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Effect of a charged impurity on the fractional quantum Hall effect:
Exact numerical treatment of finite systems
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We investigate the role of a single charged impurity on the fractional quantum Hall effect by studying fi-

nite systems in spherical, toroidal, and disk geometries. Our qualitative results are independent of the
geometry. We study the screening behavior systematically and find that screening charge accumulates at
the impurity. The screening charge density shows an interesting oscillation with a characteristic scale of the
magnetic length. We also find that the excitation gap is reduced significantly in the presence of the im-

purity.

The fractional quantum Hall effect (FQHE) is one of the
most remarkable recent discoveries in condensed-rnatter
physics. The original experimental discovery by Tsui,
Stormer, and Gossard has been followed by intense theoret-
ical activity, with most of the theoretical papers elucidat-
ing various aspects of the nature of the ground state giving
rise to the remarkable experimental observations. The
ground state of a two-dimensional electron gas in the pres-
ence of a strong perpendicular magnetic field at a fractional
Landau-level filling v = I/m (m an integer) is now thought
to be the Laughlin state, an incompressible liquid described
by a strongly correlated many-body wave function. The
charge density of this electron liquid is uniform, except pos-
sibly at edges (which is unimportant in the thermodynamic
limit). According to Laughlin, the ground state of this in-
compressible liquid is separated from the lower excited state
by an energy gap (of the order of a fraction of a meV)
which is responsible for the FQHE at temperatures low
compared with the excitation gap. Laughlin's theoretical
study, 2 as well as those of others3 '0 on the FQHE have
concentrated on a clean two-dimensional (2D) electron sys-
tem, whereas experiments are necessarily done on systems
which contain impurities. Impurities may, in general, dis-
rupt the highly correlated Laughlin state and ruin the
FQHE. In fact, there is an already established experimental
connection between the quality of a sample (as measured by
the 2D mobility) and the existence of the FQHE. The
FQHE has only been seen in samples of the highest purity
with very high mobility values. An interesting theoretical
issue associated with the presence of the impurity is the na-
ture of screening by this highly correlated liquid, which can-
not be studied by the standard many-body techniques be-
cause of the strong quantum correlation inherent in the sys-
tem.

It is, therefore, important and interesting to investigate
theoretically the effect of an impurity on the FQHE. In this
Rapid Communication we provide the first systematic,
theoretical investigation of the role of impurity in the
FQHE. In particular, we consider the effect of a single,
Coulombic-charged impurity center on the 2D electron sys-
tem in the FQHE situation.

We report here exact numerical results for a finite 2D sys-
tem containing a single charged impurity. In order to eluci-
date possible geometry and boundary effects, we have car-
ried out our calculation in three different geometries: spher-

ical, toroidal, and disk, ' Exact numerical calcula-
tions ~ ' have earlier been carried out for clean 2D systems
in these geometries by various authors. Our theory follows
these earlier theoretical calculations except that we have an
additional electron-impurity interaction term in our Hamil-
tonian. We find the expected accumulation of the electronic
screening charge around the impurity and an interesting spa-
tial oscillation in the screening density away from the im-
purity center. We also find that the excitation gap (defined
simply as the energy difference between the ground state
and the lowest relevant excited state) for our finite system
is significantly reduced in the presence of the impurity. The
results presented in this paper pertain to a positively charged
static impurity center, which is, in fact, the most experimen-
tally relevant case. We also make some remarks on the ef-
fect of a negatively charged impurity.

The Hamiltonian for our problem reads

H= Hp+ Hi+ H;,

where Hp is the noninteracting part of the Hamiltonian and
H& is the electron-electron interaction. The part containing
Hp and Hl has earlier been treated numerically ' by a
number of authors for different geometries. The H; term is
the contribution of the electron-impurity interaction which
is given by

Ze
IR I

i —8 ~

rJ

where Ze is the impurity charge, e is the background static
(lattice) dielectric constant, R, , r~ are the impurity and the
jth-electron positions, respectively, and EI ~ is the constant
impurity-background interaction energy. We assume that
the magnetic field is strong enough so that only the lowest
spin-polarized Landau-level states can be occupied. We di-
agonalize the Hamiltonian defined by Eq. (I) numerically
for a finite (%= 3 to 6) number of electrons in the different
geometries. In this paper we concentrate on a filling factor
of v = T for the sake of brevity.

We discuss our results for the spherical geometry first.
This geometry was first considered3 by Haldane for the
clean system. We put the impurity at the north pole and
calculate thy Coulomb potential using the geometric dis-
tance as the interparticle separation. In the absence of the
impurity, the ground state at v=

3 fractional filling is the
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L =0 state, where L is the total angular momentum. of the
electrons. The excited states correspond to higher values of
the angular momentum. Our calculated energies for the
clean system agree with the results of Haldane. In the
presence of the impurity, the spherical symmetry is broken
and L is no longer a good quantum number. However, az-
imuthal symmetry is still preserved and the states can be
classified according to L„ the z component of the angular
momentum. The ground state has L, =O and the (degen-
erate) excited states split because of the level mixing by the
impurity potential. We define the excitation gap as the en-
ergy difference between the ground state and the lowest ex-
cited state. In Fig. 1(a) we show the excitation gap in the
spherical geometry as a function of the impurity strength Z
for two different finite systems with the number of elec-
trons N = 5 and 6. It is obvious from the figure that the ex-
citation gap is significantly reduced in the presence of the
impurity. In Fig. 2(a) we show the screening behavior in
the spherical geometry. In the absence of the impurity the
electronic charge density is uniform. The screening charge
accumulates at the impurity if one is present. The screening
charge density oscillates away from the impurity with a
characteristic length scale of the magnetic length. . The
period of this local screeening oscillation can be seen to be
independent of the strength of the impurity charge. In Fig.
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FIG. 1. Excitation gap E for v =
3 in the units of e /el (where l

is the magnetic length) as a function of the impurity strength Z for
(a) the spherical and (b) the toroidal geometry. For (a), two dif-
ferent calculations with the total number of electrons N=5 and 6
are shown, whereas for (b) N=4.

FIG. 2. Spatial behavior of the screening charge density p is
shown for different impurity strengths in (a) spherical [p(H) is den-
sity per unit solid angle], (b) toroidal, and (c) disk geometries. N,
is the total number of states and 0 is the azimuthal angle, whereas r
is the distance from the impurity center (which is always at the ori-
gin). Note that rotational symmetry is absent in the toroidal
geometry, with the solid curves giving the charge density in the
(0,1) direction and the dash-dotted curves giving the same in the
(1,1) direction of the rectangle (b). In (c) the dashed curve gives
the screening charge density (i.e., the difference between the elec-
tronic charge densities corresponding to Z =0.1 and 0, shown by
the solid curves) . The arrows indicate the average normalized
charge density in the disk at v =

3 .1
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3 we plot the charge density for systems of N =4, 5, and 6
electrons for a fixed Z. Except near the edge, the screening
is quite independent of the system size. This leads us to be-.
lieve that the occurrence of a local charge-density wave
around the impurity is a general feature of the physics of
the system, not restricted to the finite systems we are study-
ing numerically. Using symmetry considerations we can ob-
tain the effect of a negatively charged impurity in the
sphere.

To investigate whether the above qualitative results are
geometry dependent, we have also considered the toroidal
and disk geometries with a finite number of electrons and a
single charged impurity. In the toroidal geometry ' the
ground state at p, = ~ is triply degenerate for the clean sys-

tem. In the presence of the impurity (which, by virtue of
the periodic boundary condition, lies in every single rec-
tangular cell), the degeneracy is lifted because the impurity
potential mixes the momentum eigenstates. Because of this
reduced symmetry in the presence of the impurity we can
only diagonalize up to a N = 4 system in the toroidal
geometry. Both the ground and the excited states of the
clean system become nondegenerate in the presence of the
impurity and we define the excitation gap as the energy
difference between the "lowest" ground-state and the
"lowest" excited-state levels. " In Fig. 1(b) we show this
excitation gap as a function of the impurity strength Z for
N=4. The result is qualitatively the same as that in Fig.
1(a), showing that the excitation gap is significantly reduced
in the presence of the impurity. In Fig. 2(b) we show the
screening behavior in the toroidal geometry, which is similar
to that [Fig. 2(a)] in the spherical geometry.

The disk model we consider has a positive background
charge density, which is uniformly distributed over the disk
and which exactly neutralized the total charge in the system.
The uniform charge density is therefore p = v/2vr i2, where l
is the magnetic length. The ground state of a finite disk for
up to N = 6 electrons at v =

3 is found to have total angular
momentum L = N(N I )/2v, which— is consistent with
Laughlin's wave function, but is somewhat different from
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FIG. 3. Spatial behavior of the screening charge in the spherical
geometry for a fixed Z=0.1 and for different system sizes: -N= 6
(solid curve), N=S (crosses), and N=4 (dots). The distance y is
along the surface.

that of the earlier work. The energy levels in the disk
geometry are not reliable and there is no downward cusp in
the ground-state energy at v = ~. We believe that this is re-
lated to the open boundary condition (edge effects) present
in the disk geometry. In Fig. 2(c) we show the electronic
charge density in the disk geometry both with and without
the impurity (which is placed at the center of the disk).
The charge density for the clean disk is seen to be quite dif-
ferent (in particular, nonuniform) from that in the other
geometries (sphere or torus), where the charge density in
the clean system is uniform. The nonuniformity of the
charge density in the disk geometry is a finite size effect,
and, in fact, for small systems (N=2, 3, 4, etc.) Laughlin's
wave function also gives a charge density having similar
nonuniform behavior. As one can see from Fig. 2(c), the
screening behavior in the disk geometry is quite similar to
that in the other geometries, even though the charge densi-
ty for the clean system behaves differently. In particular,
the screening charge accumulates at the impurity and oscil-
lates away from the impurity with the characteristic length
scale of the magnetic length.

In summary, we have investigated the effects of a single
charge impurity on the FQHE by numerically studying finite
sytems in different geometries. To the extent that one can
neglect impurity-impurity interaction effects, our one-
impurity model may be an approximation for experimental
systems with a dilute impurity concentration. It should be
noted that the actual 2D systems showing the FQHE are
modulation doped and, hence, the impurities are spatially
separated from the 2D electrons. In our model this fact is
easily incorporated by making the impurity strength Z ( 1.
In practice, ' a value of Z around 0.1 may be the realistic
value for the actual high-mobility GaAs samples.

By far the most interesting and unanticipated result is the
oscillatory screening behavior (Figs. 2 and 3) around the
impurity. The result is geometry independent, and, to the
extent we are able to investigate, independent of the system
size as well. Results for the spherical case [Figs. 2(a) and
3] clearly indicate this charge-density oscillation to be an in-
trinsic property of the 2D system. We should emphasize
that this screening oscillation is unrelated to the Friedel os-
cillation, which arises because of the existence of a sharp
Fermi surface in the system. The screening oscillation in
our case is a consequence of the imcompressible nature of
the strongly interacting system. The corresponding nonin-
teracting dielectric screening does not show' any oscillatory
behavior. Our results give some hints that the highly corre-
lated Laughlin-liquid state may actually be destroyed by im-
purities through the formation of local charge-density waves
around each impurity as shown in Figs. 2 and 3. Our result
for the (30—S0%) reduction in the excitation gap (Fig. 1;
Z —0.1) of the system is much more difficult to interpret
theoretically, since this is clearly a strongly size-dependent
phenomenon. Our calculated excitation energies are those
of localized levels around the impurity and should not be
related to the experimental' mobility gap. One can perhaps
try to probe their localized levels directly by some sort of
finite-frequency experiment using low-energy photons or
phonons.

Our work raises a number of interesting and intriguing
questions. In particular, the local charge-density wave
around the impurity needs to be understood in detail. The
question of how clean a sample has to be in order for FQHE
to be observable is another such question. Our calculational
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details and additional numerical results will be reported in a
forthcoming longer publication.

Rote added. Our results are in excellent quantitative
agreement with the recently published' theoretical results
of Girvin, MacDonald, and Platzman. In particular, we find
that the shift in the ground-state energy due to the presence
of the impurity can be written as o, Z2, where Z is the im-
purity charge. We find numerically a ——1.2 for v = T and
for a five-electron spherical system, whereas Ref. 15 gives
a = 1.15. The oscillation period of the screening charge also
agrees well with the results of Ref. 15.
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