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The band gap and quasiparticle energies in LiCl are calculated by evaluation of the electron self-energy
operator including the effects of local fields and dynamic screening from first principles. Good agreement
with available experimental data is obtained. In particular, the calculated band gap for bulk transitions.(8.9
eV) is within 5% of the experimental result. Comparison with our previous study of homopolar materials
shows that the same theoretical picture describes the electron correlation in both cases.

In this paper we extend a theory of the quasiparticle ener-
gies in semiconductors and insulators' to the case of ionic
crystals exemplified by lithium chloride. Although the alkali
halides are traditionally viewed as composed of atomiclike
ions with spectra dominated by atomic excitations and thus
quite different from the homopolar materials, we find that
the same theory gives good account of both the valence-
band features and the direct gap for bulk transitions in LiCl.
In particular, the calculated band gap of 8.9 eV is 3 eV
larger than the gap in the density-functional eigenvalues and
is within 5% of the value extracted from optical data. As
_compared to the semiconductors, the same trends are ob-
served. The roles of local field effects (full dielectric ma-
trix) and dynamical effects in the screening are similar and
crucial for a quantitative theory.

" Inclusion of electronic polarization effects (correlation) in
the treatment of alkali halides has a history nearly as long as
the treatment of correlation in metals. In particular, Toyo-
zawa introduced the idea of an electronic polaron to
describe the polarization of the crystal produced by an extra
electron or hole.? The model envisions the extra electron
causing atomiclike excitations on the halide ions, which in
turn react back on the electron giving a correlation contribu-
tion to its energy. He formulated this as an effective]

electron-exciton interaction with a simple model for the
coupling constant. Fowler,> and later Kunz,* developed
these ideas further in connection with estimating correlation
corrections to the Hartree-Fock band structure in wide-gap
insulators. Although physically appealing, these calculations
were limited by the simplicity of the model and the necessi-
ty of a wave-vector cutoff. Hermanson® proposed a similar
idea based on work of Overhauser® for metals with the exci-
tons replaced by plasmons. There have also been several
calculations of the electron self-energy based on the
Coulomb-hole-screened-exchange (COHSEX) approxima-
tion,” an essentially static model. In these cases,”’ the off-
diagonal elements of the dielectric matrix (local field ef-
fects) were further neglected. As we have found,! these are
quite important for quantitative results for screening in in-
sulators and semiconductors. Finally, we note that the
eigenvalues in the local-density-functional®® theory do not
give good results for the excitation energies in these materi-
als, although Heaton, Harrison, and Lin'® and Heaton and
Lin'! have applied a self-interaction correction (SIC) ap-
proach to LiCl which seems to give significantly better
agreement for the direct gap.

In the present approach, we obtain the quasiparticle ener-
gies by solving the equation!?

(T + Vet Vim0 + [ 48’ S0, 13 Eud k() = Enicnic (), M

where Vy is the average (Hartree) Coulomb interaction and
the exchange and correlation contributions are included in
the nonlocal energy-dependent self-energy operator 3. In
general, 3 as well as E, is complex with the imaginary part
giving the lifetime of the excitation in the quasiparticle pic-
ture. In the present paper, we consider only the real part of
S. The GW approximation for ¥ is used here:'?

3(r,1;E) = if (do/27)e G (1,1 E—w)W(r, 1';0)
2)

d is a positive infinitesimal. The full interacting Green’s
function G and the dynamically screened Coulomb interac-
tion, W=wve~1, for the -crystal are required inputs. Our ap-
proach! is to make the best possible approximation for G
and W separately, evaluate 3, and obtain the spectrum.

As described in Ref. 1, the spectrum and wave functions
from a density-functional calculation are used for the initial
construction of the Green’s function. Because the change
in the spectrum for a wide-gap insulator is relatively large, it
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I
is necessary to iterate once with the new spectrum as

described below. The static dielectric matrix eGG,(q;w=0)

can be obtained from first principles within the density-
functional formalism.® Consistent with our choice of vertex
function, I' =1, we evaluate the dielectric matrix within the
random-phase approximation by use of the Adler-Wiser for-
mulation.!*> To extend the dielectric function to finite fre-
quency, we introduced the generalized plasmon pole approx-
imation in Ref. 1. For each set of momentum components
(q,G,G’),Ime™! is taken to be

Imeg . (q;0)
=Age (@ [8(w—-d5,(a)) —8(w +ag,(a))] . ()

The full w-dependent dielectric matrix can then be obtained
once the matrices 4 -and @ are determined by use of two
sum rules that insure each component has the exact w and
o~ ! moments. This requires only the ab initio static dielec-
tric matrix and the valence charge density and depends on

no adjustable parameters.!
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The frequency integral in Eq. (2) can then be done
straightforwardly. To solve Eq. (1), we expand the quasi-
particle wave function ¢,k in terms of the local-density-
approximation (LDA) wave functions ¢,x. The underlying
density-functional calculations are done with use of the
LDA (Ref. 14) with the pseudopotential approach!’ and a
plane-wave expansion for the wave functions. In particular,
this implies that the core-valence interaction together with
core-polarization terms are assumed to be approximated by
the core-valence interaction built into the pseudopotential.
As these terms are small,'? this should be reasonable. A
25-Ry cutoff in the plane-wave energy is used in the expan-
sion of the LDA wave functions. The dielectric matrices
employed are approximately 220 X 220 depending on q. The
resulting macroscopic dielectric constant is calculated to be
3.3 as compared to the experimental electronic contribution
of 2.7, showing the same trend as for the homopolar sem-
iconductors. We have found by direct diagonalization of Eq.
(1) that the quasiparticle wave function has 99.9% overlap
with the corresponding LDA wave function. Therefore,
only diagonal matrix elements (¢,k|Z|¢,k) need be con-
sidered for the following discussion. Finally, the self-energy
operator in (1) must be evaluated at the quasiparticle energy
E,x.

The quasiparticle energies obtained as described are sig-
nificantly different from the LDA eigenvalues. To get fur-
ther insight, we plot the change from the LDA spectrum
versus the quasiparticle energies in Fig. 1. We observe that
the change is dominated by a large rigid downward shift of 2
eV for the valence bands and an upward shift of 1 eV for
the conduction bands. There is a small slope in addition, as
well as some scatter. The straight lines are drawn to guide
the eye and illustrate this point. Thus the changes in the
band dispersion are small but the gap is significantly larger.
The results illustrated in Fig. 1 are also contrary to the as-
sumption made by Heaton, Harrison, and Lin'® and Heaton
and Lin!' in applying a self-interaction correction to the
LDA: The changes in the conduction band are nonzero and
represent approximately one-third of the correction to the
gap.

Because of these relatively large changes, our use of the
LDA spectrum in G must be checked. We have 'iterated
once incorporating the changes in the spectrum indicated by
Fig. 1. This causes only a small further change for the spec-
trum: the Cl 3s band is shifted downward by an additional
0.4 eV, the Cl 3p band is essentially unchanged, and the gap
is further opened up by 0.2 eV. These changes are suffi-
ciently small compared to the original shifts to indicate that
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FIG. 1. Plot of the change in the quasiparticle energy (EQ) from
the density functional energy (e!P2) vs the quasiparticle energy.
The zero of energy is taken at the valence-band edge. The straight
lines are drawn as guides to the eye.

there is no further need to iterate. The results reported
here incorporate these self-consistency effects. Also, be-
cause of the finite size of the dielectric matrices employed,
we estimate the direct gap to have converged to within 0.3
eV and the relative intraband energies to within 0.1 eV.

In Table I, we summarize the available experimental
datalé-2! for LiCl as well .as other available theoretical calcu-
lations.!®!:22 Comparison of the conduction-band states to
optical experiments is complicated by the strong excitonic
effects in the spectra. The conduction-band edge for bulk
transitions is estimated to be at approximately 9.4 eV above
the valence-band edge,!® although experimental assignment
is uncertain because the onset of bulk transitions is ob-
scured. Also, the finite size of the dielectric matrices noted
above leads to a slight underestimate of the theoretical gap.
In view of this, the calculated result for the gap, 8.9 eV,
agrees well with the experiment. As is well known, the
Hartree-Fock result is too large, although estimates of the
polarization effect plus local relaxation around the hole yield
better results.”2 We note that the SIC approach shows sig-
nificant scatter in the calculated gap depending on the
electron-gas data employed.!!

We find that the center of the Cl 3s band is located 11.5
eV below the centroid of the Cl 3p band, in good agreement

TABLE 1. Comparison of results (in eV) from the present calculation of the quasiparticle energies to
the results from the LDA eigenvalues, experiment, and other calculations discussed in the text. Results
are shown for the band gap Eg, Cl3p bandwidth W;,, and separation between the Cl 3s and 3p bands

E3p,—Ej,.
Present
LDA sice HF® . pol® work Expt.
E, 6.0 9.9-10.6 16.9 9.7 8.9 9.4¢
Wi, 3.5 2.9 4.6 3.6 3.8 4,0+0.24
E;,— Ej 11.3 12.6 cee - 11.5 11.6 £0.5¢,11.0 £ 0.6

aReference 11.
bReference 22.

°Reference 16.
dReference 19.

®Reference 17.
fReference 18.
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with our estimate of the separation between the 3s and 3p
peaks in the x-ray photoemission experiment of Ref. 17 as
well as the data from electron spectroscopy for chemical
analysis from Ref. 18. To compare our Cl 3p bands mean-
ingfully to the uv photoemission data of Poole, Jenkin,
Leckey, and Liesegang!® and Poole, Jenkin, Liesegang, and
Leckey,?’ we have done a p-band Slater-Koster least-squares
fit to our results at eight points in the irreducible part of the
Brillouin zone. (The rms fit error is 0.07 eV.) The density
of states was then generated from the tight-binding bands
and broadened with a Gaussian of full width at half max-
imum of 0.3 eV suggested by the experimental resolution
cited in Ref. 20. The resulting density of states is displayed
in Fig. 2 together with the data of Poole er al.,?® showing
excellent overall agreement. We estimate the bandwidth
with respect to the background indicated in Fig. 2 to be ap-
proximately 4 eV as reported in Ref. 19. The theoretical
width of the spectrum is approximately 0.2 eV narrower
than the experimental spectrum, or less, depending on pre-
cisely what experimental resolutions were to be incorporat-
ed. (The resolution quoted in Ref. 19 is 0.75 eV.) We also
note that the separation between the peaks in Fig. 2 (2.0
eV) agrees well with the uv spectra of Pong and Smith?!
(1.8 +0.4 eV). For comparison, the Hartree-Fock (HF) cal-
culation gives too large a bandwidth with the polarization
corrections (pol) improving the agreement.’? The self-
interaction correction results in a slightly narrower
bandwidth than the LDA, which is already too narrow.!!
(Note that the HF, HF with polarization, and SIC results
are unbroadened.)

In Table II, the results are presented for successively
better approximations to the self-energy with more physical
input included at each step:! the COHSEX approximation
with no local fields, the COHSEX approximation with local
fields (the full static dielectric matrix), and the GW approxi-
mation. The trend is exactly the same as observed for the
homopolar semiconductors.! Correct treatment of the crys-
talline Green’s function (nonlocality) improves the gap as
compared to the LDA. Inclusion of local field effects
dramatically increases the gap because the screening at
points of high charge density (halide sites) is appropriately
more effective than at points of low charge density (alkali
sites). Finally, if we envision a correlation as arising from
virtual emission and reabsorption of plasmons (as discussed
further below), the COHSEX .(static) approximation overes-
timates the energy denominator for that process. Dynamic
screening in the GW formulation is essentially the same as a
proper account of the energy denominator and is required
for a quantitative account of correlation.

LiCl 3p Band
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FIG. 2. Plot of the theoretical density of states described in the
text compared to the photoemission spectrum from Ref. 20. The
zero of energy is arbitrary and the density of states has been scaled.
The dashed line represents the approximate background in the ex-
perimental data.

The generalized plasmon pole model described by Eq. (3)
can be shown to be equivalent to the plasmon-electron cou-
pling model of Overhauser,® appropriately generalized to in-
clude interband scattering and the effect of periodicity lead-
ing to a plasmon band structure.’®. As emphasized by
Overhauser, the effective excitation @, is only a true
plasmon for small g. For G, G’ nonzero, it is an effective
mode representing coupling to the electron-hole continuum.
This must be essentially free-electron-like for large G, G’
and, for the off-diagonal case, represents the mode with the
largest coupling to charge fluctuations of wave vector g+ G
and q+ G’. We note that because of the quantitative impor-
tance of umklapp scattering (G, G’'=0), virtual electron-
hole creation is not negligible. However, dressing of the
bare excitations by virtual emission and reabsorption of

TABLE II. Comparison of results (in electron volts) by use of the COHSEX approximation with no local
fields, with local fields, and the GW approximation with local fields to the results from the LDA eigenvaues

and experiment. Notations are as in Table I.

COHSEX COHSEX
LDA no LF LF GW Expt.
E, 6.0 8.2 10.4 8.9 9.42
W3, 35 4.2 3.5 3.8 4.0+0.2°
E3p—Es, 11.3 13.6 12.6 115 11.6 £0.5%,11.0 +0.6¢

aReference 16.
bReference 19.

°Reference 17.
dReference 18.
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plasmons is clearly important.

In conclusion, we have shown that our theory of the
quasiparticle energies in semiconductors and insulators ex-
tends to the case of ionic crystals. Despite the qualitatively
different character of binding in alkali halide crystals as
compared to homopolar semiconductors, a single theoretical
picture emerges which can describe the excitation energies
in both cases. Microscopically, this is possible because the
inclusion of local field effects in the dielectric screening al-
lows the screened Coulomb interaction to reflect the strong

inhomogeneity in the charge density of the crystal. This is
true whether the inhomogeneity is due to strong ionicity or
covalent bonding.
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