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Exchange narrowing of NMR line shapes in randomly diluted magnetic systems
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An analysis of ' F NMR linewidths in the randomly diluted magnetic system KMn, Mgl „F3 is
presented. It is shown that good agreement with measured linewidths can be obtained if in the usual
asymptotic spin-diffusion assumption for the spin autocorrelation function
(S; (r)S; (0)),„ur "'"'~i, d(x) is taken to be independent of x above the percolation concentration.a
Experimental results in the system KNi„Mgl „F3 are also presented. These data exhibit striking
differences with the behavior of isostructural KMn„Mgl „F3whose origin is discussed.

I. INTRODUCTION

Considerable effort has been dedicated to- the under-
standing of the effect of dimensionality upon the ex-
change narrowing of resonance lines. ' In dense
paramagnetic systems the NMR line shape is often dom-
inated by the combined effect of the hyperfine interaction
and the strong exchange coupling between the electronic
spins of the magnetic ions. The rapid exchange-induced
modulation of the local magnetic field experienced by the
nuclei has a narrowing effect upon the NMR line shape
which becomes sensitive to the long-time asymptotic
behavior of the electronic-spin autocorrelation function.
Various arguments ' of quite general nature strongly sug-
gest that this asymptotic regime should be governed by
spin diffusion. This would imply a strong dependence of
the NMR linewidth upon the dimensionality of the mag-
netic system. In systems where the exchange coupling is
predominantly along chains, for example, one expects ex-
change narrowing to be largely inhibited because of the
important role of spin diffusion. A linewidth orders of
magnitude larger than in tridimensional systems can be
expected in this case, a prediction that appears to be borne
out by some experimental observations. '

The spin-diffusion assumption leads to an electronic-
spin auto correlation function at the ith site of asymptotic
orm

( S; (r)s; (0))

where a=x, y, or z, and d is the Cartesian dimensionali-
ty. Of considerable interest is the generalization of this
concept to the fractal geometry of percolating clusters.
The possibility of describing the asymptotic behavior of
the spin autocorrelation function in a dilute Heisenberg
magnet by what one may call an effective dimensionality
d(x) varying smoothly with x, was first examined by
Klenin and Blume. By means of computer simulations,
these authors calculated the spin autocorrelation function
at infinite temperature, for a Heisenberg magnet of classi-
cal spins. Quenched disorder was introduced by random
substitution of a fraction 1 —x of the magnetic ions by a
nonmagnetic species. Although their calculatiomp were
limited to times shorter than 3jJ, where J is the nearest-

neighbor exchange coupling, the results for x =1 correct-
ly described the expected asymptotic behavior

with d (1)=3. As x decreased, d (x) appeared to decrease
smoothly, but no quantitative statement could be made
about a possible asymptotic behavior of form

for x (1.
The NMR measurements of Borsa and Jaccarino in the

randomly diluted magnetic system KMn Mg~ „F3 are
also quite revealing. In this cubic perovskite structure
three ' F NMR lines have been observed above the order-
ing temperature. They were assigned to fluorine nuclei
having both of their nearest neighbors magnetic (I2), hav-
ing only one magnetic nearest neighbor (It), or missing
both magnetic nearest neighbors (Io). The width of the
Io resonance appears to be mainly determined by magnet-
ic dipole-dipole interactions of ' F nuclei with second-
nearest neighbors and more remote electronic spins and
also by dipolar interactions among nuclear spins. In con-
trast the Il and I2 resonances in KMn„Mg~ „F3 are
predominantly broadened by a transferred hyperfine cou-
pling and narrowed by the exchange interaction among
Mn + ions. As a consequence, the width of these lines be-
comes considerably larger with increasing magnetic dilu-
tion reflecting an average reduction of the exchange fre-
quency with decreasing x. In KMn Mg& „F3 the width
of Ii resonance is particularly interesting because it can
be followed experimentally over a considerable range of
concentrations.

The possibility of employing these NMR data in the
range x&(x +1 where xz denotes the percolation con-
centration, to test the conjecture of an effective dimen-
sionality d (x) varying smoothly with the concentration of
magnetic ions, has been suggested by D'Ariano et aI.
These authors found that an extrapolation of the results
of Ref. 5 together with the assumption

for long times, could be reconciled with the experimental-

32 7143 1985 The American Physical Society



7144 M. ENGELSBERG et al. 32

ly determined linewidth of the I
&

resonance in
KMn Mg~ F3.

Our own analysis of these data which is presented in
this paper does not support this interpretation. We con-
clude that if one assumes the asymptotic form proposed
for the autocorrelation functions, the effective dimen-
sionality defined above can be taken to be independent of
x, at least for x —xz )0.1. We also report some new ex-
perimental NMR results in the randomly diluted magnet
KNi~Mg& „F3 which exhibit striking differences with the
behavior of the isostructural compound KMn„Mgi „F3.
A comparison between both systems suggests that a per-
colation model quite different from the conventional site-
dilution scheme, may be necessary to understand the
behavior of KNi„Mg~ F3.

II. EXPERIMENTAL RESULTS

Figure 1 shows a ' F NMR spectrum in KNi Mg& F3
with x =0.65 obtained at room temperature and at a fre-
quency of 20 MHz. The sample was a single crystal and
the external magnetic field was parallel to a [100] crystal
axis. The ordering temperature for this particular sample
as determined by NMR was 67 K. Using a conventional
continuous wave NMR spectrometer with peak-to-peak
field modulation amplitudes of up to 20 G and also using
pulsed NMR, spectra were recorded for samples with
x =0.9, 0.65, 0.35, 0.2, and 0.1 for various orientations of
the crystals with respect to the external magnetic field. In

KNixMgt x F

all cases a single line was observed. From the concentra-
tion dependence of the amplitude of this resonance and
from the negligible shift with respect to the ' F Larmor
frequency it was identified as the Io resonance. For com-
parison, Fig. 1 also shows a NMR spectrum in polycrys-
talline KMn Mg& „F3 for x =0.75 obtained by D'Ariano
et al. which clearly displays all three ' F lines Io, I&,
and I2.

We conclude that in the concentration range of our ex-
periments, the I2 and I~ resonances are much broader in
KNi„Mg& ~F3 than in isostructural KMn„Mg& „F3. Al-
though Ii and I2 lines of somewhat larger widths may be
expected in KNi Mg& F3 at room temperature, because
the ordering takes place at higher temperatures than in
KMn Mgi „F3, we believe that this effect alone cannot
explain the absence of these lines. This conclusion is sup-
ported by the behavior with temperature of the linewidth
of the I

&
and especially the I2 resonance in

KMn„Mg~ F3 which can be detected as close as 10—20
K from the ordering temperature. Before attempting an
explanation of our experimental results we present a line-
shape analysis with the aim of accounting for the concen-
tration dependence of the I

&
resonance line in

KMn Mg~ ~F3.

III. LINE-SHAPE ANALYSIS

Exchange narrowing of NMR line shapes in paramag-
netic systems can be conveniently treated within the
framework of the Kubo-Tomita theory. The relaxation
function P(r) whose Fourier transform represents the line
shape is given by

P( r) =exp —J ( t 7)g(r)d ~—
where the correlation function for fluctuations in the local
magnetic field experienced by the nuclei denoted by P(~),
can be shown' to have the general form

1((~)=(isa)g g Q' .II„,(i —11„,)
R mm'

&&(s„, ( )s „,(0))
' "'. (2)

FICi. 1. (Top) ' F derivative NMR spectrum in
KNi„Mg~ „F3 with x =0.65 obtained at room temperature and
at a frequency v=20 MHz. (Bottom) typical F" NMR spec-
trum at room temperature in KMn„Mg~ „F3with x =0.78 and
v=22 MHz, from the work of D'Ariano and Borsa (Ref. 8).
The horizontal scales in both spectra do not coincide.

Given the cubic perovskite structure with lattice con-
stant a, the position of a fluorine nucleus is labeled by the
index R in Eq. (2). For every fluorine position R, 5
denotes a vector of length a/2 joining this position with
that of a nearest-neighbor magnetic ion. Thus 5 can point
along any one of the three cubic axes. IIR+s in Eq. (2)
denotes the occupation number of the magnetic site at
R+5, i.e., HR+~ ——1 if the site is occupied by a magnetic
ion and IIR+s=0 otherwise. Q ~ is a quadratic expres-
sion in the components of the hyperfine tensor. For the
fluorine sites selected by the factor IIR+s(1 —IIR s)
which are those contributing to the Ii resonance, Q~
can be assumed to be independent of R and to depend
only upon the orientation of the vector 5 with respect to
the external magnetic field. Moreover,

X=QIIR+s(1 —IIR s)

represents in Eq. (2) the total number of fluorine nuclei
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contributing to the I, resonance. Other terms in Eq. (2)
have the following meanings:

SR+5,m =SR+5 x+—iSR+5 y

for m =+1 and

SR+5,m —SR+5,z

for m =0; here SR+s(r) denotes the spin operator corre-
sponding to the magnetic ion at site R+5 whose time
dependence is governed by an isotropic exchange interac-

imcoo
tion. The factor e may give rise to nonsecular
broadening for m&0 and originates in the noncommuta-
tivity between the hyperfine interaction and the electronic
Zeeman energy. coo denotes the electronic angular preces-
sion frequency in the external magnetic field assumed to
be parallel to the z axis.

Since we are assuming for the fluorine nuclei contribut-
ing to the I( resonance a transferred hyperfine interaction

with just a single magnetic nearest neighbor, only the au-
tocorrelation functions

& S„+, (r)S„+, (O) &

are involved in Eq. (2). Correlations between electronic
spins at different sites do not contribute to @(r).

Since

(S ( )S„(0))
in Eq. (2) should be independent of the orientation of 5,
whereas Q ~ only depends on 5 and not on R, one can
substitute for Q~~ the quantity Q~~ given by5„5 5

Q =(—,')(Q" +Q' +Q*„).
Furthermore, we find it essential for our analysis to
separate the sum over R in Eq. (2) into a sum of sorted
correlation functions

G~~ (r,x) =( /IN)g(SR+s ~(w)SR+s ~ (0) ) IIR+s(1 —IIR s)
R

5
= (1/N) g g (6—r) (S(~(r)sg~ (0) ) III"' .

l r=p

In the right-hand side of Eq. (3) the sum runs over all magnetic sites in the simple-cubic lattice with lattice constant a.
III"' is different from zero only if the site I is occupied by a magnetic ion having r nearest neighbors also occupied by
magnetic ions. If III' is different from zero, the factor 6—r with r =0, 1, . . . , 5 counts the number of fluorine atoms
hyperfine coupled to the magnetic ion at site L

Equation (3) can be written in a more useful form in terms of the sorted autocorrelation functions averaged over the
whole sample (S'"'(r)S'"'(0)),„. These are identical to those defined in Ref. 5. Noticing that the fractional number of
fluorine atoms contributing to the I, resonance is

5~= g (6 r)6h "—(1—x) "/r!(6—r)!

one obtains from Eq. (3)
S

G~~ (rx) =(1/~) g [6!(6—r)x "(1—x) "/r!(6—r)!](S~'(~)s~'(0)),„.
r=0

(4)

The sorted autocorrelation functions (S'"'(v)S~"(0)),„
with a =x, y, or z are known from the computer experi-
ments of Klenin and Blume. Their behavior is quite dif-
ferent for 0 & r & I/Js(s+ I ). At short times within this
interval a much slower decay is observed for the smaller
values of r. It is also observed that the sorted autocorrela-
tion functions are quite independent of the actual concen-
tration of magnetic ions. Furthermore, the decay of
(S~"'(v)s~"'(0)),„ in the time interval considered appears
to become more independent of r at longer times. This is
not unreasonable because in this asymptotic region the
sorted correlation functions are expected to reflect the
configuration of the cluster far away from the initial ion
and therefore to become insensitive to the actual values of
r.

We use the numerical values for the sorted autocorrela-
tion functions given in Ref. 5 for the longest time avail-
able rp- 1.3/JS (S+ 1). Moreover, following the
prescription of Gulley et al. ' we write for v)'Tp,

5H(x) =

where

S(r)( )S(r)(())
5H(1) g f'"'(x)

,=p —,
' S(S+1)

gf(r)(x)
r=0

(6)

f'"'(x) =6)w "(1 x) "/r!(6 r —1)!—. —
The values adopted for

(S~" (&p)s~" (0) ) „/ 3 s(S+ 1)

&
s("'(r)s'".'(0) ),„=(s(")(~,)s".)(0)),„(r/r, )

"")". (s)-
If d(x) were actually independent of x and remained

equal to d(1)=3, the only dependence of the linewidth
upon concentration of magnetic ions would come from
Eq. (4). This would yield the following expression for the
linewidth 5H(x):
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were 0.70, 0.42, 0.30, 0.23, and 0.17 for r =1,2, . . . , 5,
respectively. Some of these values not explicitly given in
Ref. 5 were obtained by interpolation.

Figure 2 shows the experimental results of Borsa and
Jaccarino in KMn„Mgi „F3 for the linewidth of the Ii
resonance together with the theoretical prediction based
upon Eqs. (4)—(6). It appears that the assumption
d(x) =d(1)=3 leads to very good agreement with the ex-
perimental results, at least for x —xp )0. 1.

The role of the sorted autocorrelation functions
(S~ '(r)S~ '(0) ),„needs some special clarification. If one
assumes a nonzero exchange interaction only between
magnetic nearest neighbors, this autocorrelation function
would not decay. Its actual decay would be governed by
weak exchange couplings with next-nearest or even more
remote neighbors. Although most magnetic sites with
r&0 predominantly belong to the infinite cluster" for
x —xz )0. 1, the sites with r =0 are isolated and therefore
are characterized by a completely different spin dynamics.
Their role appears to be important in the spin-lattice re-
laxation process' of fluorine nuclei but not in the line
shape, at least for the concentration range considered.
The actual contribution of (S~'(r)S' '(0))„ is difficult
to calculate accurately, but an estimate assuming max-
imum influence would increase the value of 5H(x) calcu-
lated through Eq. (6) by about 10% in the region
x —x )0.1

It is worth pointing out that, unlike other calculations,
the one leading to the theoretical curve shown in Fig. 2
contains essentially no adjustable parameters or cutoffs to
remove divergencies. The value 5H(1)=9.5 G was not
explicitly calculated but was chosen as half the value of
the linewidth in pure KMnF3. Since this width can be ac-
counted to a good approximation by the known values of
the hyperfine coupling and exchange interaction using the
same line-shape analysis outlined above, ' the agreement
can be considered quite satisfactory.

IV. DISCUSSION

From the results shown in Fig. 2 it is apparent that the
variation in linewidth observed in KMn Mg& „F3 can be

30-

Vl

O

x 20—
O

) l i I i I i I

O.8 0.6 0.4 0.2 0.0

FIG. 2. Extrapolated zero-field hnewidths of the I&
' F reso-

nance in KMn„Mg~ „F3, from the work of Borsa and Jaccarino
(Ref. 6). The solid line was calculated from Eq. (6) of the text.

entirely accounted for by the concentration dependence of
the weights given to- the amplitudes of the sorted auto-
correlation functions without any change in the effective
dimensionality, at least in the concentration range
x —xp )0.1. This conclusion is in contradiction with ear-
lier suggestions. ' In the critical region 0&x —xp &0. 1,
the existing data are not sufficiently reliable but may indi-
cate a larger width than predicted by Eqs. (4)—(6). This
may imply a smaller value of d in this region. If the con-
jecture'of Alexander and Orbach' ' could be extended
also to spin diffusion in a percolating cluster, one would
actually expect the fraction dimensionality d = —, to sub-
stitute d in Eq. (5). This would lead to a much larger
width at percolation than predicted by Eqs. (4)—(6).

In view of the previous analysis, the behavior of
KNi„Mgi „F3 is quite intriguing. Because of the com-
paratively large exchange constant, the linewidth in
pure' ' KNiF3 [and also 5H(1)] is actually smaller than
in KMnF3. The other factors that enter into Eq. (6) are
mainly dependent upon the crystal structure which is
identical in both systems. The failure to observe the I~
and I2 resonances in KNi Mg& F3, is, therefore, some-
what puzzling. There exists some evidence' that a dif-
ferent percolation model may be necessary to interpret the
experimental results in KNi Mg~ F3. One should notice
that the analysis leading to Eq. (6) relies on the specifica-
tion of what configuration of atoms actually constitutes a
cluster of exchange coupled magnetic ions. In the model
assumed to be valid for KMn„Mgi „F3, two magnetic
ions at nearest-neighboring sites are considered to belong
to the same cluster independently of the occupancy of
other neighboring sites. For a simple-cubic lattice this
yields a percolation concentration" xp ——0.311 which ap-
pears to be in agreement with the experimental results in
KMn~Mg~ F3. For Ni + the situation may be entirely
different. Since the ground state of this ion is I', slight
distortions from octahedral symmetry resulting from in-
complete substitution of all six nearest-neighboring mag-
netic ions by nonmagnetic atoms can have a much larger
effect than in Mn +, which has a half-filled shell with
L, =0. Although the electronic wave function at the
ligands may not significantly vary by this process leaving
the transferred hyperfine interaction unchanged, the wave
function at the magnetic ion may be altered sufficiently in
the case of Ni + to affect the exchange coupling with a
neighboring ion. These arguments suggest that a more
realistic model for KNi„Mgi „F3 might result if one as-
sumes that the exchange coupling between two nearest-
neighboring Ni + ions depends upon the occupancy of
other neighboring sites. Since quantitative calculations of
superexchange are quite difficult, we decided to test a
simple model based upon the following assumption: Two
nearest-neighboring magnetic ions are considered as
members of the same magnetic cluster only if their own
nearest neighbors, along the line joining the two ions but
in opposite directions, are also magnetic. We have per-
formed preliminary Monte-Carlo simulations using this
model, as well as, improved mean-field calculations. The
percolation concentration, for example, appears to be con-
siderably larger for this model than for conventional per-
colation. For a square lattice we obtained xp

——0.73 in-
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stead of the value xz ——0.593 valid for conventional site-
dilution percolation in a square lattice. " It is worth
pointing out that the variation of ordering temperature
with concentration of magnetic ions, determined by NMR
in KNi„Mgl ~Fz, ' actually displays a tendency towards
a larger value of x~ with an apparent crossover at the
lower temperatures. In addition to predicting a higher
percolation concentration, the model outlined above
would have the effect of increasing, in Eq. (6), the weight
of sorted autocorrelation functions (S'"'(r)S'"'(0)),„with
smaller values of r. This would also lead to larger
linewidths in KNi„Mg ~ F~ than in KMn Mg ~ „F& for
the same value of x and could probably also explain other

differences between the behavior of both systems. Further
work along these lines is currently in progress and will be
reported in detail elsewhere.
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