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Phason narrowing of the nuclear magnetic resonance in potassium
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Nuclear magnetic resonance in a metal having an incommensurate charge-density wave (CDW)
should exhibit significant broadening because the Knight shift depends on the conduction-electron
density surrounding each nucleus. Nevertheless, experiments on metallic potassium at 1.5 K have
not revealed such an effect. Thermal excitation of phasons, the low-frequency collective modes of a
CD%", cause sufficient motional narrowing to explain this observation. However below 100 mK, as
the CDW phase excitations subside, the NMR line should broaden rapidly with decreasing tempera-
ture.

I. INTRODUCTION

Q =2kF(1+G/4'), (2)

where 6 is the CDW energy gap, and kF and EF are the
Fermi-surface radius and energy. For an alkali metal the
direct of Q is tilted a few degrees away from a (110)
axis. The CDW amplitude p, in the case of potassium, is
-0.11. Since the broken symmetry is incommensurate
with the lattice, the total electronic energy is independent
of the phase P,

A wealth of experimental evidence has shown the ef-
fects of the CDW's in Na and K. The most dramatic ex-
ample to date is the direct observation of open orbits in
high magnetic fields. These orbits arise from higher-
order energy gaps, which truncate the Fermi surface.
Induced-torque anisotropies below 3 T have also shown
that the Fermi surface is multiply connected and lacks cu-
bic symmetry. Both the open-orbit spectra and the
induced-torque anisotropy' have been explained. These
phenomena contradict the simple interpretation of de
Haas —van Alphen experiments, "which suggest a simply
connected and isotropic Fermi surface. In light of the
open-orbit observations, the most reasonable understand-
ing' of de Haas —van Alphen isotropy is that published
data have been obtained on samples with a very small Q-
domain size. '

A significant theoretical problem' which needs study
concerns the nuclear-magnetic-resonance (NMR)
linewidth in potassium. The CDW broken symmetry will
lead to an extremely broadened NMR signal —much
larger than the Van Vleck dipolar width, ' -0.14 G.
There are two major sources of additional broadening:
quadrupole perturbations and Knight-shift variations.

Charge-density-wave (CD%) instabilities in simple met-
als are caused by the many-body effects of exchange and
correlation. ' The conduction electrons have lower energy
if they have a sinusoidally modulated charge density,

p(r) =ppli+p cos(Q'r+0) )

rather than a uniform value pp. The CDW wave vector is
approximately

A CDW in a cubic metal leads to quadrupole broaden-
ing because the positive-ion lattice sustains a periodic lat-
tice displacement, '

u(r) = A sin(Q r+P), (3)

in order to compensate the charge modulation-of the con-
duction electrons. The displacement amplitude has a
magnitude,

II. NMR LINE SHAPE AT T=O K

The Knight shift Kp is defined by the NMR frequency
shift in a. inetal, '

co =—cod(1+Xp), (5)

relative to the frequency cod in a diamagnetic salt. The
shift arises from the spin paramagnetism of the conduc-

-0.03 A
(Q

(4)

where f ( Q) is the total-charge form factor of the positive
ion for wave-vector Q. (f-2.9 rather than unity. ) An
analysis of quadrupole effects has already been presented
in detail, ' but a value A-0. 11 A was assumed. The
value (4) will considerably reduce the estimated quadru-
pole broadening. Therefore, the present work will focus
on the dominant source of CDW broadening: Knight-
shift variations.

We shall find that at T =0 K and Hp 6T the NMR——
linewidth caused by Knight-shift variations (from the
crests to the troughs of the CDW) is -34 Oe, a value
more than 2 orders of magnitude larger than the observed
width, ' 0.27 Oe, at T=1.5 K. The main thrust of this
paper is to show that thermal excitation of phasons, ' the
low-frequency collective modes of an incommensurate
CDW, provide sufficient motional narrowing' to explain
the experimental result at T =1.5 K, the lowest tempera-
ture studied so far. The emphasis will be on the tempera-
ture dependence of the phason narrowing. Below about
100 mK the effect of the CDW structure should become
apparent, and the NMR line should broaden rapidly as T
is further reduced.

32 7103 O~1985 The American Physical Society



7104 Y. R. WANG AND A. W. OVERHAUSER

tion electrons. For potassium, Ko ——0.26%. If potassi-
um were truly body-centered cubic (no CDW) each nu-
clear spin would, for Ho 6——T, experience a hyperfine
field of 156 Oe. However, the Knight shift in a CDW
state will depend on position in a way similar to the local
electron density, Eq. (1):

K(r) =E:o+x cos(Q.r+P) . (6)

VcDw(x) =G cos(Qx) . (9)

(We have chosen the Q direction along x.) The CDW gap
for potassium is known directly from optical-absorption
data; G =0.62 eV. A simple calculation of p from Eqs.
(9) and (2) leads to an incorrect value of 0.17. The reason
is that VcD~ is nonlocal; it arises entirely from exchange
and correlation. The matrix elements of (9) are wave-
vector dependent:

(k„+Q
~

VcDw
~
k„)= —,'G+(k„),

(k„—Q ~
VcDw

~

k„)—:—,'G (k„) .
(10)

The nonlocal theory of the G+ and G has been fitted
numerically:

—17 0
H-Ho (Qe)

17

FIG. 1. NMR line shape at T =0 caused by a CDW in po-
tassium. Ho ——6 T.

It is a simple exercise to show that the probability distri-
bution P(~) for a given Knight shift Ko+~ is

P(dd'C) = 1

t
~2 (~)2]1/2

This distribution is shown in Fig. 1 and has singularities
at the limits x. This figure would describe the expected
NMR line shape if the CDW phase P did not fluctuate.
Analogous line shapes for metals with two or three
CDW's have been calculated. ' In potassium the anisotro-
py of the CDW-induced optical absorption indicates that
there is only one.

In order to calibrate the width of the NMR line shape
shown in Fig. 1 it is necessary to determine the parameter
~. It is a reasonable approximation to take

K ~pEO

where p is the fractional-charge modulation, Eq. (1). This
modulation is caused by the exchange and correlation po-
tential of the CDW:

G+(k„)=G/(1+2. 2p, —0.48@ ),
where

p—= (k„/Q)+ —,
' . (12)

The fact that the CDW potential, Eq. (9), depends on the
axis of Q, and not on the vector direction, leads to a rela-
tion between G+ and 6

p=0. 11 . (14)

This value implies, from Eq. (8), that the total CDW
width of the NMR line is (for Ho ——6 T)

2&HO-34 Oe .

It must be emphasized that this value is an approximate
one because Eq. (8) is not strictly correct. The charge
modulation p corresponds to the Fermi-volume average of
the wave-function amplitude modulation. The inhomo-
geneous Knight shift depends, instead, on the Fermi-
surface density-of-states average p' of the wave-function
modulation. However, the difference between p' and p is
comparable to the uncertainty in p, Eq. (14), so we shall
ignore the distinction.

The NMR line shape described above will be slightly
narrowed (a few percent) by zero-point phase fluctuations.
The theory of this effect ' was presented several years
ago, before the phason excitation spectrum for potassium
was known; and this uncertainty led to an overestimate of
the narrowing at T =0 K. We now turn to the motional
narrowing caused by thermal excitation of phasons.

III. REVIEW OF PHASON PROPERTIES

Phasons are the low-frequency collective modes of a
CDW broken symmetry. ' The phase P appearing in Eq.
(1) becomes a dynamic variable. It can be expanded as
follows:

P(r, t) =+/~ sin(q r —cozt+ y~ ),
q

(16)

where q and coq are the phason wave vector and frequen-
cy. yz, the phase of the phason, is randomly distributed
between 0 and 2'. Phasons have a finite lifetime ~z,
which we discuss below. The randomness of yq arises
from this fact together with the assumption that the
CDW is not pinned by lattice imperfections.

The phason spectrum has a linear dispersion relation
(for most of its range) and is anisotropic. ' Suppose we
take Q along x. Then,

~q= co(Vy+9 +y —9 ) (17)

co is the velocity of a phason traveling transverse to Q,
and yco is the velocity parallel to Q. The phason spec-
trum extends only to a cutoff frequency ~~. The al-
lowed q's lie in a sma11 ellipsoidal volume of q space.

G-(k„)=G+( —k„) .

Each conduction-electron wave function becomes am-
plitude modulated when the CDW perturbation (9) is in-
cluded in Schrodinger's equation. Use of the nonlocal
matrix elements (10) leads to
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The three phason-spectrum parameters rae known approx-
imately for potassium:

co = 1.4 )& 10' cm/sec,

y=s, (18)

7q

r

RQ q
32m-nut' 4&F

L

(19)

where 8 is the angle between q and Q, n is the electron
concentration, M the ionic mass, and A the CDW dis-
placement amplitude, Eq. (4). G is the CDW energy gap
(0.62 eV in potassium). Since Eq. (19) is proportional to
q, the quality factor toqrq for phasons is independent of

~ q ~

. For potassium, Eq. (19) leads to a quality factor

p =ci)qrq po/c——os 8,2 (20)

with po-4. Another consequence of Eq. (19) is that
7q —+ao as q~0. This would imPly that a sliding CDW
would not experience a frictional force. Such a frictional
force, in fact, arises from scattering processes responsible
for the electrical resistivity. ' This mechanism will also
contribute to phason damping (but we neglect it here).

We emphasize that the anisotropies of the phason velo-
city and damping 'given by Eqs. (17) and (19) have not yet
been adequately tested. In particular, the theory that
leads to Eq. (19) is based on an electron-lattice interaction
for which only longitudinal phonons can scatter electrons.
Therefore, the anisotropies (especially for rq) discussed
above are possibly exaggerated.

In the following section we will find that motional nar-
rowing of the NMR line depends sensitively on the
phason anisotropies. Accordingly, we will carry out
several calculations depending on whether (or not) aniso-
tropies of coq and rq are included.

IV. MOTIONAL NARROWING BY PHASONS

We will employ the theory of Pines and Slichter, 's

which determines the resonance width 1/T2 caused by
frequency shifts +w which (on average) continue for a
correlation time 7, . It is assumed that w7, &~ 1. The res-
onance width is the reciprocal of the time it takes for the
phase of the transverse magnetization to "diffuse" one ra-
dian. The number of steps N for such a random walk,
having phase jumps +w7„ is given by

%COD 3 K.
The estimate for co is theoretical, whereas y and co~ are
based on an analysis of phason contributions to the low-
temperature electrical resistivity. A theory of the
point-contact spectrum in potassium, for which experi-
ments show an anomaly caused by electron-phason in-
teractions, gives excellent agreement with use of the pa-
rameter set (18).

Another crucial quantity is the phason lifetime wq. The
theory is based on electronic excitations (from below to
above EF) caused by the electron-phason interaction. The
result obtained is

Since T2 N——~„it follows (on eliminating N) that

1
W 7c

T2
(22)

The intrinsic width w is narrowed by the factor wr, .
The only difference for the case 'of phason narrowing is

that each phason mode contributes individually to the
random walk. Consider a single term of Eq (16). The
CDW phase change caused by such a mode between t =0
and t =t is, at r=0,

b,4'q=Pq[sin( —coqt+yq) —sinyq] . (23)

The square of this change must be averaged over the ran-
dom phase yq and over the distribution of phason life-
times for that mode:

P (t) = exp
1

(24)

(b@ ),„=1 . (26)
q q

The 1 in the denominator of Eq. (25) may be dropped, be-
cause of (20), so

(27)

where the angular brackets around Pq indicate the
thermal-equilibrium average. Since the kinetic energy of
a phason mode (normalized in unit volume) is

2 2 2
Tq ——, nMA —coqPq,

and since the mean thermal energy of a mode is

2( Tq ) =fmq[exp(Acoq/AT) —1]

we obtain

(28)

(29)

(P ) = [exp(Rco /k&T) 1]—
nMA co

q
q

(30)

Equations (27) and (30) determine the correlation time.
Integration over the ellipsoidal q space of the phason
spectrum leads to

rt nMfPA co
7c (31)

k T DF(e/T)

k& is Boltzmann's constant, e is the phason cutoff fre-
quency (-3 K), and

The integrations are elementary. For an average lifetime
7q

2 2
COq7q

(~@q)av p 2 0q
1 +COq7q

The correlation time r, will be (approximately) the time
for the CDW phase at the point r=0 to change by one ra-
dian as a consequence of the thermal excitation of all
phason modes. Thus

N' (wr, )=1 . (21)
F(e/T) =f-

exp(x) —1
(32)
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&, =5.6X10-",
z =1.7)&10

&, =4.4X 10-',

(34a)

(34b)

(34c)

~, =1.6~10-' (34d)

in units of seconds. We take the longest of these r, 's, case
(34d), and use it to calculate the CDW linewidth from Eq.
(22). For NMR, resonance at 12 MHz (Ho-6 T), for
which w =pX0co, =2)& 10 sec

w~, -3X 10 (35)

The motionally narrowed CDW linewidth is then,
at most,

b HcDw =34(tor, )=0.1 Oe . (36)

This value is consistent with the observed linewidth 0.27
Oeat T=1.5 K and H0 ——6 T.

Since the motionally narrowed CDW broadening and
the dipolar broadening are expected to have Gaussian
shapes, the total linewidth involves addition in quadra-
ture:

b,H=[(0.215) +(34tor, ) ]'i (37)

(0.215 Oe is the zero-field linewidth extrapolated from
measurements at several Ho. '

) The maximum contribu-
tion of the CDW to the linewidth at 1.5 K and 6 T is
therefore -0.02 Oe.

D is a numerical factor which depends on the anisotropies
of the phason velocity and damping:

sine

p(8)(sin 8+A, cos 8) i
A, and p are defined by Eqs. (17) and (20).

We have already mentioned that the anisotropies which
affect the value of D are not well established. So we shall
evaluate D for four models (with po ——4).

(a) Isotropic velocity (A, =l) and isotropic damping
(p, =p,,): D=0.5.

(b) Isotropic velocity (A, = 1) and anisotropic damping
(p =po/cos 8): D =0. 167.

(c) Anisotropic velocity (A, =S) and isotropic damping
(p=po): D=0.63.

(d) Anisotropic velocity (A. =8) and anisotropic damp-
ing (p=po/cos 8): D=0.0018.

The value of F(e/T) at T =1.5 K is 0.99. The
theoretical correlation times from Eq. (31) are then as fol-
lows:
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FIG. 2. NMR linewidth versus temperature for four models
of phason anisotropy (described in Sec. IV). Ho ——6 T.

V. TEMPERATURE DEPENDENCE OF hH
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The phason excitations will, of course, subside at low
temperature. Consequently, the correlation time v; will
increase rapidly with decreasing T. The CDW broaden-
ing should then come in dramatically. The theoretical
behavior, based on Eqs. (31) and (37), is shown in Fig. 2
for the four models described above. It is clear that mea-
surements below 100 mK should be attempted to investi-
gate whether (or not) this interesting phenomenon occurs.

There is also the possibility that at some (low) tempera-
ture the CDW may become pinned by lattice imperfec-
tions. In such a case there would be a sudden increase in
NMR linewidth, and the profile of Fig. 1 might then
emerge.

The spin-lattice relaxation time T& should also be af-
fected by CDW phase excitations. The dominant mecha-
nism would probably involve quadrupole coupling, since
the Knight-shift fluctuations cause hyperfine fields paral-
lel to H0. We have not investigated these questions in de-
tail.
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