
PHYSICAL REVIEW 8 VOLUME 32, NUMBER 11 1 DECEMBER 1985

Perpendicular upper critical field of superconducting —normal-metal multilayers
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An equation is derived for the upper critical field, H, 2( T), perpendicular to super-

conductor —normal-metal (SN) multilayers. The theoretical H, &( T) agrees with experimental data

for Nb-Cu multilayers only if the mean free paths of both S and X metals are considerably smaller

than the estimates obtained from longitudinal resistivity measurements. Positive curvature in

H, q(T) near the critical temperature is reproduced by the theory. Field-dependent corrections to the

pair penetration depth into the N metal are shown to enhance H, 2( T).

I. INTRODUCTION

Multilayered superconductors range from intercalated
compounds to artificially layered structures. They com-
monly consist of alternating superconducting (S) layers
separated by a variety of different materials, e.g., insula-
tors, normal metals (N), or other superconductors. In
this paper we focus on the upper critical field H, 2(T) nor-
mal to SN multilayers.

First attempts to calculate the upper critical-field treat-
ed layered coinpounds as a stack of two-dimensional su-
perconductors coupled via the Josephson effect. ' ~ This
model disregards any variation of the order parameter in
the direction z, perpendicular to the layers. However, as
the layer thickness increases with respect to the coherence
length, the z variation of the order parameter is no longer
negligible. Since this is generally the case for all but the
thinnest SN multilayers, proximity effects must be taken
into account.

Several authors have considered these effects in calcu-
lating H, 2. Dobrosavljevic used the anisotropic
Ginzburg-Landau (GL) equations and treated the mul-
tilayered system as a single, composite superconductor.
Nabutovskii and Shapiro (see Ref. 6 and references
therein) developed a microscopic theory for various types
of inhomogeneous superconductors, including multilayers.
A similar approach was used by Menon and Arnold7 for
dirty bimetallic superlattices. In both Refs. 6 and 7 the
individual layers were assumed to differ only in their
respective electron-phonon coupling constants.

A more realistic approach to the problem was suggested
by Ruggiero, Barbee, and Beasley, who also accounted
for differences in diffusivities and densities of states at the
Fermi levels of the S and N layers. Essentially the same
problem has been considered by Martinoli for an SN bi-
layer. These authors started with the equation given by
de Gennes, Werthamer, and co-workers' for the critical
temperature of a dirty SX bilayer and used pair-breaking
arguments to infer the correct form of the equation deter-
mining H, 2(T). The discussion in Ref. 8 is restricted to
the GL domain; no comparison of the theoretical results
for a multilayer with experimental H, 2(T) data is report-
ed.

Recently, Tachiki and Takahashi" reported H, 2 calcu-

lations based on de Gennes's approach. These authors
were able to evaluate, in the dirty limit, both parallel and
perpendicular H, 2's and to reproduce the main observed
features of these fields. However, a detailed comparison
with the experimental data still remains to be done.

We present here a theory for the perpendicular upper
critical field based on Eilenberger s quasiclassical descrip-
tion of superconductivity. ' This formalism is effective in
dealing with inhomogeneous superconductors in magnetic
fields. No restrictions are placed on either the tempera-
ture or the mean free paths l. Although in this work we
consider mainly the dirty limit, we are able to go beyond
this approximation. In fact, our method can be general-
ized to arbitrary I's. ' ' In the dirty limit our result
agrees with that given in Ref. 8.

Our work differs from previous publications in a num-
ber of ways. We perform a detailed comparison between
theory and experiment, which allows us to extract infor-
mation concerning the mean free paths and the SN inter-
faces. We demonstrate that positive curvature can exist in
theoretical H, 2(T) curves under certain conditions. This
effect has been observed in a number of experi-
ments, ' ' and several speculations as to its cause have
been proposed. It is shown in this work that the proximi-
ty effect alone can produce the positive curvature in.
H, z(T). . Finally, we include recent results concerning
field-dependent corrections to the pair penetration depth
in the X layers. '

This paper is organized as follows: In Sec. II we derive
an equation for the perpendicular upper critical field. We
compare the theory with experimental data for Nb-Cu
multilayers in Sec. III. Section IV addresses the topic of
positive curvature, while Sec. V deals with corrections to
the dirty-limit equations discussed in Sec. II. Finally, we
summarize and discuss our results in Sec. VI.

II. DERIVATION OF THE MAIN EQUATION

We start with the dirty-limit version of the Eilenberger
theory'

——II.(GIIF—FVG) = G coF, ——D
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This must be solved in conjunction with the self-
consistency condition (3).

Since both F(r, co) and b.(r) vanish at H, z(T), we seek
a solution to Eqs. (3) and (4) of the form
F(r) =b(r)I[fico+mTy(t)] with the reduced temperature
t =T/T, . Here, T, represents the bulk critical tempera-
ture of either metal, i.e., T„or T,„(the subscripts s and n

refer to the S and X layers, respectively, and X denotes
the metal with the lowest critical temperature). With this
ansatz Eq. (4) reduces to

HF= —k F (5)

with

k =2m.Ty(t)IAD .

Here, D=vl/3 is the diffusion. coefficient with U being
the Fermi velocity. The temperature T has units of
energy, fuu=irT(2n+1) with n =0, 1,2, . . . , and
II=V+2niAIPD is the gauge-invariant gradient with
vector potential A and flux quantum $0. The pair poten-
tial b,(r) depends only upon position r as required for a
superconductor with weak coupling. The functions
F(r, co) and G(r, co) are Gorkov's Green's functions in-
tegrated over energy and averaged over the Fermi surface.
They describe the condensate of pairs and the normal ex-
citations, respectivel'y. Maxwell's equations, along with
an expression for the current density, ' complete this set
but are not used in this paper.

In the normal state, F=0 and 6= 1. Near the second-
order phase transition at H, 2(T),

~

F
~

&& 1 and G = 1 in
the approximation linear in F. Equation (1) now can be
linearized:

where g, (0) is the BCS coherence length at T=O T. his
criterion is not applicable to a normal metal with T« ——O.

Instead, as shown in Ref. 13, thie relevant condition for
the dirty limit in 1V is

fin„

2m. Tl„
(10)

+2rriHx I&0
8 8

Bx Bg
'

az

Then the z variable in Eq. (5) can be separated:
F(x,y, z) =f(x,y )g(z). We obtain for f and g

Observe that the parameter A,„ is inversely proportional to
temperature. As a consequence, normal metals such as
Cu considered "clean" at some T become "dirty" at low
enough temperatures. Therefore, to apply the dirty-limit
theory, the criterion (10) must be satisfied at the highest T
considered ( T„„in our case).

A more general approach is required if conditions (9)
and (10) are not satisfied. This situation is discussed in
Ref. 14, where it is shown that Eq. (5) is still valid, but
the corresponding expression for k differs significantly
from Eq'. (6). The most interesting result of this analysis
is the field dependence of k, which is field independent in
the dirty limit or in the GL domain. We will return to
the H-independent corrections to the dirty limit k in Sec.
V.

Now consider an infinite stack of alternating S and N
layers, which are parallel to the x yplane wi-th a period of
d, +d„, where d, „are the thicknesses of the S and N
layers. The coordinates are chosen so that z=0 defines
the SX interface of the elementary cell —d„(z &d, . For
a uniform magnetic field H=Hz, we use the gauge
A„=A, =0 and Az ——Hx; the gauge-invariant gradient be-
comes

ce

Int= —2 g 2n +1
1

2n +1+y

Note that Eq. (5) is formally identical to the linearized
CxL equation for the order parameter but holds at any T
(at H„).

Equation (3), which defines y(t), becomes
r

—(II„+II')f (x,y)=(k q)f (x,y), —

g,"(z)= —q,'g, (z)

for the S layers and

—( II„+II~ )f„(x,y ) = ( k„+q„)f„(x,y ), —
g„"(z)=q„g„(z)

(11a)

(11b)

(12a)

(12b)

or

lnt =P( —,
'

) —P( —,
' +y/2),

where g(x) is the digamma function. The sign of y(t) de-
pends upon whether t&1 or t&1. For S, t, =T/T„&1
and Eq. (7) implies that y(t, ) &0. The "normal-metal"
component of the proximity system can itself be a super-
conductor with a finite critical temperature T,„,such that
0& T«& T~. Thus, y(t„) &0 for t„=TIT«& 1, but
y(t„) &0 for T & T«. If T«~0, as is the case for Cu,
then y ( t„~oo )= —1.

Caution should be exercised when applying the dirty-
limit theory to a normal metal. This limit for the S metal
corresponds to a large impurity parameter

and

k„= 2m Ty(t„)/RB„. — (13b)

Equations (11) and (12) are subject to certain boundary
conditions at SN interfaces. '9 For a sharp boundary at
z=O,

F —F (14a)

and

for the N layers. Here, q, „are separation constants and
k, „are defined by

k, =2irTy(t, )IAD, (13a)
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aF, aF„
Bz Bz

(14b)

and

g, (0)=g„(0) (15a)

g,
' (0)=qg„' (0), (15b)

The parameter g characterizes the interfaces. For specu-
lar scattering in the dirty limit, g =o„ /o'„with o stand-
ing for normal conductivities. Equations (14) are satisfied
if

with N(0} being the density of states at the Fermi level.
Both approaches yield the same critical temperature if de
Gennes's boundary conditions of continuity for F~ /N(0)
and DF~ are replaced in our case by continuity of F and
DN(0)F' (Ref. 19). Thus, the theory of II,2(T) presented
here is equivalent to the de Gennes —Werthamer theory
generalized to include the presence of a magnetic field.

In the limit 1,~ 00 or 1„~0, Eq. (19) gives
H, 2

——H„„asexpected. A more interesting simple case is
when both k,1,«1 and k„1„«1.In this limit, Eq. (19)
reduces to

whereas f,(x,y ) and f„(x,y) must be identical. Hence the
eigenvalues of Eqs. (1 la) and (12a) are also identical:

2 2 — 2k, —q, = —k„+q„.
Equations ( 1 la) and (12a) are equivalent to the

Schrodinger equation for a charged particle in a uniform
magnetic field. The lowest eigenvalue 2mH/gp gives the
largest field H, z for which a finite solution exists in the
whole x-y plane. We then obtain

H, z,,(T) 1„k„
1+gd„ /dg

Note that k„=O at T= T,„,so that if T,„=O,
H, z(0)

H, (z0) =

(21)

(22)

and

q, =k, —2gH, z /Pp (16a)
An expression for the slope 1H, z I1T evaluated at
T= Tcsn is given in the Appendix.

III. COMPARISON WITH EXPERIMENT
q„=k„+2mH, z /Pp . (16b)

Note that q, & 0 when Hc2 4 Hc2, s where Hc2, s
=tII pk, /2m. is the bulk upper critical field of the S materi-
al.

Equations (1la} and (12a) yield a system of Abrikosov
vortices, which are modulated in the z direction by
g, „(z). From Eqs. (11b) and (12b) we obtain

g, (z) =C, cos[q, (z —1, /2)]

and

(17)

g„(z )=C„cosh[q„(z+1„/2) ], (18)

where C, and C„are arbitrary constants. By writing the
solutions in this form we account for the multilayer sym-
metry planes at z =1,/2 and z = —1„/2. It is worth not-
ing that Eq. (18) implies that q„ is the characteristic
"pair penetration .depth" in the X layers in our geometry.
Boundary conditions (15) now yield two linear homogene-
ous equations for C, and C„. After setting the deter-
minant equal to zero, we obtain

q, tan(q, 1, /2) =gq„ tanh(q„1„ /2) . (19)

F~ (r) =2m TN(0) g F(r,co), (20)

When combined with Eqs. (8), (13), and (16), this equation
completely determines H, z(T). In general, this must be
done numerically.

At the multilayer critical temperature T„„,H, ~ ——0 and
q, „=k,„. Equation (19) reduces to the result of de
Gennes, Werthamer, and co-workers' for the critical tem-
perature of a dirty SX proximity system. In fact, the
equations explored in Ref, 10 are the same as Eq. (5). Al-
though the function used by Werthamer, which we call
Fii(r), differs from our F(r,co), the two functions are
closely related:

In order to test the theory presented in Sec. II, we use
H, z(T) data for Nb-Cu multilayers obtained in Refs. 17
and 20. These specimens were prepared using a sequential
deposition technique that produces layers of equal thick-
ness, 1,=1„=1.In addition, the Nb-Cu system exhibits
epitaxial registry between adjacent layers with little inter-
layer diffusion. In what follows we describe our method
for fitting H, z( T) to these data and discuss the results.

A. Fitting parameters and numerical procedure

Calculating H, z(T) from Eq. (19) requires that we
specify the quantities T„, T«, 1,„, u», l, „, and g.
These parameters control the overall shape and magnitude
of the theoretical H, (Tz) curves. First consider the criti-
cal temperature T,„and T„,which enter Eq. (23) through
Ey. (8). For Cu we assume T,„=O, which implies that
k„=2mTIAD„. The appropriate value for T„depends
upoti the S-layer thickness. Banerjee et al.2' observed a
large suppression in T„„with decreasing layer thickness
which cannot be accounted for by the de
Gennes —Werthamer theory. The mechanisms or material
properties responsible for this behavior are still not well
understood. Instead of using a single bulk value for the
T„,we thus use thickness-dependent values as determined
in Ref. 21.

The diffusion coefficients D, „=(ul/3), „ infiuence
H, z(T) through k, and k„. For the respective Fermi ve-
locities we use the free-electron value u„=1.57 )& 10
cm/sec (Ref. 23) for Cu and a measured root-mean-square
value of u, =2.73)& 10 cm/sec (Ref. 24) for Nb.

Longitudinal resistivity measurements have been inter-
preted as indicating that the mean free paths are generally
layer-thickness limited due to size effects. 5 In Ref. 21, a
model was adopted where 1,„=1,„ for thicknesses less
than the bulk mean free paths. For thicker layers, it was
assumed that boundary scattering is less important and
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that the mean free paths are equal to their bulk values.
Unfortunately, this simple model yields poor agreement
between our theory and experiment. For the cases we ex-
amined, the H, 2(T) curves calculated using the I, and I„
of this model fell far below the experimental data. Realis-
tic curves are obtained only when the mean free paths,
particularly /„ are significantly smaller than both d, „
and the bulk mean free paths estimated in Ref. 21.

For this reason, instead of evaluating the H, 2(T, I, „)
with values for I, „ from Ref. 21, we rather consider both
I, and l„as fitting parameters. Thus, in the following we
extract I, „ from the H, 2(T) data using Eq. (19) comple-
mented with Eqs. (8), (13), and (16).

Now consider the interfacial boundary condition pa-
rameter 7I defined by Eq. (15b). As mentioned in Sec. II,
q=o„ /o, for specular scattering, but actual physical
properties of interfaces are usually unknown. To account
for this uncertainty, we observe that o.„ /cr, ~l„ /l„so
that it is reasonable to assume that

20—

15

0
0 0.2

T/Tcs
0.6 0.8

g =al„ /I, , (23) 0.5—

where we have introduced the dimensionless parameter a.
For purposes of comparison, note that ao ——N„(0)v„ /
N, (0)v, for perfectly specular scattering. As with the
mean free paths, a is determined by fitting H, 2(T) to ex-
perimental data.

The fitting procedure involves minimizing

0

X (l„l„,a)= g [5H,2(T;)] (24) —1.0

with respect to I„ I„, and a. The quantity 5H, z(T; ) is the
difference between the measured and calculated values of
H„(T) at temperature T;, and n is the number of data
points:

0.2 0.4
T/Tcs

0.6

5H, 2(T; ) =H,'2~'(T; ) H, 2(T;;l„l„,a) .—

The minimization of X is achieved by using a standard
simplex algorithm. This method involves no derivatives
and converges even with poor initial guesses. The values
of l„h„, and cx for which 7 is an absolute minimum, are
then used to calculate H, 2(T).

FIG. 1. (a) Upper critical field H, 2 vs T/T for d=420. 5

A. The points are experimental data and the solid curve was
calculated from Eq. (19) using the "field-independent" parame-
ters listed in Table I. (b) Second derivative H,'2{T) of the
theoretical curve in (a).

B. Results

We now examine two representative Nb-Cu multilayers.
The first one is of thickness d =d, =d„=420.5 A and
with T„=8.91 K. ' The resulting parameters are listed
in the first three columns of Table I. In Fig. 1(a) both the
theoretical curve and the experimental data are plotted as
a function of the reduced temperature t, =T/T„. The fit
is good and spans the entire temperature range. Upon
close inspection we observe slight positive curvature near

T„„in both the experimental and theoretical curves. This
is demonstrated in Fig. 1(b), where we plot the second
derivative of the theoretical curve shown in Fig. 1(a). The
subject of positive curvature is discussed in detail in Sec.
IV.

The fit to data for d =171.5 A was performed using
T„=8.4 K (Ref. 21), and the resulting parameters are
given in Table I. The theoretical curve and the experi-
mental data are shown in Fig. 2. The fit to the data is

TABLE I. Fitting parameters for Nb-Cu multilayers for experimental results of Ref. 17.

d
{A)

420.5
171.5

l„
(A)

113
96

Field-independent k„
l,

(A)

24
14

0.68
0.76

l„
(A)

104
84

Field-dependent k„
l,

(A)

26
21

0.64
0.69
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FIG. 2. Upper critical field H, 2 vs T/T for d =171.5 A.

also good, but in this case the theoretical curve does not
show any appreciable positive curvature.

The mean free paths obtained from these fits are all sig-
nificantly smaller than the layer thicknesses and the bulk
mean free paths estimated in Ref. 21 (l,=160 A, l„=2000
A). This discrepancy is not unique to the samples dis-
cussed; similar results were obtained for all the Nb-Cu
multilayers we examined.

In order to interpret our values for a we compare them
with

IV. POSITIVE CURVATURE

Positive curvature (PC) in H, z(T) is a feature common
to multilayered superconductors. ' ' Several explana-
tions for the presence of PC have been proposed, but most
are difficult to confirm or to deal with quantitatively.
Two proposed sources of PC are compositional inhomo-
geneities and Fermi surface anisotropy. A detailed discus-
sion of these and other possible effects is given by Hay-
wood and Ast. '

Recall that in the derivation of Eq. (19) no provisions
were made for anisotropy or any other effects commonly
thought to produce PC in H, z(T). Even so, we observe
PC in our theoretical curves; e.g., see Fig. 1(b). This indi-
cates that the presence or absence of PC is determined by
the complex interplay among the parameters d, „and
k$ pe

In Fig. 1(b) we see that the curvature is a maximum at
T„„. Therefore it is convenient to characterize the
amount of curvature via the value H,", =d H, z/dT at
the critical temperature T„„. Using Eq. (19) to obtain
H,'z(T„„), we can examine its behavior as different pa-

av ——N„(0)v„ /N, (0)v, =y„v„ /y, v„,
where y, „are the normal-state electronic specific-heat
coefficients. Using y„=0.693 mJ/molK and y, =7.66
mJ/molK (Ref. 27), we obtain ao ——0.76 as compared to
0.68 and 0.76 needed to fit the theory to the data. Thus
these values are in good agreement with what one would
expect for specular interfacial scattering.

I .00—
I I I I I I I I I I I I I

= 4008

0.75
I

I
—0.50

0.25 ooA

0
10 IO

d„(A)
Io

FIG. 3. The second derivative H,'2(T „)as a function of d„
for different values of d, .

rameters are varied. The following calculations were per-
formed using l„=100A, l, =20 A, and a=0.7, which are
representative of the Nb-Cu multilayers discussed in Sec.
III.

In Fig. 3 we show H,'z(T„„) as a function of d„ for a
series of thicknesses d, . For each value of d„H,"z(T„„)
increases steadily with d„, reaching a maximum before
gradually leveling off. For d„&3000 A, H,'z(T„„) satu-
rates and becomes independent of d„. Saturation is ex-
pected in a proximity system when d„ is considerably
larger than the pair penetration depth q„' in N. If in-
stead d„~O, the system behaves as a bulk superconductor
and exhibits no PC. Thus all the curves shown in Fig. 3
approa'ch the same negative value as d„~O, the bulk
value, although this is not shown in the figure. The
overall trend is clear: decoupling the superconducting
layers by increasing their separation d„enhances the PC.
This observation is in qualitative agreement with experi-
mental results, ' although, to our knowledge, no confir-
mation has been reported for the maxima predicted in our
curves.

In Fig. 4 we plot H,"z(T„„)as a function of d, for dif-
ferent thicknesses d„. As d, ~ao, each curve descends
and eventually saturates at the same negative value for
the bulk S. This is equivalent to letting d„—+0 for finite

$ ~

We carried our further calculations to determine the
conditions that enhance PC. We used the simplex algo-
rithm to find the d, and d„ that maximize H,"z(T„„)
for fixed l, and l„. For l, in the range 10—50 A and l„ in
the range 50—400 A, H,'z(T„„) is maximized when d,
and d„are two or three times as large as the correspond-
ing lengths k, ' and k„' or, more precisely, when
2.0 & k,d, & 2.8, 2.2 & k„d„&3.1, and 1.4 & d„ /d, & 1.6.

Additional calculations show that H,'z(T„„) is also
very sensitive to the mean free paths l, and I„. For in-
stance, decreasing l, with I„constant produces a sharp in-
crease in the PC, chiefly because H,"z(T„„)scales with the
magnitude of H, z „which also increases for decreasing
l, . If we fix l, and increase l„, the PC increases gradual-
ly. This enhancement is the greatest when l$ « I„. How-
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I I I I I I I I I I I I 2 Hl
I

kn6tn6
I « I,

I
kn4I~4

I (27)

I .0—
I

Note that k„(HO) =0. A representative plot of Ho(T)
is given by the dashed line in Fig. 5(a). For any I„,except
the limit In ~0, Hcz(T) inevitably crosses Ho(T) at a fin-
ite T, thereby forcing k„(H,T) to change sign.

Using Eqs. (16) and (25), we may express the parameter
2

q~ as

I I I I I II
to'

d (A)

2

q„(H) =k„P„+2mH 3 2mHl„

0 0 n

(28)

0.5
IO ~O4

FIG. 4. The second derivative H "(T „) as a function of d,
for different values of d„.

ever, for any thicknesses d, „,H,'z(T„„)always can be re-
duced to zero by reducing l„or increasing I,.

These results indicate that PC in H, 2(T) is an inherent
trait of Eq. (19) and of the T dependencies of k, „. Con-
sequently, a proximity-effect theory for SN multilayers is
capable of producing PC consistent with experimental re-
sults, even in the absence of compositional inhomo-
geneities or Fermi-surface anisotropy.

V. EFFECTS OF FIELD-DEPENDENT k, „

(26)

We now consider how H„(T) is affected by the field-
dependent corrections to k, and k„mentioned in Sec. II.
If conditions (9) and (10) are not satisfied, then Eqs. (8)
and (13) are no longer appropriate. This is the subject of
Ref. 14, where corrections to the dirty-limit formulas are
obtained. Although Eq. (5) is shown still to be valid, both
k, and k„are generally no longer field independent.

The relative importance of these corrections differs
considerably for the S and N components. The maximum
correction to k, occurs for T=O in the clean limit and
cannot exceed roughly 30%. In addition, the impurity pa-
rameter As »1 for the rnultilayers discussed in Sec. III.
As a result, the corrections to k, are negligible and Eq.
(13) suffices.

However, this is not the case for k„. Even though A,„
of Eq. (10) might be large [for the samples discussed
above A,„(T„„)=25],another effect arises due to the field
dependence of k„given by'"

k„(H, T)=k„(0,T)p„(1 H /Ho) . —(25)

Here, k„(O,T) =2m. T/AD„ for T,„=O; P„=1+1/1,„
represents the deviation of the zero field k„(0,T) from its
dirty-limit value and

pop' 5

2+i

Equations (25) and (26) are obtained as a result of an ex-
pansion in small parameters I„k„(H) and 2ml„H/$0. The
first neglected terms are

The last term here reduces q„(H) with respect to q„(0)
obtained with H-independent k„[Eq. (16)] and, therefore,
increases the penetration depth q„ in the X layers. This
implies that the solution H, 2(T) of Eq. (19) will show an
overall increase if k„(H) is used instead of k„(0). The
enhancement is most pronounced at T=0. This is
demonstrated in Fig. 5(a) where representative Hc2(T)
curves are shown for both cases. The corresponding
H,"2(T) are shown in Fig. 5(b). Note that the field-
dependent corrections to k„enhance the positive curva-
ture at T,

Using Eq. (28) instead of Eq. (16) for q„, we fit Hcz(T)
to experimental data in the manner described in Sec. III.
The resulting best-fit parameters for the two samples con-
sidered are given in the last three columns of Table I.

VI. DISCUSSION

Us c20
(29)

Thus, even this upper limit is much smaller than d, and
the estimate of 160 A given in Ref. 21.

One possible explanation for these results is our under-
lying assumption of isotropic mean free paths. In a mul-
tilayered structure the longitudinal and transverse resis-
tivities can vary significantly, thereby bringing into ques-
tion our use of bulklike isotropic mean free paths. Trans-
verse resistivity measurements, if possible, would provide
valuable information concerning this matter.

New and interesting effects arise due to the field depen-
dence of k„given by (25). As discussed in Sec. V, this
can produce a substantial overall increase in H, 2(T); e.g.,
see Fig. 5. Judging from the parameters given in Table I,

In the preceding sections we have presented a theory for
H, 2(T) of SN multilayers based on the proximity effect.
This approach yields good agreement between theory and
experiment, including the subtle details of positive curva-
ture in Hcz(T). However, the mean free paths, and ls in
particular, obtained by fitting H, z(T) to the Nb-Cu data
are considerably smaller than the layer thicknesses (see
Table I) and the mean free paths estimated in Ref. 21.
We therefore conclude that our theory cannot be recon-
ciled with the mean-free-path model of Ref. 21.

It is worth noting here that the inequality
H, z(T) &Hcz„which holds when T,„=O, imposes an
upper limit on l, . For example, a typical value of
H, z(0)=18 kG at T=O yields
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20

We conclude by noting that the method presented in
this paper also can be used to calculate the parallel upper
critical field for SN multilayers. The approach is essen-
tially the same, although the structure of the supercon-
ducting state might be quite different froin the two-
dimensional array of modulated vortices discussed in this
paper. %"ork along these lines is presently in progress.
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APPENDIX

(b) The slope dH, z IdT is obtained by differentiating Eq.
(19) with respect to T. After setting T=T„„,we have

CV

0

CV

kA(H)

k„(0) dHcz = —2H, p,
r~a

y„dk„
k„dT

y, dk,

k, dT

k,
ps+3 n

n

2
0

I

0.2
l

0.4
T/Tcs

I

0.6.
I

0.8
k,d,

FIG. 5. (a} The upper solid curve is H, & vs T/T calculated
from Eq. (19) using Eq. (28) with d, =d„=400 A, /„=100 A,
l, =20 A, and a =0.7. The dashed curve is Hp( T),
where k„(H)=0. The lower solid curve corresponds to setting
H =0 in Eq. (25). (b) Second derivatives H,'~(T„„)of the curves
in (a).

dk, „
dT

n n

sinh(k„d„)

ks, n dg
2T

this effect works to increase the values of l, needed to fit
the data.

The form of the last term in Eq. (28) indicates that the
H dependence of k„has a stronger effect upon H, z(T)
when l„ increases. One therefore expects this effect to be
more pronounced in clean multilayers. [Note, however,
that the theory of Ref. 14 and Eq. (28) are restricted by
conditions (27).]

dk,

k, dT

k,'+ k'
n

dk„
k„dT

(A2)

Here, k, „are given by Eqs. (13); Eq. (8) defines g(y). If
k, „d,„«1, then y, „—+2 and Eq. (A 1) becomes
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