (3.15) which defines m as g
' and Eqs.

(3.18b) and (3.21a), one may write equivalently

dg
+Z2(g)(d {[Z3(g)]'/[gZi(g)]'l /dg )

in which t =t /go is dimensionless.
The integration of Eq. (4.8), with the initial condition

t*(g') =0, gives the expression of t* in terms of g which
we sought:

(4.8)

s + [Z3(x)]'
t*(g)= —I dx Z2(x) d

z[xZ)(x)]
dx . (4.9)

Let us make some comments about this expression in rela-
tion to the discussion of Sec. III C.

The functions Z;(g) are given as power series in g. If
one expands them in powers of x in Eq. (4.9) and in-
tegrates term by term, one will obtain singular terms for
small g, and in particular a logarithm of g. These singu-
larities are related to the definition of the critical bare
theory at d =3 (see Sec. III C) and occur only far from
the CP (small values of g). If, instead of working pertur-
batively, one integrates after having resummed the power
series of the integrand, one will have no singularity if the
integral converges. ' The only possible divergence could
come from x near g' where the Z s are singular (g is
kept strictly greater than zero). From the definitions of
W(g) [Eq. (4.5)], g3(g) and g2(g) [Eqs. (3.24) and (3.25)],
and the expansion (3.23), one easily checks that as x ~g"
from'below one has

Z3(x) -(g*—x ) I~",

Z2(x) -(g' —x )"'

Z)(x)-(g' —x) I

(4.10a)

(4.10b)

(4.10c)

The integrand of Eq. (4.9) thus behaves as
( y2 —g+ 1)/ce(g' —x) ', which leads for g close to g", to

t'(g)-(g' —g)'~ (4.11)

This result is valid if b. (=cov) is positive. This exponent
controls the corrections to the scaling behavior and its
positivity assures the convergence of the integral (4.9).

It is on similar nonperturbative considerations and the
hypothesis of negligibility of the right-hand side of the
Callan-Symanzik equation that Parisi' based his proposal
for calculating the critical exponents from the P model at

same role as u(A, ) in Sec. IIC. Consequently Eqs. (4.3)
give implicitly the critical behavior of g and of X when g
varies. It remains to relate these variations to that of the
linear scaling field r o of Eq. (3.3). In order to maintain
the notations used in previous papers, we shall use the
symbol t instead of r o, with3~

(4.6)

integer dimensions d =2 or 3.
We are now in a position to obtain nonasymptotic criti-

cal behavior. The strategy is the following.
(1) Owing to the nonperturbative character of Eq. (4.9)

the function t*(g) is obtained numerically at discrete
values g~ of g (0&g~ &g*). This gives t~" (gz) such that
10 ' & t* & 10' . In the next section we show how to per-
form the resummation of the series defining the in-
tegr and.

(2) Likewise, we resum the series of P(g) and X*(g)
from Eqs. (4.3) for the same set of values g~ of g yielding
g~(g~) and X~(g~).

(3) The discretized numerical variations so obtained are
continuously interpolated by phenomenological functions
which reproduce with high accuracy the variation of g*
and 7* in terms of t * in the reduced range
10 ' &t&10 . These functions are presented in Sec.
IV D for various values of the number of components n of
the order parameter.

Until now 'we have not introduced the series which
gives, as for g and X in Eqs. (4.3), the specific heat. This
quantity was not explicitly considered in Ref. 19, but was
extracted from it in another article. According to the
notation used in Refs. 19 and 36, the bare correlation
function I o

' '({0}I;ro,go), which is related to the specific
heat (see Appendix A), is given by

I o'"({0j't'o go)=6Zs '(g)/go (41»'

in which the series Z&(g) (as Z&, Z2, and Z3) are known
up to the sixth-loop order (see Table I). The principle for
obtaining C (t*) is the same as for g* and X* presented
just above. Let us now look at the numerical realization
of this program.

B. Numerical treatment

As mentioned in the preceding subsection, we need to
sum the series Z;(g) (i = 1,2,3,5) presented in Table I with
great accuracy for any vaIue of g between 0 and g . The
method of resummation used is that introduced by Le
Guillou and Zinn-Justin, ' which is based on the Borel
transform of the series and conformal mappings. These
transformations and further refinements of the method is
suggested by the large order behavior of the series. Let
us denote by z ' the kth order of the series Z;(g). Then
for large k one can show that

z '-k!(—a)"k 'c;[1+O(1/k)], (4.13)

in which a, b;, and c; are known numbers. We shall not
recall the details of the resummation method here, as it
has already been presented in great detail. ' We simply
indicate that we have used the simplified version which is
also presented in detail in Ref. 27. The point we want to
discuss now is different.

In principle, the resummation method gives rules for
estimating the values of the Z s for any value of g (the
method is independent of the value of g, and only con-
verges less well as g increases). It also gives means of ap-
preciating the sensitivity of the results with respect to the
parameters introduced' ' (estimates of error bars). How-
ever, this is only true for value of g at which the Z s are
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TABLE I. Series [Z;(A, )] '=gk oaks" for the symmetry O(n) (n =1,2, 3) considered in this work. The numbers come from
Ref. 19; see also Ref. 36 for Z5 (A, )/A, (a typing error in this reference is corrected here). The coupling X is related to g through

g = —48mA[Z3(A, )] ~2/Z)(A, ).

z
1.0
9.0

98.999 999 999 60
1245 ~ 198 933 648

17 370.757 048 10
264 016.846 831 9

4 321 786.169 513

1.0
3.0

21.0
199.545 169287 4

2282.813025 630
29 833.960 643 97

432 776.546 6162

1.0
0.0
0.444 444 548 15
5.111 177 322 60

60.348 829 923 0
778.402 645 637

10950.295 6144

z,—'/x

0.0
0.5
1.5
8.773 907 565 00

72.519023 056 0
749.984 306 250

9107.071 872 07

1.0
10.0

121.333 333 332 6
1672.215 308 646

25 416.380 571 06
418 762.338 105 0

7 396 132.322 372

1.0
4.0

32.0
337.887 197 579 0

4241.085 197333
60 332.111959 8S

946 988.921 775 7

1.0
0.0
0.592 592 696 30
7.572 114552 00

98.542 107 632 0
1392.099 662 33

21 334.474 045 2

0.0
1.0
4.0

27.397 086 840 0
254.067 295 208

2890.11161920
38 188.138063 0

1.0
11,0

145.666 666 665 6
2177.826 461 878

35 732.226 496 41
632 832.987 281 4

11968416.69148

1.0
5.0

45.0
522. 142 711 8018

7122.121 801 299
109339.694 933 7

1 842 682.709 973

1.0
0.0
0.740 740 844 44

10.411 657 509 0
147.800 231 681

2264. 117691 16
37 449.768 403 6

0.0
1.5
7.5

58.869 537 825 0
605.157 241 7S2

7503.828 885 75
107060.358 495

not singular. As shown by Eqs. (4.10), they are singular
near g*, in whose vicinity we are essentially interested.
The functions W(g), g3(g), and g2(g), whose estimates at
g* are needed for obtaining the critical exponents, are
nonsingular functions of g [W(g) has only a simple zero
at g*]. This suggests expressing the Z s in terms of these
nonsingular functions by using Eqs. (3.24), (3.25), and
(4.5). After integration one has

g Zl (g') =yoZ1(yo)
g

Xexp f I [2g,(x) —1]/W(x) Idx
3'p

g
Z2(g) =Z2(yp )exp f [rI2(x)/W(x)]dx

3'p

Z3(g) =Z3 (yp )exp f [t)3(x)/W(x)]dx
3'p

(4.14a)

(4.14b)

(4.14c)

in which W(g), g3(g), and g2(g) are series obtained from
the series Z;(g) of Table I by Eqs. (3.24), (3.25), and (4.5).
The constant of integration yo is chosen small enough to
estimate, from the series Z; themselves, the factor Z;(yp).

The functions W(x), g3(x), and g2(x) are then evaluat-
ed for any value of x. Since the principle of the resum-
mation method is independent of x, it is easy to include
the estimates of the series inside a computer routine for
integral evaluation. We thus obtain estimates of the Z s
at fixed g. The integration is repeated for a large set of
values g& of g. The difference g&+& —gz is chosen smaller
and smaller as g approaches g in order to estimate well
the strong contribution to the Z s which comes from
g-g*. This numerical analysis, presented for the func-

tions Z;, has been performed for g*, X*, and r*, whose
definitions [Eqs. (4.3), (4.4), and (4.9)] have been written
by using Eq. (4.14):

g (g) =g*(yp)exp —f dx/W(x)
Pp

X*(g)=X*(yo)exp —f dx y(x)/[v(x) W(x)]
&p

t*(g)= —to f dx y(x)/[v(x) W(x)]
g

(4.15a)

(4.15b)

X

& exp f dz/[v(z) W(z)], (4.15c)
3'p

in which t oZz(y )/oX (yo) X (yp), and g*(yp) are given
by Eqs. (4.3) for g=yp.

The expression for t*(g) introduces a double integra-
tion, but it is only a question of computer time to estimate
it within a similar accuracy as for a simple integration.
The series v(x) and y(x) which appear in the integrands
of Eqs. (4.15) are obtained from Table I by using Eqs.
(3.24), (3.25), (3.27), and (4.5) and the definition

y(x) =v(x)[2 —. g3(x)] . (4.16)

In order to be consistent with the error correlations we
have reestimated the fixed-point value g' instead of using
that of Ref. 17. The reason is that the error estimate of
g* accounted for the sensitivity in the change of the
resummation method. In our work we could not use more
than one method in the routine. The value we use for g*
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is compared to that of Ref. 17 in Sec. IV D.
We perform our numerical integrations two times ac-

cording to the cases g,„and g*;„which correspond to
the upper and lower values of the fixed point. For each of
these two cases there exist also the upper and lower esti-
mates for v, y, and 8' denoted also by subscripts max and
min. We have chosen the combination of these bounds
which corresponds to the envelope of the possible func-
tions t*(g) [and also for g*(g) and X*(g)].

Our primary result is thus the discretized variations of
t*, g*, and X* with respect to the renormalized coupling-
constant values gz given for the maximum and minimum.
We present in Table II the 10 first points we have ob-
tained for the maximum case. One can easily verify from
this table the asymptotic behaviors:

t*(g)-(g' —g)'

g" (g) -(g*—g)

X*(g)-(g*—g) r

(4.17a)

(4.17b)

(4.17c)

C. Specific-heat case

with the values for b„v, and y given in Table III.
One may realize that such a numerical presentation of

the results is not well adapted for a comparison with ex-
perimental data. In Sec. IV D we present our final results
under a form of continuous functions determined
phenomenologically from these primary discretized varia-
tions. This has the advantages of eliminating the explicit
dependence on the renormalized (unphysical) coupling g
and of allowing a simpler comparison with the previous
estimates of universal quantities calculated at the fixed
point. ' ' ' Before discussing this part of the work, we
shall now present the specific-heat case which needs a
slightly more complex numerical treatment.

proached). Consequently, the series Z;(g) (i =1—3) cal-
culated by Nickel et al. ' gave simultaneously the func-
tions studied and their singularities at g*. For the specif-
ic heat the situation is different. First, it is defined from
the series Z5(g) unrelated to the Z;(g) (i =1—3) for
which Eqs. (4.14) allow the numerical treatment described
above. Second, the singular behavior of C cannot be easi-

ly factorized owing to its particular critical behavior:

C(t)-(Ao+/a)t (1+aota+ )+8 (4.18)

which contains a constant term Bo. The subscript 0 is
used to distinguish the physical from the renormalized
amplitudes (see Sec. V).

In order to have a pure scaling function we thus per-
form a derivative of C(t) with respect to t at go fixed.
From the definition of C given in Appendix A and Eq.
(4.12) one easily obtains

(t)C/r)t), = —(6/g')
Zz d[Z 3/( gZi) ]/dg

(4.19)

as a power series in g. Near g" the function (QC/Qt) Sp
behaves as (g* —g) ', since a=2 —3v (at d =3).
This means that it has the same singularity as the com-
bination:

r)C 6 yoZi(yo)

go Z2(yo )Z3 (yo )
F g

3

I [Z2(g)Z3(g)]/[gZi(g)] J

Factorizing out this combination of series in Eq. (4.19)
one can write it in the form

The numerical treatment, as presented in the preceding
section, was possible because of the asymptotic pure scal-

ing behavior of the quantities considered (as g* is ap-

g 1 —g3(x)+g2(x)
Xexp —3 dx

W(x)
(4.20a)

TABLE II. Ten first primary results {for n =1) of the discretized evolutions of t*, g, X, and C
as the renormalized coupling constant g goes far from g . The coupling variation is represented
through U =g (n +8)/48m. Only the upper bound called max in the text is displayed. The fixed-point
value in that case is v*,„=1.420214705 (v*;„=1.41094226) to be compared to the estimate
0*=1.416+0.005 of Ref. 17.

1.420 214 000
1.420 200 625
1.420 187 25
1.420 1605
1.420 107
1.42
1.418 75
1.4175
1.415
1.41

2.4808 X 10-"
1.1004X 10-"
4.2846 X 10-"
1.7111X 10-"
6.9235 X 10-"
2.8202 X 10
1.4080 X 10-'
4.9531 X 10-'
1.8775X10 '
7.4331 X 10-'

3.0769 X 10
1.4355 X 10
3.3825 X 10
8 0986X 10
1.955 X 10-'
4.7393X10 '
5.5772 X 10
1.2324 X 10
2.854 X 10
6.790X 10-'

1.5545 X 10-"
3.026 X 10-"
1.6386 X 10-"
9.1576X 10-"
5.2016X 10
2.9791X 10-"
3.8404 X 10-"
1.8327 X 10
9.5927 X 10
5.2963 X 10

84.1785
41.2814
35.0348
29.5605
24.8165
20.7289
12.1712
10.1144
8.2266
6.5512
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F(g) =— dZg '(g)
dg

Z3(g)Zz(g)
Z, (g)

stituted. The other characteristics of the functions are ar-
bitrary. We have found the general following form to be
convenient:

Z2d
X

Z3(g)
(4.20b) F*(r')= X,t' (1+X2t* )

'

in which the singularity near g* is treated as in the
preceding section and the series F(g) no longer has a
singularity, it can thus be evaluated in the same way as
W(g), v(g), and y(g). Hence, it remains to integrate with
respect to t to find again the specific heat C(t). Finally,
the expression we have to evaluate for C(g.) is the follow-
ing:

C*(g)=- 6yoz, (yo)

[»(yo)]'
y(x)F(x)f dx

&0 v(x) W(x)
T

—2+ 3v(z)
Xexp dz +C*(yo),

&0 Wzvz

(4.21)
in which C'(g) stands for C(g)go for dimensional
reasons.

This expression can easily be found by using the pro-
cedures given in the preceding section. The constant of
integration C*(yo) is numerically determined from the
original series [Eq. (4.12)] of C [yo is chosen sufficiently
small to estimate C'(yo) from the perturbative expansion
itself'. We stress the fact, which will have importance in
what follows, that the additive critical part 80 of C(g) in
Eq. (4.18) is implicitly contained in Eq. (4.21). In other
words, the evolution in g of C(g) obtained in this way
contains the complete critical behavior of C (the singular
part and the constant Bo).

The numerical treatment of C'(g) follows the same
method as that for t*(g) described in the preceding sec-
tion. The 10 first points of C*,„(g~) are displayed also in
Table II.

D. Final form of the results

We present in this section the final form of the
nonasymptotic critical behavior of P(t'), g*(t*), and
C'(t*) which comes from the P model at d =3. We
have performed a smoothing of the discretized results
whose derivation is presented in Secs. IV B and IV C. The
useful information is displayed in Table III. In Table IV
we compare the universal characteristics of our
phenomenological theoretical functions with the previous
estimates. ' ' ' We also give in this table the estimates
of the universal combination R~ derived in Ref. 20.

CI'

We have looked for phenomenological functions which
could reproduce with a relative error of less than 10 the
variation of g*, X*, and C* in terms of t'. This elim-
inates the explicit reference to the renormalized (unphysi-
cal) coupling constant g. We have chosen the form of the
functions in such a way that the universal exponents (crit-
ical and subcritical) appear explicitly and that the usual
universal combinations of amplitudes may be easily recon-

X(1+X,r* ) '+X, , (4.22)

in which F* stands for any of the functions g*, X*, and
C*, while e is the critical exponent characteristic of the
function considered, and 6 has its usual significance. The
quantities X~ (i =1—6) are adjusted to the points we have
obtained from the numerical study at discretized values gz
of g (see Sec. IVB). This particular form is, thus, not
universal. The form specified in Eq. (4.22) for F*(t*)
cannot reproduce the entire crossover, of the P model, to
mean-field behavior. . We limit the fit of the discretized
evolution to values of t* smaller than 10 . In a previous
paper' we gave a complete reproduction of this crossover
by using a more complex form for F*(t*). In particular,
an effective exponent D(t*) reproduced the crossover
which also affects the correction exponent. It reproduced
an evolution from the value b, (=0.5 for n = 1) near the
CP to exactly —,

' far from the CP. Since the P model can-
not be thought to be quantitatively valid for small g (large
t*), we choose Eq. (4.22) (limited to t" ( 10 ), which al-
lows an easier and more correct expansion around t*=0,
the vicinity we are interested in.

As can be seen from Table IV, our error bars on the
universal characteristics of the critical behavior are small-
er than in previous work. ' ' ' As already mentioned, we
could not, without making the numerical calculation un-
tractable, carry out a complete study of the sensitivity on
the resummation method used. Hence, only one criterion
is chosen to determine the error for each resummed series.
However, the very small error bars which appear, in par-
ticular for quantities associated with the first corrections,
are also a consequence of the fact that in the present work
the correlation between the errors are taken into account
better. When calculating separately a universal quantity,
one must add the errors on all the terms independently es-
timated which compose the desired quantity without look-
ing at the correlations between the errors. In our treat-
ment we resum a small number of series [8'(x), v(x),
y(x), F(x)] to obtain the complete critical behavior, and
we combine the error estimate in order to obtain the en-
velope (max, min). The correlations between errors are
thus taken into account. We stress the fact that our nu-
merical treatment is entirely independent of the previous
work'7' ' and the agreement displayed in Table IV must
be seen as a check of the correctness of the numerical
study. Figure 2 shows, on the effective exponent y,rr(t*)
defined by Eq. (S.10) below, the evolution with t* of the
error estimates. The error decreases when t increases;
this is due to the fact that the renormalized coupling con-
stant g also decreases, and consequently the series are
better resummed. In the next section we discuss the in-
terest of knowing the precise evolution of g'*(t*), X'(r*),
and C*(t") from the P model for a comparison between
theory and experiment.
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V. USE OF THE RESULTS FOR A COMPARISON
%'ITH EXPERIMENT

A. Adjustable parameters and two-scale-factor
universality

The functions given in the preceding section are
theoretical results whose validity is limited to the
preasymptotic critical domain W~„„. This means that
they cannot be used in a range of t* in which the expan-
sion around t =0 reveals a non-negligible contribution of
the second correction to scaling. In the following subsec-
tion this limitation will be used as a criterion to determine
the size of &~„„.At present we want to discuss the in-
troduction of the adjustable parameters of Refs. 1 and 2 in
more detail.

At the end of Sec. II we showed that, provided that the
first correction never vanishes, there are only three adjust-
able parameters. The origin of these three adjustable pa-
rameters may be easily seen, since in the P bare theory at
infinite cutoff, only three parameters characterize a sys-
tem. They are the coupling go, the scaling field t*, and
the magnetic scaling field h" =h /go (h is introduced in
Appendix A). From the hypothesis of analyticity, they
are, within &~„„,related to the physical parameters as
follows:

t*=O&,

h"=fH,
go=uo/a .

(5.1a)

(5.1b)

(5.1c)

These relations come from Eqs. (A4) of Appendix A
w th ~=bo/go and tl('=co/go, while the coupling con-
stant go, the single-dimensioned parameter, is expressed in
terms of a microscopic length a (go ——uo/a) which may be

(ogio(t )

FIG. 2. Evolution of the error of the numerical analysis as it
is estimated in this work for y,ft(t*) [see Eq. (5.10)]. The error
decreases as t * increases owing to the fact that the coupling g
also decreases. The significance of the notation max and min is
given in the text.
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chosen a priori according to the physical system studied.
The three adjustable parameters are thus 8, p, and up.

From the definitions of the physica1 correlation length
g,„~,(r) and susceptibility X,„~,(r) given in Appendix A
and those of the P model given in Table III, we have the
following correspondences within W~„„:

30—
C)
E

~ t 1

g,„p,(r) =(a/up)g*(8r),

X,„p,(r)=(upla) g X*(8r),

(5.2a)

(5.2b)
a 20—

t/)

g,„~,(r) —(a /u p )Xf(8r)

&&[1+(X(Xf+X~P()(8r)'+ . . ],
X.,~,( ) r—(up/a )'f'X~ (8r)

~ [1+(X~2X~3+X~4X,)(8r)~+. . . ] .

(5.3a)

(5.3b)

The universal ratio is thus equal to
(X(Xf+XfX()/(XzX3+X4X5). This result is a conse-
quence of the fact that 8 must have the same value in the
two functions adjusted to the experimental data. It is thus
the first possible test of the theoretical predictions provid-
ed that the experimental data are accurate enough to ob-
serve correction to scaling.

The third physical quantity, the specific heat, is much
more interesting. It also has a more complicated form.
As explained in Appendix 8, in addition to the calculated
function C*, we must add a regular part which does not
belong to the critical one. The comparison with the mea-
sured specific heat per unit volume divided by k~ will
thus be made from our function C" (see Table III) using
the following relation:

C,„p,(r)=(up/a) 8 C'(8r)+B„s(r), (5 4)

in which Bbg(7) must be determined from the experimen-
tal data far from the CP. In Fig. 3 we illustrate what
could be a possible estimate of Bbg(r) in the case of the
superfluid transition of He near the A, point (at the sa-
turated vapor pressure). Hence Bbs(r) is not an adjustable
parameter in the analysis of the data near the CP.

The experimental determination that we propose for
Bbs(r) is simply an interpolation in the critical domain of

in which only up, 8, and p are adjustable parameters. I.et
us note that expression (5.2a) for the correlation length
has the right dimension [a length as indicated by a which
may be chosen in, for example, a liquid-gas system as
a =(kz T, /P, ) '~, where P, is the critical pressure].
Equation (5.2b) gives to X,„z, the dimension of an inverse
volume; the reduction of the measured susceptibility to
this dimension must be envisaged first. The precise
choice of the reduction process does not matter as long as
only the inhomogeneous phase is concerned, since the
scale g does not enter either in g or in C (see below).

Owing to the presence of this nonuniversal scale g in
the asymptotic critical amplitude of P, there does not ex-
ist a universal relation between the two amplitudes of g
and X. However, the two confluent amplitudes depend
only on 0 and their ratio is a universal number. In Table
IV we give the numerical value of this ratio as derived
from an expansion around r (or t*) equal to zero. To be
explicit, these expansions performed on Eqs. (5.2) give

0

0
oR.

ol,
o

oE

fa j g k
ooooo

0
0

0
0

0
0

nM l

T.

2 3
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FIG. 3. Determination of the background term Bbg(v )
(dashed line) of the specific heat of He near the A, transition at
saturated vapor pressure from Hill and Lounasmaa (HL) (Ref.
38) and Mc Carty (Mc) (Ref. 39) [r=(T—T, )/T, ].

the regular behavior of C,„z, far from the CP. In any
case, the asymptotic critical behavior of C„„„asnoted by
Singsaas and Ahlers, is not very sensitive to the exact
value of Bbg determined from the experimental data far
from the CP. The specific-heat behavior is the sum of
this regular behavior and a singular one. The latter, gen-
erated by the long-range correlations between the fluctua-
tions, also contains a regular part: the critical constant
8„. This constant, in the case where a is negative (the
He superfluid transition, for example) is equal to the

difference, at the CP, between the value of C and that of
the regular part Bbg(0). We have shown that 8„ is,
apart from factors that we will introduce below, calcul-
able within the pure p model. This means that no addi-
tive contribution to B„comes from the higher-transient
or finite-cutoff effects. In order to calculate 8„ it is
necessary that the pure P model generates only the singu-
lar behavior of C and does not contain a part of Bbs(r).
This means that it must give C*—(X&t* +X6) whent*~0 and C*—+0 when t ~~. The form presented in
Table III does not have this property because it repro-
duces the critical behavior of the P model only from
t*=0 up to t*=10 . However, we have performed for
n =1 a complete reproduction up to t =10', and the
form proposed for C* in the Table I of Ref. 1 has the
correct behavior in the two limits (as can be easily
checked). This result does not depend on the value of n
since the limit t ~ao corresponds to the limit g~0 and
the series Z5 '(g), which gives C, has no constant term
(see Table I of the present paper).

If one expands Eq. (5.4) near r=0, we obtain from Eq.
(4.22) and the XI given in Table III:
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C,„,(y)=(uo/a) 8 IX)(8r) [I+(X2X3+XP'~)(«) + ]+X6I+8b,(y) . (5.5)

Rg+ =aX) [Xf] (5.6)

whose values, given in Table IV, are compared to the pre-
vious (and independent) estimates. Similarly, any ratio
of the confiuent amplitudes of g, X, and C is univer-
sal. ' In addition, there is a new universal combina-
tion of amplitudes which concerns only the specific heat
in a given phase (here the inhomogeneous phase). In Ref.
20 this universal quantity is called Rs+, and from Eq.
(5.5) its value is given by

R+ =X'
~

X'X'+X@'
~

"/X, .
cr

(5.7)

From Table III one easily obtains estimates for 8s
which are displayed in Table IV. We claimed that we
could not understand the case +=0 without the universal-
ity of R~ . In that case one expects a logarithmic

cr

behavior, Cs';„'I ——koln~, which occurs at some particu-
lar value of n, say no Henc. e the singular behavior of C,
whose general asymptotic form is C;„s-(2/a)r +8„,
must pass continuously through Cs', „g as n varies. This is
possible if, for n-no, 8„-—(Ao/a) such that

CPj„'s ——hm (2 0 /(x )( 1 —1 )
a~0

We do not know the value no, but at n =2, a is very small
and negative while for n =1 it is positive. In Table III
X) and X6, for C, play the roles of Ac/a and 8„. If
one compares their values for the three values n =1,2,
and 3, one sees that at n =2, X~ and X6 have much
greater values than for n =1 or 3. They are also of the
same order (for n =1 or 3 there is almost a factor 2) and
of the opposite sign. Clearly, no is not far from n =2.
This indicates that X6 (given in Table III) has the proper-
ty required for 8„and has been correctly determined.

All these considerations show clearly that our functions
with the minimal set of adjustable parameters 8, f, and
uo quantitatively contain all the universal characteristics
of the critical behavior within &~„» as predicted by the
theory. In addition, it appears clear that the two-scale-
factor universality, whose consequence is usually restrict-
ed to the universality of R~+, has a larger importance
and is valid in the whole W„„».

The two-scale-factor universality expresses the fact that
apart from a length-scale dependence uo which is factor-
ized (from a simple dimensional analysis), the critical
behavior within &~«» is universal provided that the tem-
perature 8 and the magnetic field (g) scales are properly
chosen according to the physical system. This is true only
if the first confluent correction is not identically zero. We
have shown in Sec. II that this is not the case at the fixed
point which corresponds to some particular value uo of
uc and to a =0 (infinite cutoff). Then, not only is the

By comparing this with Eq. (5.3), we see clearly that the
combination

R~ ——ar C,"„"p~(r)[g,„p,(y)]

is universal with

I

first correction zero, but also all the other corrections (by
definition of the fixed point). This is not a realistic situa-
tion since the length a is never zero in a real system.
However, although very unlikely, it is possible that the
corrections induced by the P model (and so the first one
in the real behavior) might be identically zero for Ising-
like system (n = 1) (systems with a positive a). Because of
the constraint R~, this could not be possible for systems

cr

with n )2 for which the critical constant 8„would be in-
finite (o. is negative). In Ising-like systems with a zero
first correction, the critical constant 8„would also be
zero and the asymptotic critical behavior of C pt would
have the form

C,„p,(r) =(A+/a)r [1+0(r,y ')]+8bs(y), (5.8)

and similarly for g and X. Our nonasymptotic functions
should, then, not be very useful in analyzing the experi-
mental data in such systems.

In order to be clear on the question of the number of
adjustable parameters needed within &~„» and the possi-
bility of a vanishing first confluent correction, we must
restore the presence of a fourth adjustable parameter [re-
lated to c(u,p) in Sec. II] by a change of the scales 8, P,
and uo which become

e =c-'"e,
u =c uo,

c —( y+ 3v) lhq

(5.9a)

(5.9b)

(5.9c)

Hence, the new parameter c may vanish and this would
allow the corrections in powers of r to be zero according
to the Sec. II. Nevertheless, in the case of c&0, only the
three adjustable parameters 8, g, and uo remain relevant
in W&«». The adjustable parameters being introduced, let
us now look at the practical use and interest of our
nonasymptotic critical behavior.

B. Determination of the size of Mp, ,
One of the great advantages of our nonasymptotic func-

tions for g, X, and C is that they provide the possibility of
estimating. the size of &~„». The expansions around
t*=0 of the functions generate the WE of the pure P
model (i.e., neglecting analytic corrections and higher-
transient effects). Hence, we obtain an illustration of how
a WE converges by comparing the expansions and the
complete functions as t* varies. This can be based not
only on pure theoretical grounds but also on the true criti-
cal behavior. Let us illustrate this by considering the re-
sults of the analysis of the data ' on xenon made in Ref.
2. This system corresponds to an Ising-like system
(n =1). Let us focus our attention on the susceptibility
for which the measurements are most accurate. ' They
are presented relative to a reference temperature rsibr as
the ratio X,„~,(r)/X, „~,(r„). Hence the scale factor P was
eliminated and the comparison could be made directly
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with our results by using the function X*(8r)IX (8r„).
Of course, only 8, related to the size of W„„„,can be
determined in this way. We are not able to appreciate the
true influence, beyond this region, of the other corrections
neglected in the P model.

However, we indicate that the work of Newman and
Riedel ' suggests that for n =1 the exponents of the
second and third nonanalytic confluent corrections b,2 and
k3 are very close to 2b, and 3A as in the pure (() model.
In addition, the first analytic correction is very much like
a r term while the second one should be relevant farther
from T, than the ~ term. Consequently, if not perfectly
correct, our model may give a rather good illustration of
the influence of the corrections to scaling in real systems
even out of M~„„.

Within the available temperature range 10 ' & ~ & 10
of the measurements, Giittinger and Cannell observed '

the possibility of three correction terms controlled, respec-
tively, by 6, 2A, and 3A. This observation was only possi-
ble because of the great accuracy of the measurements,
and was corroborated by the fact that we could reproduce
the data with a rather well-defined value of 8:
8=(1.91+0.85)X 10 . Furthermore, we have shown
from the other thermodynamical measurements that this
value was coherent on the global set of experimental -data

(g, X, and C).
- The best way to illustrate the effects of the corrections

to scaling is to consider the effective critical exponent'
defined, in the case of X, by

y,tt(r) = —d in[X(r)]/d inr . (5.10)

The deviation from a constant critical value y indicates
the effect of the correction terms. From their experimen-
tal data on xenon, Cannell and Giittinger extracted a
dependence on ~ for yd~. In Fig. 4 we present the succes-
sive influences, on y,tf(t*), of the three first corrections to
scaling compared to the complete variation given by the

model (Table III). From a simple shift of the loga-
rithm of t we indicate the relative position of the mea-
surements in xenon. ' We are thus in a position to deter-
mine the range of r for xenon, where asymptotic,
preasymptotic, and other regimes respectively dominate.
One observes in Fig. 4 that the overlap with W~,«, is too
small to obtain very accurate experimental determination
of the asymptotic critical behavior of xenon. If, as
claimed in Ref. 41, theorists must reduce the number of
free parameters, reducing the gravitational effects is also
an important experimental task. In this spirit, we have
made a comparison between C'(t ) with experimental
data in He (n =2) obtained recently by Lipa and Chui.
The gravitational effects in this system are much smaller
and the data usually analyzed with only one correction to
scaling. The universality of R~ automatically satisfied

cr

by Eq. (5.5) and the control of the size of W~„„ that we
obtain by using the complete function C of Table III are
very constraining. They provide an opportunity to appre-
ciate the reality of the slight deviation observed ' be-
tween the theoretical and experimental estimates of a.
We show that analytic confluent corrections have much
more importance than is usually thought.

In summary, we think that we have partly replied to the

1.25-

1.15—

1.10—

1.0

pre

Range of GC
I I

measurements
I I I I I I I

-8 -7 -6 -5 -t -3 -2

l og&0(t )

FICx. 4. Effective exponent y,tt(t*) [see Eq. (5.10)] provides a
good illustration of the influence of the different corrections to
scaling. A pure scaling law would give a straight horizontal line
at g ff

——1.2419 (dashed curve, 0). The solid line indicates
y,tt(t*) as it follows from the nonasymptotic function p(t )

given in Table III. The other dashed curves give the evolution
of the expansion around t"=0 of y,tt(t ) truncated at the first
(1), second (2), and third (3) confluent corrections. The scale of
t* indicated is purely theoretical. A comparison with the actual
range of ~ in the measurements of Guttinger and Cannell (GC)
in xenon is made through a change of scale: t*=8v with
8-1.9)& 10 (see Ref. 2): One clearly sees that the xenon data
do not reach the domain W~, , An efficient comparison with
theory is thus difficult in such a system where the gravitational
effects are too important to allow a correct determination of the
asymptotic critical behavior.
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hope expressed by Fisher in 1974. Our calculations may
be used to "reliably indicate the size of the asymptotic
critical region" within experimental accuracy. They are
sufficiently precise to make the theory "fully —in the
sense, globally —testable" from experiments. There
remain, however, many other problems to be considered.
such as the equation of state including corrections to the
scaling form. The consideration of the homogeneous
phase (below T, ) along single critical lines (isochore or
isotherm) is first needed. In a subsequent paper, we will
present the way to derive nonasymptotic critical behavior
in this phase within the massive FT at d =3. Preliminary
results have already been published which concern esti-
mates of universal combinations of critical amplitudes.
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APPENDIX A: BARE THEORY AND PHYSICS
OF CRITICAL PHENOMENA

C&(h, r) =N„g(~) —AT 1n[Z(h, v)],
Z(h, r)= fupon {yoj

(A5a)

(A5b)
In this appendix we recall some details (many of them

are well known) about the relation between the FT ap-
proach and statistical physics. The relevance of the fol-
lowing Hamiltonian:

H{yoj =~ 'exp( —m{4oj) (A2)

where ~ is a normalization constant and the curly brack-
ets indicate the functional character of H. The mean
value of any functional M{Pj is given by the functional
integral:

(A3)

The dependence on the physical temperature T and on
the physical magnetic field H (the field thermodynamical-
ly conjugated to the order parameter of the system con-
sidered) is implicitly contained in the parameters rp, go,
and h via the hypothesis of analyticity around the CP
(H =0, ~=0):

ro=roc+bor+O(H r ~)

gp ——const+ 0(H, r),
h =cpH+O(H, Hr),

(A4a)

(A4b)

(A4c)

where ro, bo, co, and const are constants which depend on
the physical system considered and r is ( T T, )/T, . —

In the expansions (A4) the limitation to the first
relevant terms already supposes that the system is close to
the CP. In this paper we neglect the higher terms of the
Taylor expansions (A4). They must be restored when the
validity domain of the P" model is discussed (see Secs. II
and V).

The Hamiltonian (Al) is related to the thermodynamic
potential C&(h, t) (the Gibbs free energy) through the rela-
tions

A {Poj= fd"x{ ,
'

[(7—'Pp) (x)+romp(x)]

+ (go/4l)ko(x) —"0o(x) j

is well known. ' %'e shall not recall the arguments here,
but simply limit ourselves to a review of the main features
useful to the understanding of this paper.

The field Pp(x) represents a local fluctuating parameter
whose statistical mean value (Po(x) ) =Mo(x) is the phys-
ical (local) order parameter of a given system. In fer-
romagnets it is the magnetization; in liquid-gas systems it
stands for the deviation of the density from its critical
value. In the case where the system is homogeneous (as is
generally the case) Mp(x) is a constant Mo. For Ising-like
systems, Pp has only one component; in other systems it
could have n components (n = 1,2, 3, . . .), and then stands
for a set (Pp",Pp ', . . . , Pp). The implicit notations in Eq.
(A 1) had to be understood as Pp ——g," t(gp' ) and

Pp
——(Pp) . We shall not consider the possible breaking of

the O(n) symmetry (this will be emphasized in a subse-
quent paper ).

The statistical average is performed with the weight

in which ka is the Boltzmann constant and e„g(r) corre-
sponds to a regular part of the Gibbs free energy. Anoth-
er way to account for this regular part is to add a "con-
stant" (independent of Pp) term in A . Like rp, gp, and h,
this constant would have an analytic dependence on ~.
The net separation we make between that regular part and
the critical part of the Gibbs free energy allows a clear
distinction between the critical regular part and the
"background" term of the specific heat (see Appendix B).

The Helmholtz free energy F(Mp, r) is, as usual, ob-
tained from 4(H, r) by the Legendre transform:

F(Mo r) =e(H, ~)+km THMo

Mp —— (d4/—dH ),/kg T .

(A6a)

(A6b)

One easily relates these free energies to the generating
functionals for the connected ( W{Jj ) and the one-particle
irreducible (I {Mp j ) correlation functions familiar to field
theorists. ' Let us suppose that the field h depends on x,
and let us call it J(x). In Eq. (A5b) Z(h, r) becomes
Z{Jj, .a functional of J, but remains a simple function of
r (through rp).

W{J j and I {Mj are defined as follows:

W{Jj =ln(Z{Jj),
I {Mj= —W{Jj+fd x[J(x)M (x)],

Mp(x)=5W{J j/KJ(x) .

(A7)

(ASa)

(ASb)

If one compares Eqs. (A5a) and (A6a) to Eqs. (A7) and
(AS), one sees that they differ only by regular terms in z
and H. Notice that the kz T term is nothing but
k~T, (l+r) and generates only analytic correction terms
in w. From the same reasons which lead us to neglect the
higher terms in Eqs. (A4), we shall take ksT=k&T, in
Eqs. (A5) and (A6).

The physical quantities in which we are interested (in
the disordered phase) are the susceptibility X, the correla-
tion length g, and the specific heat C. The first two quan-
tities are strictly related to the fluctuations [the regular
part C&„g(r) will not contribute to them]. A function-
al manipulation leads, from the definition X(r,Mp)
=(BMo/BH), and Eqs. (A4)—(AS) to

[X(7 Mp)] =Ip ' ({Oj'ro gp Mp)/cp (A9)

in which I'p ' '( {q,p j;ro,gp, Mp) are the Fourier
transforms of the one-particle irreducible correlation
functions corresponding to

( —,P'o(y ) . —,P'o(y )Po( ) . . P ( )) .

The notation {q,p j in Eq. (A9) stands for

{qi q2»qL&pt&P2& ~ &A j

the set of wave vectors Fourier conjugated to the set

yi, y2 yL x1 x2 xN j

Similarly, the second moment of the correlation func-
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tion (Pp(xi )Pp{x2) ) defines g as

I"pP '( IOj;rp, gp, Mp)
[g'(r, Mp)]

I' '(tpj;r, g,M )
~

(A10)

This time there is no extra factor.
As for the specific heat, it is slightly more complicated

since it requires the second derivative of I' with respect to
Pe

A(d —2)/2

r-A 2

(A14a)

(A14b)

The final effect of the strong correlations is the transmis-
sion, over any length scale, of the microscopic structure
(over the length scale a) of the system. This is expressed
in the FT approach by a strong dependence on a (or A ')
of any bare parameter. In the system of units used here,
where only the lengths are considered, one thus has

C(r, Mp) = —Td F(r,Mp)/dT (Al 1) (A14c)

The regular part @„swill thus enter in the definition of
C. From Eqs. (A4) and the remark that the derivatives of
I IM j and 8'I J j with respect to rp (at gp and Ii fixed)
generate the insertion of ——,

' Jd x Pp(x) in the correla-
tion functions, it is easy to check that

C(&,Mp)= —ksbpl p
' '(tOj;rp, gp, Mp)+C„s(r)

(A12)

with

C„s(r)= kid @„—s(r)/dr (A13)

apart from analytic corrections in r and H which, once
more, are neglected, while they must be restored when
more than one confluent correction to scaling is needed in
three-dimensional systems.

As explained in Sec. II, neglecting these regular terms is
consistent with the limitation of the description of the
preasymptotic critical domain &~„„ in which the P
Hamiltonian is supposed to be valid. Indeed the Hamil-
tonian {Al) is not general enough to describe the whole
critical domain. Many (an infinite number) of other terms
(like Pp, for example) would be needed.

We show in Sec. II that the effects of these higher tran-
sients may be qualitatively reproduced by the considera-
tion of an explicit finite cutoff A, which has not yet been
introduced in this appendix. This cutoff should enter in
the Hamiltonian (A 1) from two different physical sources.

(1) It recalls the discretized structure of any real sys-
tems: for example, the range of the molecular forces or
the lattice spacing of the Ising model. We shall denote
this microscopic length by a. In the continuous limit, the
cutoff A is proportional to 1/a and prevents the Feynman
integrals (in the perturbative expansion in powers of gp)
from uv divergence. This dependence on the cutoff ap-
pears explicitly as an additional argument within the
correlation functions (i.e., independently of the bare quan-
tities rp, gp, and Mp) in Secs. II and III. The infinite-
cutoff limit considered at d =3 in this paper concerns this
A dependence. It is distinguished from the following
source.

(2) The long-range correlations between the fluctuations
in the vicinity of the CP make any wavelength I. of fluc-
tuation between a and g (intermediate fiuctuations)
relevant to the critical phenomena. Owing to the strong
correlations, these intermediate fluctuations have small
amplitudes and their effects are essentially limited to the
transmission of the small scale structure to the large scale.
This cascade picture is increasingly correct as g' grows.

in which DL& is the (classical) dimension of I p
'

Dl~ ——d 21.—X(d —2)/2—.

(A15)

(A16)

The critical limit corresponds to m —+0 at go and A
fixed. The problem raised by this limit is the following:
If the infinite sum in Eq. (A15) has a finite limit (i.e.,
nonsingular at m =0) then the critical behavior will be
controlled by the classical exponent, (the dependence on
m will be controlled by DL&. Conversely a singular
behavior of the sum, as m, will change the exponent into
DI Jv+o. The study of the critical limit is thus that of the
limit of the infinite sum in Eq. (A15).

The hypothesis of scale invariance suggests the follow-
ing change in the coupling (see Sec. III):

gp=m 'S(g, m/A) . (A17)

For simplicity we do not write the renormalization of the
field Pp but it should be considered in a complete discus-
sion.

From Eqs. (A15) and (A16) one may write

I p
' '(I0j;m, gp, A)/m

=g[S(g,m/A)] fk ' '(A/m) . (A18)

One sees that any explicit reference to a particular value

I, g(d+2)/2 (A14d)

This cutoff dependence is formally separated in Sec. III
from that of source (1) above. This allows a clear distinc-
tion to be kept between the bare theory at A = ao (the bare
quantities being kept finite and dimensioned by A) and
the unphysical renormalized theory.

Let us now look at the relation between the infinite-
cutoff limit (at fixed bare parameter) and the critical lim-
it. In Sec. III we show that one must first introduce a
critical parameter (scaling field) whose zero value defines
the CP. For convenience we shall choose here the inverse
correlation length m as defined in Eq. (3.15). This defini-
tion does not require considering the infinite-cutoff limit,
and we shall thus suppose A finite in the following. The
physical (bare) correlation functions at zero momenta,
along the critical isochore above T, are given by
I'p ' '(IOj;m, gp, A). From dimensional analysis, the per-
turbative expansion has the following general form:

r," '( Ioj;m, g„A)=m '"g(g, m -')"f,","'(A/m),
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of the dimension of the space has disappeared in the
right-hand side and the limit I—+0 corresponds to that of
A —+oo. The reference to the situation at d =4 comes
simply from the fact that the problem of how to define
S(g,m/A) (and also the renormalization of Po) in order to
factor the singularities when A~no has already been
solved. The structure of the renormalization functions (S)
being determined, it remains to calculate them at any d.

APPENDIX 8: SUBTRACTIONS OF FIELD THEORY
AT d =4 AND THE CRITICAL LIMIT

In FT one is interested in the construction of a finite
theory at d =4 and A infinite. The bare theory presents
uv divergences and the renormalization procedure corre-
sponds to a change of the bare parameters in order to sub-
tract, at all orders in perturbation theory, these uv diver-
gences. The number and the kinds of changes are deter-
mined by looking at the primitive uv divergences of the
correlation functions. From simple dimensional analysis,
the primitively divergent correlation functions are I 0' ',

grees of divergence DI ~ at d =4 are, respectively,
Doo ——4, D&o ——2, Doe ——2, D&z ——0, Dqo ——0, and D04 ——0.
According to the value of DL~, these divergences are of
the following type: quartic (4), quadratic (2), and loga-
rithmic (0). Usually, in the FT approach to critical phe-
nomena' only the last four correlation functions, in the
list given above, are considered. The reason is that they
contain logarithmic uv divergences while the first two do
not. The correlation functions I o

' ' and I o" ' have no
spatial dependence (their Fourier transforms do not de-
pend on momentum) and the divergence displayed are
strictly quartic or quadratic. For dimensional reasons,
these divergences are not related to the ir divergences re-
sponsible for the nonclassical values of the critical ex-
ponents. Factoring out A instead of m [as in Eq. (A15)],
one obtains at d =4

I 0
' (IOJ;m, go, A)=A ggof k4 '(m/A) . (Bl)

By comparing this with Eq. (A15), one sees that the in-
teresting structure of uv divergences for the critical limit
is that displayed within the infinite sum

ggaf'„,"'(m /&) .
k

It is clear that it contains only logarithmic primitive uv
divergences, the two limits A~op and m —+0 being con-
nected through logarithms of m/A. Consequently, only
the renormalization functions introduced to subtract these
logarithmic primitive uv divergences are relevant for the
study of the critical limit. Although the two-point corre-
lation function I 0' ' is superficially quadratically diver-
gent, its derivative with respect to the momentum will
generate logarithmic uv divergences, resummed within a
renormalization of the field Po through the function Z3
(see Secs. II and III). The subtraction of the quadratic
singularities is made by a shift of the mass which simply
corresponds to the definition of the distance to T . The
logarithmic uv divergences related to I o

' ' and I o' ' in-
troduce a change of the coupling (through Z~) and of the
linear scaling field (through Zz). That related to I o'
(the specific heat C) is particular and introduces an addi-
tive renormalization function (called 2 in Ref. 20) which
is responsible in the nonhomogeneity of the RG equation
satisfied by I o

' . This nonhomogeneity generates~o a
critical constant B„ to be added to the singular part of
the specific heat in ~ . This critical constant B„be-
longs to the critical behavior and must be distinguished
from the regular part of the specific heat by writing
asymptotically

C-A+r +B„+Bb,(r), (82)

in which B&s(r) is a noncritical (regular) part (a purely
background term). Bqg(r) cannot be determined within
the FT approach; it is related to the subtraction of the
quartic and quadratic uv divergences of I 0

' ' (the
Helmholtz free energy) and I O' '. As the quadratic diver-
gence of the two-point correlation function, these subtrac-
tions are not relevant to the critical limit and correspond
to an adjustment of the regular part F„g coming from
4„s (see Appendix A). B&g(r) must be determined (as
must T, ) from experimental data (far from T„see Fig.
3). Indeed, F„g is the free energy that the system should
display in the absence of the long-range correlations be-
tween fluctuations.

The distinction between B„and Bqs(r) in Eq. (B2) is
very important since, as shown in Ref. 20, there exists a
universal combination between the asymptotic critical am-
plitude, the amplitude of the first confluent correction of
the singular part of C and B„(seealso Table IV in which
we give estimates of this universal combination).
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