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Plasmon-phonon coupling in a two-dimensional electron gas
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The collective excitation spectrum of a two-dimensional electron gas interacting with the LO-phonon
mode of the host lattice is calculated. The electronic polarization is treated within the random-phase ap-
proximation. Numerical results for the energy-loss function and the oscillator strength of the plasmon and
phonon peaks are presented for different values of the electron density in a GaAs heterostructure.

I. INTRODUCTION

In this paper we present a calculation of the collective ex-
citation spectrum and the electron energy-loss function of a
two-dimensional electron gas (2DEG) embedded in a polar
semiconductor. The frequency dependence of the dielectric
function of the medium is explicitly taken into account.
The electron gas is treated within the random-phase approx-
imation (RPA).

The system in mind is the 2DEG in a heterostructure
made of a polar semiconductor (e.g. , GaAs-Alt „Ga„As
heterostructure). In those systems the electron density can
be made sufficiently high such that plasmon-phonon
resonant coupling becomes important. The aim of the
present paper is to investigate the effect of this coupling on
the plasmon and phonon branch. The simplifying assump-
tion of an infinitely thin 2DEG layer will be made. It is ex-
pected that this assumption will not influence the qualitative
findings of the present paper. We will limit ourselves to the
situation with no magnetic field applied and at zero tem-
perature.

Recently, many studies on the collective excitations in
quasi-two-dimensional systems have appeared in the litera-
ture. ' In those calculations essentially two different ap-
proaches were used: (i) a hydrodynamical model for the
electron gas,"and (ii) a self-consistent-field (SCF)" 6 ap-
proach. The latter approach will yield the same results as
found in the present study if the RPA approximation is
used for the dielectric function of the electron gas. Howev-
er, in the calculations of Refs. 4—6, further simplifying ap-
proximations were made on the RPA dielectric function

I

such that analytic expressions for the excitation frequencies
could be obtained for small wave vectors. Such simplifica-
tions will not be made in the present work and we will con-
sider the full RPA expression for the 2DEG dielectric func-
tion, which implies that our results will be valid for all wave
vectors.

II. DIELECTRIC FUNCTION OF THE 2D POLARON GAS

Consider a 2DEG embedded in a polar semiconductor
(this system may be called a 2D polaron gas). The effect of
the background is incorporated in the present calculation by
assuming the following simplified form for the frequency-
dependent dielectric function

&y(to) = e~(co tofo)/(co —toTo),

where e is the high-frequency dielectric constant of the
background and cuLo and NTp are the LO- and TO-phonon
frequencies of the polar semiconductor. In Ref. 7 it was
shown that within RPA the polarizabilities are additive.
Consequently, the total dielectric function is obtained by ad-
ding the contribution of the electron gas:

e(k, co) = et, (co) —V(k)X(k, co),

where V(k) =2m e'/k is the Fourier transform of the un-
screened 2D electron-electron interaction potential and
X(k, to) is the polarization of the electron gas.

The electronic contribution to the dielectric function is
taken within RPA approximation, which gives

Re[ —V(k)X(k, co) ] =
~ z [k/k~+ sgn(v+ )8(v~j. —1) (v~+ —I)' ~+ sgn(v )0(v~ —1)(v~ —I)'j~]k' kF'

(3a)

Im[ —V(k)X(k, co)] = [0(I—v', )(1—v', )"'—0(1—v~ )(1—v' )'j'],
k~/k~

where
2/

mb ~ k r, mbe q'e
P g= + ——,0!D= fs

& kF k 2kF 42m jr +sr n,
with k~ the Fermi wave vector, n, the electron density and 0(x) =0, (x & 0), I, (x & 0).

(3b)
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In the following units are used such that k is expressed in
units of kF and cu (also coLo and caro) in units of 2EF/t,
where EF =f'kg/2m& is the Fermi energy

The different collective excitation modes are determined
from the zeros of the longitudinal dielectric function:

Res(k, cu) = 0 (4)

Undamped modes are found when Ime(k, cu) =0 for those
frequencies which satisfy Eq. (4).

In the long-wavelength limit (i.e., k (( kF) Eq. (4)
results in the following three modes:

~Lo ~ko k2

~+ = ~Lo+ 3 . J2r,
OPLo 4

' 1/2

(i ) CJOTQ fg k
M

MLo 2

~'"=k- k2

2
'

(5a)

(Sb)

(5c)

where co+ and co ' are undamped modes. co+ is a phonon-
like mode, while co ' is a plasmon mode which is softened
by the medium. The acoustic mode co is located in the
electron-hole excitation region and is strongly damped. For
large k (i.e., k )) k~), only one mode is found:

~Lo —~ko 42r,+ =~Lo-
fdLo

(6)

which is damped and which approaches the LO-phonon fre-
quency asymptotically from below.

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1 we show the numerical results for the zeros of
the real part of the dielectric function for the electron densi-

ties n, = 10" cm [Fig. 1(a)] and n, = 10' cm [Fig.
1(b)]. The physical parameters cuTo = 5.14 && 10" Hz,
cdLo = 5.58 && 10'3 Hz, ~ = 10.9, and mq/m, = 0.0657 corre-
spond to the material GaAs. For n, =10" cm the Fermi
wave vector is k~= 7.9& 10 cm ' and the unit of frequency
is 2EF/f = 1.1 x 10'3 Hz, while for n, = 10'2 cm 2 we have
kr=1.8X10 cm ' and 2'/t=1. l&&10'" Hz.

It is interesting to compare the present results with the
collective excitations of a 3D polaron gas (see Ref. 7). In
the 3D case, the frequency of the mode co '~ does not ap-
proach zero when k 0, while in 2D co

' does tend to zero
in this limit. The reason is that the 3D unperturbed
plasmon frequency is a constant, different from zero, for
k = 0, while the 2D unperturbed plasmon frequency
behaves like k'2 for k 0. The mode co+ is also different
in 3D for k 0. In 2D co+ always approaches the optical
phonon frequency ~Lo for k 0, while in 3D co+ ap-
proaches a value which is larger than cvLo. In Figs. 1(a) and
1(b), it is apparent that the branch cu is always below the
unperturbed plasmon frequency [heavy dashed curve in
Figs. 1(a) and 1(b)]. The unperturbed plasmon branch ends
at the point (co,k) =(2.64, 1.51) for n, =10" cm 2 and
(1.11, 0.80) for n, =10'2 cm 2. The branch co enters the
continuum at (co,k) = (2.25, 1.34) for n, =10" cm 2 and
(0.44, 0.38) for n, = 10'~ cm 2. For the upper branch co+
one finds for penetration in the continuum the values
(cu, k) = (5.28,2.4) for the density n, = 10" cm ' and
(1.13,0.81) for n, = 10'~ cm

In Refs. 2-5, only two excitation modes were found for
zero magnetic field. This is different from the present inves-
tigation, where for small wave vectors three modes are
present, while for large wave vectors only one excitation
mode is found. The differences originate from the approxi-
mations made in Refs. 2-5 in the electronic contribution to
the dielectric function; namely, the part with Ime(k, cu)AO
was neglected. As a consequence the branch of collective
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FIG. 1. The collective excitations of the 2DEG in GaAs heterostructure (heavy solid curves) are shown as a function of the wave vector
k. The plasmon branch for the unperturbed 2DEG is given by the heavy dashed curve. The shaded area corresponds to the pair-excitation
region ("Landau damping"). The electron density is (a) n, =10' cm and (b} n, = 10'2 cm
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excitations in the electron-hole excitation region was not in-
corporated. Although this branch is damped, it still exhibits
a peak structure in the energy-loss function as shown below.

The electron energy-loss function is defined as

Im
—1 Ime(k, cu)

e(k, r ) [Rem(k, cu) +1m'(k, cu)]

In Figs. 2(a) and 2(b), this energy-loss function is plotted as
a function of the frequency for different values of the wave
vector for the electron densities n, = 10" cm and n, = 10'
cm ~, respectively. When both Ime(k, co) and Rem(k, cu)
vanish, the energy-loss function is a delta function with os-
cillator strength

I(B/t)co)Res(k, o)) I„=„,(g)
'

where cu, (k) = ~+ (k) or co&(k) = co (k). The oscillator
strength of the delta peaks in Figs. 2(a) and 2(b) is indicat-
ed by the numbers above these peaks.

In Figs. 3(a) and 3(b) the oscillator strength of the dif-
ferent delta peaks [branch a&U~ (dashed curve) and branch
co+ (dashed-dotted curve)] and the continuum (solid curve)
is plotted for the electron densities n, = 10" cm and
n, =10" cm ', respectively. From Figs. 3(a) and 3(b) we
observe that in the long-wavelength limit almost all oscilla-

tor strength is contained in the delta-function plasmonlike
peak cu [dashed line in Figs. 3 (a) and 3 (b)]. The
LO —phonon —type peak co+ [dashed-dotted line in Figs. 3(a)
and 3(b)] has its maximum oscillator strength outside the
continuum for intermediate values of k. The continuum
[solid curve in Figs. 3(a) and 3(b)l gains importance with
increasing wave vector. Discontinuities in the oscillator
strength are found for those k values at which a delta peak
disappears in the continuum.

In conclusion, we showed that especially for large electron
densities (n, —10' cm in GaAs heterostructures) the
plasmon-phonon coupling alters the 2D unperturbed
plasmon excitation spectrum considerably. Two main ef-
fects are found: (i) a shift in the phonon and the plasmon
frequency (for cu~ & coro the plasmon frequency is lowered,
while for co~ & coTo the plasmon frequency is enhanced due
to the plasmon-phonon coupling) and (ii) for sufficiently
large electron densities (n, —10'~ cm ~) there is a splitting
of the plasmon branch and the LO branch when co~ reaches
CUTo.

Experimentally, the effect of the plasmon-phonon cou-
pling can be detected in different ways. The k=0 mode
(i.e. , wave vectors small compared to the size of the first
Brillouin zone) is detected in one-photon experiments like,
e.g. , reflectivity and transmission. In these experiments the
behavior given by Eqs. (Sa)—(Sc) is expected. In other
physical situations like transport, screening, inelastic scatter-
ing, etc. , higher values of the wave vector are relevant, and
in these cases the effects of the plasmon-phonon coupling is
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FIG. 2. The energy-loss function as a function of frequency for different values of the wave vector k. The arrows correspond to delta
peaks with an oscillator strength indicated by the number above the arrows. The electron density is (a) n, =10~ crn and (b) n, =10
cm . The dashed line in (b) indicates the position of the TO frequency.
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F/G. 3. The oscillator strength of the 0J ' (dashed curve) and the 0J+ (dashed-dotted curve) excitations. The portion of the oscillator

strength contained in the continuum is given by the solid curve. The electron density is (a) ne =10 cm and (b) ne = 10 cm

more important and should be observed more clearly. The
collective excitation spectrum of the coupled plasmon-LO-
phonon system can be measured by inelastic light scattering
(Raman scattering, as was done in Ref. 9 for the 3D
plasmon-phonon system in GaAs) or inelastic scattering
with low-energy electrons. For GaAs heterostructures the
latter approach may not be useful, because of the small
penetration depth (—30 A) of the electrons.
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