PHYSICAL REVIEW B

## Chemical environment and Ce valence: Global trends in transition-metal compounds

## R. A. Neifeld and M. Croft

Physics Department, Rutgers University, Piscataway, New Jersey 08854

T. Mihalisin

Physics Department, Temple University, Philadelphia, Pennsylvania 19122

C. U. Segre and M. Madigan Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616

## M. S. Torikachvili and M. B. Maple

Physics Department, University of California, San Diego, La Jolla, California 92093

## L. E. DeLong

Physics Department and Astronomy Department, University of Kentucky, Lexington, Kentucky 40506 (Received 14 August 1985)

Results of  $L_{\rm III}$  absorption spectroscopy measurements on a wide range of Ce-transition-metal (T) compounds are presented and Ce valence-state estimates are made. We are able to identify extremely regular trends in the response of the Ce valence and Ce-T hybridization strength to systematic variations in the solid-state chemical environment. Our work facilitates identification of the specific elements in the T-metal electronic structure which drive the Ce valence-state change.

The last 4f electron in Ce, Sm, Eu, Tm, and Yb is energetically weakly bound despite the fact that it resides deep within the core of the atom. The solid-state chemical environment of these atoms dictates whether this electron will remain bound within the core, join the spatially extended valence electrons, or reside partially in both.<sup>1-5</sup> In this last case, the atom is said to be in a "mixed-valent" (MV) state with the partial charge transfer out of the 4f shell being characterized by the atom's nonintegral "valence state." We present here quantitative results on the systematic response of the Ce valence to a wide but systematic variation in chemical environment. Specifically, we present results on some sixty 3d, 4d, and 5d transition-metal (T) compounds of the form  $CeT_x$ ,  $CeT_2Si_2$ , and  $CeT_2Ge_2$ . Our results allow certain inferences to be drawn regarding the Ce valence-state response to specific T-metal-induced changes in electronic structure. Indeed, our work suggests for the first time that the valence state of MV atoms may in some cases be useful probes of such electronic structure changes.

 $L_{\rm III}$  absorption spectroscopy has been applied successfully for valence estimation in a wide range of MV materials.<sup>6-9</sup> To illustrate the technique, shown in Fig. 1 (bottom) are the separate Ce<sup>3+</sup> and Ce<sup>4+</sup> contributions, which we have superimposed to fit the  $L_{\rm III}$  edge of Ce<sub>2</sub>Co<sub>17</sub>. The integral valent edges are each modeled by the sum of a Lorentzian "white line" (WL) representing transitions from the Ce  $3p_{3/2}$  level into empty Ce 5d states above the Fermi energy plus an arctangent step representing transitions with final states in the continuum. The  $L_{\rm III}$  valence v is estimated by the relative fraction of each integral valent edge feature required to fit the spectra, i.e.,  $v = (3A_3 + 4A_4)/(A_3 + A_4)$ , where  $A_n$  is the area of the Lorentzian white line associated with the *n*th valence state. The details of our data analysis



Photon energy ( $e \lor$ )

FIG. 1.  $L_{\rm III}$  absorption spectra, all normalized to the Ce<sup>3+</sup> peak. The top set of spectra, all on the same scale, are for CeCo<sub>2</sub>, CeRh<sub>2</sub>, and CeIr<sub>2</sub>, all of which have the MgCu<sub>2</sub> structure. The middle set of spectra, are the CeT<sub>2</sub>Si<sub>2</sub> for T = the 3d transition metals Cu ( $\Delta$ ), Ni ( $\bullet$ ), Co ( $\odot$ ), and Fe and Mn (solid lines), all of which have the ThCr<sub>2</sub>Si<sub>2</sub> structure. The bottom spectrum is for Ce<sub>2</sub>Co<sub>17</sub> ( $\odot$ ). Deconvolution of the Ce<sub>2</sub>Co<sub>17</sub> fit to the spectra is shown on the same scale. The sparate Ce<sup>3+</sup> and Ce<sup>4+</sup> lines are shown. Below the Ce<sup>4+</sup> feature are the spectrum's arctangent and Lorentzian components which comprise it (dotted lines). CHEMICAL ENVIRONMENT AND Ce VALENCE: GLOBAL ...

methods will be discussed at length elsewhere.<sup>8-10</sup> It is important to emphasize that, despite the widespread use of the  $L_{\rm III}$  technique, the random assortment of compounds studied and the differences between experimental groups in data analysis have previously precluded the correlation of these results into a coherent global chemical picture of the type developed in this paper. We have, moreover, pushed our investigation to lower *d*-count *T*-metal compounds than in previous  $L_{\rm III}$  measurements.

The relationship between our  $L_{\rm III}$  measurements and the lattice volume, magnetic susceptibility, and transport measurements often used to characterize Ce compounds is facilitated by identifying three ranges for v (the  $L_{\rm III}$ -derived valence estimate): (1) The "Kondo" regime with 3.00 < v < 3.12, in which materials show an interplay of magnetism and Kondo-effect-type spin-fluctuation phenomena, (2) the "saturation" regime with 3.26 < v < 3.35, where local moment magnetism is absent and the Ce ion volume collapse has evidently achieved its fullest extent, and (3) the "intermediate" regime with 3.13 < v < 3.25, where the presence of both valence states are reflected in the atomic volume and magnetic properties.

We assume that the value our  $L_{\rm III}$  analysis yields for vdirectly reflects the Ce valence, although we do not assert that it is numerically equal to the chemical valence. The one-to-one (and nearly linear) relation between  $L_{\rm III}$  valence estimates and traditional valence probes such as crystal volume (in Ce systems)<sup>7</sup> and Mössbauer isomer shift (in Eu systems)<sup>9</sup> provides good precedent for this assumption. Thus, while we believe that our results provide direct evidence regarding the relative degree of charge transfer out of core 4*f* states, we do not address the important questions of the absolute magnitude and character of this transfer. In the discussion below we have attempted to pick out some of the clearest chemical trends in the intermetallic series we have studied.

We wish to illustrate both the differences between  $L_{\rm III}$  spectra (in an analysis-independent way) and the spectrum changes upon changing v or the 5*d*-band width. Specifically, we will directly compare selected  $L_{\rm III}$  spectra by superimposing them normalized to the height of the first (Ce<sup>3+</sup>-

related) absorption peak. The superimposed spectra of several compound series discussed below are shown in Fig. 1. Since increasing valence results in the transfer of spectral intensity from the first (normalization) peak to the higherenergy peak, the spectra of higher valence materials should lie uniformly above that of lower valence materials in such a superposition. Similarly, changes in the WL linewidths are highlighted by this superposition method.

The plots of the v variation in several compound series are shown in Figs. 2(a) and 2(b). First among the chemical trends in v we wish to note is the occurrence of a maximal value  $(v_m)$  as T is varied across a transition-metal row within a given chemical formula (e.g.,  $CeT_2Si_2$  or  $CeT_2$ ). As can be seen in Figs. 2(a) and 2(b),  $v_m$  can fall in the "saturated" regime (as for CeCo<sub>2</sub>, CeCo<sub>5</sub>, CeRh<sub>3</sub>), in the intermediate regime (as for CeCo<sub>2</sub>Si<sub>2</sub>), or in the Kondo regime (as for CeCo<sub>2</sub>Ge<sub>2</sub> or CeRu<sub>2</sub>Si<sub>2</sub>). This trend is most apparent in the  $CeT_2Si_2$  series for T = 3d series. The superimposed spectra in Fig. 1 (middle) illustrates the increase of v as T varies from Cu to Ni to Co followed by a decrease in v from T = Co to Fe to Mn. The  $\text{Ce}T_2$  series, with T = Cu,  $Ni_{1-x}Co_x$ , Co, Fe, and  $Fe_{1-x}Mn_x$  also clearly shows the occurrence of  $v_m$  [Fig. 2(a)]. The low valences of Ce in Sc, Y, and La further underscore the notion that a Ce valence decrease should occur for Ce-T materials as T varies from Co to Sc, from Ru to Y, and from Os to La. In identifying this heretofore unrecognized decrease in the Ce valence with decreasing T-metal electron count, our work motivates studies of MV Ce in a new class of materials with novel dband electronic structure.

It should be noted that  $v_m$  occurs further to the left for Tin the 4d and 5d rows than in the 3d row. In the MgCu<sub>2</sub> and ThCr<sub>2</sub>Si<sub>2</sub> structure compounds, for example,  $v_m$  occurs near Co in the 3d row, but at Ru or further left in the periodic table for the 4d elements and at Os or further left in the periodic table for 5d elements. Similar effects are observed in the cohesive properties (e.g., boiling point, bond length, and work function) of the transition metals and their compounds.<sup>11</sup> These properties reflect cohesive and Fermienergy variations due to an interplay of the *T*-metal *d*-band bandwidth (*W*), correlation energy (*U*), and crystalline-



FIG. 2.  $L_{\text{III}}$  valence vs *d*-band metal. Three general regimes of valence are outlined highlighting the correspondence between  $V_L$  and known transport properties and lattice volume of compounds in each regime: (1) Kondo (K), (2) intermediate valent (I), and (3) saturated valent (S) (see text). Solid lines between data points are a guide to the eye. (a)  $L_{\text{III}}$  valence vs 3*d* transition-metal component for several compound series. Symbols for the series are Ce $T_2$  ( $\bigtriangledown$ ), Ce $T_2$ Si<sub>2</sub> ( $\bullet$ ), Ce $T_2$ Ge<sub>2</sub> ( $\square$ ), Ce $T_2$ Si<sub>2</sub> ( $\bullet$ ), Ce $T_5$  (+). (b)  $L_{\text{III}}$  valence vs 4*d* (bottom ordinant) or 5*d* (top ordinant) transition-metal component for several compound series. Symbols for the T = 4d series are Ce $T_2$  ( $\bigtriangledown$ ), Ce $T_2$ Si<sub>2</sub> ( $\square$ ), Ce $T_2$ Si<sub>2</sub> ( $\square$ ), Ce $T_2$ Si<sub>2</sub> ( $\square$ ), Ce $T_3$  ( $\bigcirc$ ), and for T = 5d, Ce $T_2$  ( $\bigtriangledown$ ), Ce $T_2$ Si<sub>2</sub> ( $\blacksquare$ ); valences of Ce<sub>0.15</sub>  $Y_{0.85}$  and Ce<sub>0.17</sub>La<sub>0.83</sub> represented by arrows.

6930

electric-field (CEF) energy.<sup>12-14</sup> In Table I we note the occurrence of maxima in the *T*-metal cohesive energies in various simplifying regimes of these competing energies. The three basic physical effects which go into Table I are (1) for  $U \rightarrow 0$  electrons fill states without regard to spin, whereas for  $U \rightarrow \infty$  all spin-up states fill first, (2) bonding (hybridization) energy is maximized when a band is onehalf filled, and (3) the CEF yields a cohesive energy increasing when electrons are added to the lower CEF level.

We believe it is the *T*-metal contribution to the electronic structure of these Ce-*T* compounds which dominates the Ce valence trends and which causes the Ce valence state to track the *T*-metal cohesive properties. Referring to Table I, this interpretation suggests that the shifting of  $v_m$  from  $n \sim 7$  in the 3*d* elements to  $n \sim 6$  or less in the 4*d* and 5*d* elements reflects the loss of *d*-band correlation. It is also clear that the CEF and hybridization contributions to the lowering of the Fermi energy would both tend to drive the occurrence of  $v_m$  near the same general value of *d*-band filling (e.g.,  $n \sim 7-8$  for the former and  $n \sim 7.5$  for the latter in the 3*d*'s). The relative weight of these last two effects will vary from system to system depending on the density, crystal symmetry, and chemical bonding.

In Fig. 1 (top) we compare the  $L_{III}$  spectra of  $CeT_2$  for T = Co, Rh, and Ir. The large Ce valence decrease between  $CeCo_2$  and  $CeRh_2$  is again driven by the substantial loss of T-metal d-band correlation as discussed above. The smaller valence decrease between T = Rh to T = Ir is presumably related to the volume sensitivity of the Ce valence along with the volume increase on moving from Rh to Ir. Similar trends in Ce valence are repeated in the  $CeT_2Si_2$  series as T is varied from 3d to 4d rows [compare the data in Figs. 2(a) and 2(b)]. The decrease in v between the  $CeT_2Si_2$  and  $CeT_2Ge_2$  series (with T in the 3d's) is presumably due to a similar volume coupling mechanism.

The data in Figs. 2(a) and 2(b) also suggest certain systematics in the v variation for binary intermetallics of the form Ce $T_x$ . To clarify this situation, we have determined v vs x results for known Ce $T_x$  intermetallics with T = 3d elements. As expected for T = Zn and Cu, increasing x stabilizes the integral valent v = 3.00 state. On the other hand, the trend with T = Ni, Co, and Fe is to stabilize "saturated"

TABLE I. T-metal d-electron count (n) and element where a local maximum in the cohesive energy occurs in the cases of large and small correlation energy (U), zero crystalline-electric-field (CEF) splitting, finite and zero d-band width (W) and finite CEF splitting, with  $e_g$  and  $t_{2g}$  orbitals lowest in energy. Note we have applied the case of low correlation (low spin) to the 4d and 5d elements and that of high correlation (high spin) to the 3d elements. Note also that our results indicate that the Ce valence variation between Ce-T compounds will track the T-metal contributions to the compounds' cohesive energy.

|                        | $W \sim 0$<br>CEF present $e_g$ lowest                           | $W \sim 0$<br>CEF present<br>$t_{2g}$ lowest                        | W≠0<br>No CEF                                                          |
|------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|
| $U \rightarrow 0$      | $n = 4, \begin{cases} Mo \\ W \end{cases}$                       | $n = 6, \begin{cases} Ru \\ Os \end{cases}$                         | $n = 5, \begin{cases} Tc \\ Re \end{cases}$                            |
| $U \rightarrow \infty$ | $n = \begin{cases} 2, & \text{Ti} \\ 7, & \text{Co} \end{cases}$ | $n = \begin{cases} 3, \ \mathbf{V} \\ 8, \ \mathbf{Ni} \end{cases}$ | $n = \begin{cases} 2.5, \text{ Ti}-V\\ 7.5, \text{ Ni}-Co \end{cases}$ |

regime values of v upon increasing x (e.g., for T = Ni one finds v = 3.03, 3.06, 3.17, 3.27, 3.28, and 3.29 for  $x = \frac{3}{7}$ , 1, 2, 3,  $\frac{7}{2}$ , and 5, respectively); in the CeCo<sub>x</sub> series, v = 3.08, 3.32, 3.29, and 3.29 for  $x = \frac{11}{24}$ , 2, 5, and  $\frac{17}{2}$ , respectively; in the CeFe<sub>x</sub> series, v = 3.27, 3.28, for x = 2,  $\frac{17}{2}$ , respectively. The high v for CeCo<sub>2</sub> is related to the broad lines in the maximal valent Ce 3d binary compounds.

Finally, we wish to note that Ce 5d-band width information is contained in the WL linewidths of the  $L_{\rm III}$  spectra. Although the experimental resolution, 2p hole lifetime, and the 5d-band width all contribute to the WL linewidth, the former two contributions are essentially constant throughout all our spectra. Hence we associate variations in the WL linewidths with variations in the Ce 5d orbital width in a given chemical environment. This linewidth information also allows comparison of the chemical environment within and between compound series. Within a given compound series we observe an essentially uniform narrowing of the WL as T is varied down a column from the 3d to 4d to 5drows (e.g., the linewidths of  $CeT_2Si_2$  for T = Cu, Ag, and Au are, respectively, 9.8, 9.2, and 8.3 eV). This narrowing trend is well illustrated by the  $CeT_2$  spectra in the top of Fig. 1 as T varies from Co to Rh to Ir. Turning to between-compound comparisons, the WL's (hence Ce 5d hybridization widths) in the  $CeT_2Si_2$  series and in the alloys of Ce in Sc, Y, and La appear 1-2 eV narrower than in the  $CeT_2$  series for a given T. While the Ce 5d-band width could be of interest in mixed-valent Ce systems, the Ce 4fhybridization is of course of much greater interest. Since both the 5d and 4f widths are strongly influenced by wavefunction overlap with near-neighbor T-metal functions the 4f and 5d widths should roughly track on another (though the f hybridization is much smaller).<sup>15</sup> Thus the 5d-width information gleaned from  $L_{\rm III}$  studies could be of use in sorting out the role of the 4f width in mixed-valent Ce systems.

Our results enable one to begin to form a global picture of the response of the Ce 4f orbitals to a broad range of chemical environments in a quantitative manner. In doing so, a number of specific research goals are clearly identified: (1) development, from a solid theoretical basis, of the analysis of the near-edge x-ray absorption structure of mixed valence materials, (2) a theory of cohesion and felectron bonding which can accurately predict and explain MV ion valence variation, (3) detailed and critical comparison of other spectroscopic, lattice, and thermal measurements to our  $L_{III}$  results over a similar broad chemical range, and (4) experimental work on new stable and metastable materials involving transition metals with d-band occupancy of 6 or less. Finally, our work supports the novel notion that the 4f-level occupancy of mixed-valent atoms may prove to be a quantitative marker with which to probe the band structure of materials.

This work was supported in part by the U.S. Department of Energy under Grant No. DOE-AS05-82ER12061. Research at the University of California, San Diego was supported by the U.S. Department of Energy under Contract No. DE-AT03-76ER70227. We are grateful to the staff at the Cornell High Energy Synchroton Source, where the x-ray absorption measurements were carried out. We would like to thank Dr. Martha Greenblatt for her extremely helpful discussions.

6931

- <sup>2</sup>See Proceedings of the International Conference on Valence Fluctuations, Köln, 1984 [J. Magn. Magn. Mater. 47&48 (1985), and references therein.]
- <sup>3</sup>See Valence Instabilities, edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982), and references therein.
- <sup>4</sup>See Valence Fluctuations in Solids, edited by L. Falicov, W. Hanke, and M. B. Maple (North-Holland, Amsterdam, 1981), and references therein.
- <sup>5</sup>See Valence Instabilities and Related Narrow Band Phenomenon (Plenum, New York, 1976), and references therein.
- <sup>6</sup>See J. Rohler in Ref. 2.
- <sup>7</sup>R. D. Parks, S. Raan, M. L. den Boer, V. Murgai, and T. Mihalisin, Phys. Rev. B 28, 3556 (1983).
- <sup>8</sup>M. Croft, R. Neifeld, C. U. Segre, S. Raan, and R. D. Parks, Phys. Rev. B **30**, 4164 (1984).

- <sup>9</sup>E. Kemly, M. Croft, V. Murgai, L. C. Gupta, C. Godart, and R. D. Parks in Ref. 2.
- <sup>10</sup>R. Neifeld and M. Croft (unpublished).
- <sup>11</sup>See, for example, *Handbook of Chemistry and Physics*, 63rd ed., edited by Robert C. Weast (CRC Press, Boca Raton, FL, 1982), pp. F167, E76-77, D188, for properties of the pure transition metals.
- <sup>12</sup>See J. Huhey, *Inorganic Chemistry* (Harper and Row, New York, 1983), Chap. 9.
- <sup>13</sup>We are implicitly considering a degenerate transition-metal d band. U represents the spin correlation energy; i.e.,  $U = U_{nn} - U_{nn'}$  where n, n' = 1, 5 label the d orbitals.
- <sup>14</sup>V. L. Moruzzi, A. R. Williams, and J. F. Janak, Phys. Rev. B 15, 2854 (1977).
- <sup>15</sup>G. W. Crabtree, B. D. Dunlap, and D. D. Koelling, Bull. Am. Phys. Soc. **30**, 407.