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Incompressible states of the fractionally quantized Hall effect
in the presence of impurities: A finite-size study
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We have studied the effect of impurities on the incompressible states of two-dimensional electrons in a

strong magnetic field by finite-size numerical calculations in the spherical geometry. For short-ranged im-

purity potentials the Laughlin ground state shows no screening and is found to be stable regardless of the

potential strength. An analogy with acceptor and donor states of a semiconductor is drawn and ionization

energies are estimated.

Laughlin's Jastrow-function picture' of the incompressible
ground state of interacting electrons bound to a clean two-
dimensional substrate at 3 Landau-level filling is now well

confirmed and explains the observed fractionally quan-
tized Hall effect with Hall constant RH= h/ve2, v= 3 . The
elementary excitations of the clean system have also been
characterized: q = +

3 e quasiparticle and quasihole defects
of the incompressible state and a neutral collective excita-
tion that becomes a well separated "excitonic" pair of op-
posite charge defects at large wave numbers.

The spherical geometry introduced by Haldane has
proved to be a powerful device for numerical finite-size
studies of the clean system and in an obvious extension we
have applied it to study the effect of isolated point impuri-
ties on the incompressible Laughlin-Jastrow (LJ) state.

It is important to understand the effects of impurities, as
they are likely to dominate dissipative transport properties
such as the finite-temperature Ohmic resistance, unless ex-
tremely clean samples can be prepared. The activation ener-
gies reported in Ref. 7 are significantly lower than those
found in Refs. 3 and 4 for a clean system with pure
Coulomb interactions. However, since various effects such
as finite inversion-layer thickness, Landau-level mixing, and
impurities sensitively affect these energies, our study is not
aimed at quantitative fits to experiment; instead we study
model impurity potentials in a system with purely Coulomb
interactions and vanishing inversion-layer thickness.

It is very instructive to study the effect of a short-range
or delta-function impurity potential. In faCt, any potential
with a range much less than the magnetic length
i = (0/eB ) ' 2 = 66 A at 8 = 15 T is effectively a delta func-
tion with binding energy

for particles in the lowest Landau level. More importantly,
the charge-density response to a weak delta-function impuri-
ty potential directly defines the real-space form of the
ground-state linear response function.

In the case of the v= 1 incompressible fluid (the filled
Landau level) where electron interactions can be neglected
(e2/4meol ((tee, ), the effect of a delta-function impurity

has been studied by Prange. A single impurity level is'

pushed above or below each Landau level depending on
whether the potential is repulsive or attractive. If one
neglects spin, and for simplicity treats a spinless Fermi gas,
there is no change in the ground-state quantum numbers
due to the impurity potential even if its strength becomes
infinite. (In fact, if g is significantly larger than the gap t~,
the potential strength is effectively infinite. )

In an obvious analogy with a semiconductor, a "donor"
or "acceptor" level is pushed into the gap between the filled
lowest Landau level and the empty second Landau level.
Particles in the second Landau level and holes in the lowest
Landau level are the "defects" of the incompressible state;
The donor and acceptor states can each exist in both a neu-
tral state, and a "singly ionized" state left after the release
of an oppositely charged defect.

In our numerical study of the effect of the delta-function
impurity in the v = —, state, we find a rather similar
behavior, except that now the donor (repulsive impurity) or
acceptor (attractive impurity) can exist in exotic fractional
charge states.

We chose to study the six-electron system at v =
3 filling

using the spherical geometry. This is a convenient size,
with matrix dimensions less than 500. The incompressible
ground state occurs' at net magnetic flux 2S =15 flux
quanta, corresponding to a sphere radius R = JSl = 2.731.
In the absence of an impurity, states fall into multiplets
characterized by the rotational quantum number L; with an
impurity at the north pole, only the azimuthal rotational

i quantum number M remains to classify states. The quan-
tum number M measures the first moment of the charge-
density distribution on the surface of the sphere:

M = R 2 Jt d20 (cosa) p (0 );
changes in M thus indicate charge redistribution.

Figure 1 shows how the uniform charge-density profile of
the pure incompressible state is modified in the presence of
various strength delta-function impurity potentials. The
ground-state quantum number M remains at the pure sys-
tem value M = 0 even in the limit of an infinitely strong im-
purity potential, just as in the filled Landau-level case v = 1.
This reflects the incompressible nature of the LJ state: Xo
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FIG. 1. Charge-density profile of the six-electron system at v =
3

(2S = 15 flux quanta on the sphere) (Refs. 3 and 6) in the presence
of various strengths of the delta-function impurity potential. r is the
(chord) distance from the impurity on the spherical surface of ra-

dius R =2.73I. In the v=
3 pure state the surface density p is

given by 4mR p = 6, while in the v = 1 state it would take the max-
imum value 4mR p = 16. The strengths of impurity potential shown
are g = +~, +0.3, +0.1, +0.07, +0.035, 0, —0,035, —0.07,
—0.1, —0.3, —~, for which the charge density rises from
4n. R p=0 to 16.

net screening charge accumulates on the impurity, in
marked contrast to a metallic system. Instead there is a lo-
cal oscillatory polarization of the charge density in the
neighborhood of the impurity. The oscillation of the charge
density about the background value at large distances sup-
ports this conclusion. At the position of the impurity, the
charge density increases from zero to the maximum value
for the lowest Landau-level states as the impurity strength
rises from —~ to + ~. The period of this oscillation is
governed by the linear response of the LJ state, and remains
essentially unchanged even well outside of the linear
response regime. From Fig. 1, the first node of the polari-
zation charge density occurs at a distance of about 1.451
frorh the impurity. One can readily estimate the linear-
response profile: If the response function X(q) was entirely
concentrated at q =qp then the response Sp(r) would be
proportional to the Bessel function Jp(qpl'), with the first
node at qor = 2.4, i.e., qo= 1.651 . This is in line with the
recent observation by Girvin, MacDonald, and Platzman
that the numerical results of Ref. 3 for the collective excita-
tion dispersion can be understood if the linear response is
dominated by the collective mode in the region of the ro-
tonlike minimum of the excitation energy at q = 1.41 '. In
fact, a recent numerical study by one of us has confirmed
that the linear response is well described by the single-mode
approximation suggested by Girvin, MacDonald, and Platz-
man.

Figure 1 also shows that the characteristic coupling energy
at which the impurity becomes strong is IgI = 0.1 (in units
of ez/4rrep/) which is comparable to the energy gap of the
incompressible state. If the potential is significantly
stronger than this, it will have effectively infinite strength.
This motivates the special study of the infinite strength
delta-function potentials as these are likely to model all suf-
ficient1y strong short-ranged potentials.

The overlap of the exact pure state with the neutral

ground-state wave functions in the presence of short-ranged
impurity potentials interpolates from unity to 0.6023 and
0.7820 as the impurity charge is varied from zero to +~
and —~, respectively. These values are strikingly close to
4(6/16) = 0.6123 and J(10/16) = 0.7906, which 'are the
overlaps of the pure ground-state wave function W,„„for

A

six electrons at v= 3, with P%'„„„,P projects out the com-
ponent of the wave function where the occupation of the
lowest Landau-level orbital centered on the impurity is ei-
ther zero (repulsive) or one (attractive). In fact, the over-
lap of the exact ground-state wave function with P+„„„was
found to be 98.9% and 98.3% for infinite strength repulsive
and attractive cases, respectively.

The excitation spectrum and charge profiles of low-energy
states of the neutral system with an infinite strength repul-
sive delta-function impurity are shown in Fig. 2. In the
series of low-lying excitation with M= —1, —2, . . . , the
neutral impurity releases a quasiparticle defect, ending up in
a state of charge —

3 e. By analogy to semiconductor
physics, we describe the impurity as a donor (of quasiparti-
cle defects) and the ionization process as D (0)

D ( —
3 e) + P, where D (q) are the charge states of the

donor and P is the released charge + 3 e defect. The quan-
tum number AM is a measure of the radius at which the de-
fect orbits around the impurity. The outward progress of
the defect as IMMI increases is clearly seen in the charge-
density profiles of Fig. 2: The quasiparticle defect has a
minimum in the charge density at its center, which can be
identified in Fig. 2.

Figure 3 shows analogous results for the fractionally
charged (q = —Te) system obtained by adding one flux

quantum to the v= T state. In the absence of the impurity,
the ground state would be a degenerate multiplet with
L =~N(=3) describing the possible states of the free
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FIG. 2. Charge-density profiles of ground state (thick line) and

the low-lying excitations of the neutral v=
3 system with N =6,

2S =15, and an infinite strength repulsive delta-function impurity.
Filled points show minima in the charge density identified with the
center of a quasiparticle defect emitted by the impurity. The neu-
tralizing background charge density (total charge 6e) is indicated
by the horizontal arrows. Inset shows excitation energies (in units
e / 4meol) vs hM, the change in azimuthal quantum number,
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"quasihole" defect. The infinitely strong repulsive delta-
function impurity potential binds the hole: Since the charge
density at the center of the defect is almost zero in the
pure case, there is very little modification of the ground-
state charge-density profile, which describes the D( ——,e)
state of the donor. The low-lying excitations again have a
simple interpretation: the process D ( —

3 e ) D (0) + h,

where a quasihole defect "h" is released is clearly seen (Fig.
3). AM again indicates the radius at which the released de-
fect orbits around the impurity, and its center can be identi-
fied as a minimum in the charge-density profile. The
ground-state quantum number Mp = —3 indicates binding
of the hole to the impurity.

If 5+ +5 is the intrinsic energy gap for creating a pair
of widely separated quasihole and quasiparticle defects, then
the energy gap for the donor ionization process
D(0) D( ——,e)+Pean be estimated as

FIG. 3. As Fig. 2, but for the charged (q.= —
3 e) system with

N = 6, 2S = 17 flux quanta. The background charge density neutral-

izes the LJ condensate (total charge 6 3 e), filled points indicate the1

center of a quasihole defect emitted in the ionization process

D ( —
3 e) D (0) + h (in the case AM = 1, only the suggestion of

an inflection point indicates the center of the defect, and this state
has a much higher energy than the other low-lying states).

cess 4 (0) A (+ —,e) + h to be 0.080e2/4m eo/. This is
essentially identical to the ionization energy of the donor
level. Details of the excitation spectrum and charge-density
profiles of the acceptor level will be given elsewhere.

We studied the doubly ionized state of the acceptor impur-
ity A (+ —,

' e ) at flux 2S = 13 flux quanta. For the pure sys-

tem this flux change corresponds to adding two quasiparticle
defects to the neutral v =

3 system. The infinitely strong
attractive impurity potential binds both quasiparticles. How-
ever, we have found that the second quasiparticle is only
marginally bound: In the 6-electron system its ionization
energy is 0.0012e /4meol. This may be a consequence of the
strong short-ranged repulsion of the two quasiparticles. '

We have also studied the effects of longer-range impurity
potentials. Figure 4 shows the density response of the LJ
incompressible fluid ground state (L =0) for six electrons
at v =

3 to a Coulomb impurity potential. We have varied

the charge of the impurity from +0.5e to —0.5e, In con-
trast to short-ranged impurities the LJ incompressible state
is found to become unstable if the charge of the impurity is
made sufficiently large. The azimuthal quantum number of
the new ground state is no longer zero signifying a sudden
rearrangement of charge around the impurity by local nu-
cleation of an exciton. This feature is quite evident in Fig.
4 (thick lines). Prior to the transition the linear response
regime and the unscreened behavior is also clearly seen. The
inset in Fig. 4 shows the rather strong dependence of the
gap (separation of the ground state from the first-excited
state) on the charge of the impurity. The gap vanishes at
the transition point and remains relatively small above it.
For six electrons the critical charges are + 0.38e and —0.30e

~++~--[E,( )-E,(0)+E (0)-E (-)),
where Eo(g) and E (g) are, respectively, the ground-state
energies of the neutral and q = —

3 e systems in the pres-

ence of an impurity of strength g. Taking the raw 6-
electron data, we find the impurity reduces the gap by
0 039e2/47re. ol: For a more refined estimate, the extrapola-
tion to large N should be performed; we leave this for a
more detailed study.

This estimate of- the ionization energy ( = 0.081e'/
4meol) agrees reasonably well with that obtained directly
from the neutral excitation spectra (e.g. , Fig. 2): It should
coincide with the limit as !hM! ~ of the low-lying
branch of the excitation spectrum.

We characterize the infinitely attractive short-range im-
purity as an acceptor level for quasiparticle defects. For the
6-electron system we find the energy for the ionization pro-

5 r/l

FIG. 4. Ground-state charge-density profiles (as in Fig. 1; N =6,
25=15 flux quanta —v=

3 ) for a number of long-range Coulomb1

impurity potentials. The strength of the charges shown are
Z/e = + 0.5, + 0.3, + 0.1, + 0.07, + 0,035, 0, —0.035, —0.07,
—0.1, —0.3, —0.5. The density 4mR2p again rises from 0 to 16.
The thick curves are the charge density above the point of instabili-
ty, where a large redistribution of the charge density has taken
place. The new ground-state quantum numbers are indicated for
each case. The inset is the gap (energy of the first-excited state
relative to the ground state in units of e /t4~6pI) as a function of
the impurity charge for the attractive (3) and the repulsive (R)
cases.
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with corresponding azimuthal ground-state quantum
numbers Mo= —2 and +4 for the repulsive and attractive
impurity potentials, respectively. We believe the asymmetry
in the quantum numbers to be a consequence of the charac-
teristic density profile of the quasiparticle defect:~ The max-
imum of the charge density does not occur at the center of
the defect.

In summary, the incompressibility of the Laughlin con-
densate prevents screening of the impurity. We expect this
and other features reported in this paper to persist in the
thermodynamic limit. We have made a detailed study of
short-ranged impurity potentials with infinite strength. We
conclude by noting that the conditions for this model to be
applicable to physical systems are

Vo»6 » V, m «1
where 4 is the gap in the spectrum of the fluid and V is a

set of pseudopotential coefficients' characterizing the in-
teractions. In general, these conditions require that the
range r~(& l.

We remark that the picture presented here is only applica-
ble to dilute systems to the extent that impurities can be
considered as independent.

While this work was in its final stage of completion we re-
ceived a copy of the preceding paper" reporting features
similar to those presented in Fig. 4, but for attractive
Coulomb impurity potentials and for 4-, 5-, and 6-electron
size systems in various geometries.
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