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Schottky barriers and semiconductor band structures
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Various models of Schottky-barrier formation suggest Fermi-level pinning in midgap. Elementary band-
structure considerations indicate that, for diamond-structure semiconductors, the physically relevant gap is
the indirect gap, corrected for spin-orbit splitting. Schottky-barrier heights for elemental and III-V com-
pound semiconductors can be predicted to 0.1 eV from measured indirect gaps and splittings. The dimen-
sionless pinning strength S is given by the optical dielectric constant. Chemical trends are thus simply ex-
plained.

After decades of intensive study, even the most elemen-
tary aspects of Schottky-barrier formation at metal-
semiconductor interfaces remain controversial. Many dif-
ferent theoretical models have been proposed. ' Attempts
to correlate barrier heights with other measurable quantities
have revealed many suggestive qualitative regularities,
without elucidating the underlying mechanisms.

The Schottky-barrier height is determined by the position
of the Fermi level (EF) relative to the local semiconductor
band gap at the interface. Experimentally, barrier heights
are known often to depend only weakly on the metal used,
i.e., EF is "pinned" relative to the semiconductor. A previ-
ous paper suggested a specific microscopic model of barrier
formation, which led to quantitative predictions of barrier
heights in the limit of strong pinning (barrier independent
of metal). That work, however, did not address the issue of
how strong the proposed pinning mechanism was, a crucial
and controversial point, and it related the barrier height to
the semiconductor band structure in a complicated and
nonintuitive way.

Ideally, one would like to identify a few material parame-
ters, all experimentally measureable, which are sufficient
both to predict the barrier height and to quantify the degree
of pinning. This goal has, however, proven elusive, and in
recent years has essentially been abandoned. The purpose
of this paper is to propose specific quantitative relationships
between barrier heights and measured bulk semiconductor
band-structure properties, motivated by the most elementa-
ry theoretical considerations. These semiempirical relation-
ships not only predict Schottky-barrier heights to 0.1 eV
with a single fitted parameter; they also yield new insight
into the crucial role of direct versus indirect gaps in deter-
mining barrier heights. The degree of "pinning" can be
simply related to the screening of a (pseudo)dipole at the
interface, given directly by the optical dielectric constant.
The success of this approach appears to confirm that barrier
formation is associated with states intrinsic to the interface.
An understanding of chemical trends in barrier height fol-
lows naturally from these results.

Surprisingly, the only attempt until recently to correlate
barrier heights directly with bulk band structure was that of
Mead and Spitzer. They proposed, on strictly empirical
grounds, that the p-type barrier $b~ was given by

p~, = EF Ev = Eg/3—
where E~ is the semiconductor band gap, and Ev is the
valence-band maximum.
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FIG. 1. Comparison of predicted and actual barrier heights. (a)
$b~ vs Es. Solid line is (1), $b~= Eg/3. (h) Pt~ vs Eg' —5/3. Solid
line is (4), $&z= 2 [Egf —(6/3)]+8~, with SA„= —0.2 eV. For in-

dividual data see Table I.

Unfortunately, this simple relationship is not borne out in
detail by experimental data. Figure 1(a) shows the level of
agreement between (1) and experiment. For simplicity and
consistency, we use barrier heights for Au on each semicon-
ductor, taken from a standard reference. '3 (All covalent
and III-V semiconductors for which data are given in Ref.
13 are included. ) While (1) correctly describes the overall
trend, it has a large rms error of 0.20 eV, with errors up to
0.35 eV in individual cases. More important, it fails qualita-
tively in many cases. For InAs, EJ: falls above the top of the
gap, while for GaSb and InSb it falls at or near the bottom.
Similar, though less drastic, deviations occur for other sem-
iconductors as well. To understand the qualitative success
and quantitative failure of (1), one must consider possible
mechanisms of barrier formation.

With a few exceptions, ' theoretical models of Schottky-
barrier formation have been based on the original sugges-
tion of Bardeen, ' that E+ is pinned at the interface by states
in the semiconductor band gap. The nature of these states
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remains the subject of conjecture, since they are experimen-
tally very difficult to measure. Fermi-level pinning has
been variously attributed to surface states, intrinsic inter-
face states, or any of a variety of defects in the semicon-
ductor.

Appelbaum and Hamann'4 have pointed out that, in one
dimension, surface states which pin EF (i.e., which are neu-
tral when half filled) tend to fall near the branch point in
the complex band structure, because of simple electrostatic
and band-structure considerations. The branch point, in
turn, tends to fall near the center of the band gap (in one
dimension). '5 This energy similarly plays a crucial role in a
recent model of the metal-semiconductor interface, and
perhaps in the theory of defect levels. It is therefore natural
to speculate that the Fermi level should be pinned in the
center of the band gap. This suggestion closely resembles
(1) and, taken naively, is no more successful.

In fact, in three dimensions the center of the gap does
not appear to have any special properties. Because of the
overwhelming importance of shallow dopant levels in semi-
conductors, attention has naturally focused on the band
edges. However, states which lie deep in the gap are spa-
tially rather localized, and therefore sample a substantial
portion of the Brillouin zone, not just the band edge. The
states which are believed to determine barrier heights
are certainly deep levels in this sense, whatever their de-
tailed nature and origin. These levels cannot be described
by an effective-mass approximation, and need bear no sim-
ple relationship to the band edges. The task then is to iden-
tify some relevant average gap center.

An examination of semiconductor band structures' ' re-
veals some important points. The I point at the zone
center determines the gap in many III-V semiconductors,
yet its energy bears little relation to the conduction band as
a ~hole, because it is associated with a symmetry-induced
decoupling of s and p states. As a result, it has a very small
effective mass, so there is little k space associated with this
minimum. Moreover, its strict s symmetry further excludes
it from contributing to the gap states, which are largely @-
like. ' It is therefore probably safe to ignore the I
minimum in discussing deep levels, at least as a first ap-
proximation. The indirect minima on or near the zone faces
are far more characteristic of the conduction band, and, be-
cause of their degeneracy and large effective masses, they
describe a relatively large region of k space. In suggesting
that EF should fall in the middle of the gap, one should
clearly refer to the indirect gap, regardless of the energy of
the I minimum.

In the absence of splitting, the threefold degenerate
valence maximum adequately characterizes the valence
bands. However, the spin-orbit interaction splits these
states by an amount 5 at I", while leaving the valence band
as a whole relatively unaffected. Thus, relative to the
valence band, the twofold degenerate valence-band max-
imum is pushed up in energy by an amount Th, while the

split-off state is pushed down by Th. It is therefore most
consistent in this context to consider not the actual valence
band maximum (Ev), but its position in the absence of
spin-orbit splitting,

Ev= Ev —T
1

elusion that the most physical simple definition of the gap
center Eo is

Eo = ~(Ev+ E, ) (2)

This may be related directly to the barrier height,

(4)

where Eg=—E,—Ev is the minimum indirect gap. Experi-
mental values of $b~, Ea', and b at room temperature are
given in Table I.

A comparison of (4) with experiments is shown in Fig.
1(b) and Table I. The effective gap center Es defined in
Ref. 8 is also given for comparison. The choice of 5 which
best fits the data for Au is 5A„= —0.2 eV. With this single
parameter, the rms error is remarkably small: 0.07 eV. The
maximum error is only 0.13 eV. In view of the uncertainties

TABLE I. Semiconductor properties: band gap' Eg, minimum
indirect gap'b Eg, spin-orbit splitting' b, predicted barrier height
$g' '~= (Eg' 5/3)/2+SA„, experiment—al barrier' PgP'(Au), and
calculated effective midgap energy E~ of Ref. 8.

Ei y)heory
p y expt

bp E

Si
Ge
GaP
InP
A1As
GaAs
InAs
A1Sb
GaSb
InSb

1.11
0.66
227
1,34
2.15
1.43
0.36

. 1.63
0.70
0.18

1.11
0.66
2.27
1.84
2.15
1.81
1.21
1.63
0.80
0.62

0.04
0.29
0.08
0.11
0.28
0.34
0.39
0.70
0.75
0.98

0.35
0.08
0.92
0.70
0.83
0.65
0.34
0.50
0.07
0.00

0.32
0.07
0.94
0.77
0.96
0.52
0.47
0.55
0.07
0.00

0.36
0,18
0.81
0.76
1.05
0.70
0.50

0.07

where E, is the indirect conduction minimum, i.e. , excluding
I . A better criterion would probably require more detailed
knowledge of the band structure. s

It is tempting to equate this gap center with EF, as dis-
cussed above. However, two factors have so far been
neglected. First, barrier heights are known to depend some-
what on the metal, primarily through its electronegativi-
ty. ' ' One ought therefore to allow for some shift from
the gap center, depending upon the metal. The simplest as-
sumption is EF=ED+8, where 6 depends only upon the
metal. Second, the definition of the effective gap here is
necessarily somewhat arbitrary. In one dimension, the
branch point in the complex band structure generally falls
slightly belo~ the center of the gap, owing to the underlying
parabolic dispersion. " Moreover, (2) is obviously rather
crude. It is therefore convenient to treat 5 as an ad-
justable parameter, which can absorb some of the arbitrari-
ness of the definition of Eo above. At least SA„should be
negative, both because Au is highly electronegative, and be-
cause the branch point falls below midgap, and 5 should be
small compared to Eg; otherwise the. present treatment is
not well justified.

We are therefore lead naturally to the equation

Ep = T (Ev+ E, ) + 5

Thus, by considering (diamond-structure) semiconductor
band structures in a general way, one arrives as the con- 'Reference 17. Reference 20. 'Reference 13.
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both in the barrier heights and in the indirect minima,
better agreement woud probably be fortuitous.

Equation (4) should be viewed as predictive in that, given
any large subset of the data, one could determine 5 and
thereby predict the remaining data to within 0.1 eV.
Despite its phenomenological nature, (4) is more accurate
than any theory to date, except perhaps that of Ref. 8
(which had no adjustable parameters). Moreover, it makes
testable predictions about the dependence of barrier height
on alloy composition, temperature, hydrostatic pressure, etc.

Equally important, however, is the insight into trends in
barrier height which (4) provides. The I minimum is par-
ticularly sensitive to the cation, and decreases sharply in the
sequence Al Ga In. If I dips very low in energy rela-
tive to the rest of the conduction band, EF will fall high in
the gap. This is the case for InAs and, to a lesser extent,
InP. The point is that EF is not anomalously high in the
gap, but rather the conduction minimum at I is anomalous-
ly low relative to the physically relevant indirect minimum
and to the conduction band overall. On the other hand, if
the spin-orbit splitting is very large, as for the antimonides,
then the valence-band maximum is pushed up in energy re-
lative to the valence band as a whole, so EF appears to fall
low in the gap. This helps explain why GaSb and InSb have-
EF pinned very low in the gap, compared with other semi-
conductors.

So far only one metal has been considered, in order to
emphasize variations in barrier height with semiconductor.
A great deal of effort, however, has gone into understand-
ing the variation of barrier height with metal, for a given
semiconductor. The barrier has been correlated with many
properties of the metal, ' ' but attempts at a predictive
correlation have had limited success. '

It is common to analyze the degree of pinning of EF'for a
semiconductor in terms of a parameter

dbbl
dx

where X is the metal electronegativity. This equation pro-
vides at best an incomplete description of the effect of metal
on barrier height, '9 but is nevertheless useful in organizing
a large body of data. The basic idea'9 ' is that as the metal
Fermi level is changed, this change is screened by states in
the semiconductor, reducing the effect on the barrier by a
factor S= S/A, where A = 2.8 eV serves to convert conven-
tional electronegativity units into absolute energy. ' S is
thus dimensionless, and approaches unity in the limit of
noninteracting metal and semiconductor (the unpinned
"Schottky limit" ).

In reality, increasing the metal valence density lowers the
potential in the metal while increasing EF relative to the
average potential. The net effect is a modest lowering of
EF, which is reflected in the increased electronegativity.
Also, S-d overlap plays an important role in transition and
noble metals. Equation (5) implicitly treats these various
factors as merely a shift in the potential in the metal, in the
spirit of a pseudopotential approximation.

Taking this simplistic view to its logical conclusion, one
may view an increase in metal electronegativity as corre-
sponding to an extra constant attractive potential in the met-
al, i.e., to a step potential with the step falling at the metal-
semiconductor interface. This is formally identical to a
sheet dipole at the interface. The parameter S is then sim-

ply and exactly the degree to which this dipole sheet is
screened. If the dipole fell in the metal, one would have
S=O. If the dipole fell in the semiconductor, S=e
would result, where ~ is the optical dielectric constant. For
a sufficiently "intimate" interface, with good metal-
semiconductor bonding, it seems reasonable to assume that
the total screening is a monotonic function of dipole posi-
tion. This implies

O~S~~
The obvious estimate is, then, the mean value

S= Te1

(6)
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FIG. 2. Pinning strength S=S/A (Ref. 19) vs e . Solid line is
theoretical estimate (7); dashed line is upper bound from (6). Solid
circles are cases with strong pinning (S (0.1) (left to right): Ge,
Si, GaAs, CdTe, CdSe, C; open circles are Gap, ZnSe, CdS, ZnO.

It is important to use ~ instead of the static dielectric
constant ~0, which includes an ionic contribution. The elec-
tronegativity is determined by the kinetic energy as much as
by the potential. The ions will therefore not feel the same
effective (pseudo)potential step at the interface as will the
electrons. It is worth stressing that ~, like the indirect gap,
is strictly a band-structure property, and is closely related
to the average gap.

The available data for S have been analyzed by Schluter, '

with estimated accuracies typically +20%. In Fig. 2 S is
plotted versus e '. All data for diamond-structure semicon-
ductors in Ref. 19 are included. The result is striking. All
of the data points which show strong pinning (S(0.1) fall
very near the simple estimate (7). This suggests that the
pinning is associated with states intrinsic to the inter-
face, ~ ' since other mechanisms should not show this
specific correla'tion with e

Equally important, all of the data points with weak pin-
ning (S & 0.2) lie near or above the upper bound (6). This
indicates an incipient breakdown in the assumption that the
dielectric response varies smoothly and monotonically across
the interface, and suggests that poor interfacial bonding may
play a crucial role in determining the weak pinning in these
interfaces. [It is, however, puzzling that GaP and CdS do
not obey (7) well, while similar compounds do.]

It should be emphasized that the association of a unique
number S with each semiconductor has only semiquantita-
tive validity, and there is some risk in too detailed an
analysis. Nevertheless, a simple analysis in terms of bulk
dielectric properties predicts specific values for S, which are
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in good agreement with experiment for all strongly pinned
interfaces. The trivial upper bound S = ~ ' describes well
the more weakly pinned interfaces. The analysis also sug-
gests that the qualitative separation into two classes of sem-
iconductors, emphasized by Kurtin, McGill, and Mead, '0

may have its physical origin in the poor interfacial bonding
between metals and the more ionic semiconductors and in-
sulators.

Schottky-barrier heights, and their trends with semicon-
ductors and metals, have long been the subject of both fun-
damental and phenomenological studies. Ho~ever, the po-

tential of detailed theoretical analysis to predict specific
quantitative correlations has not yet been exhausted. Bar-
rier heights and pinning strengths show extremely simple
trends with semiconductor band structure, once the physi-
cally relevant factors are identified. This simplicity should
prove of critical importance in both the fundamental and
phenomenological understanding of interface behavior.

It is a pleasure to thank D. E. Aspnes for suggesting the
possible role of indirect gaps, and S. M. Kelso for helpful
information on indirect gaps.
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