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Binding energy of a donor in a quantum-well heterostructure
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The binding energy of a hydrogenic donor in a quantum well is calculated as a function of well width,

taking into account the nonparabolicity of the conduction band. The nonparabolicity causes an increase in

the binding energy much greater than reported earlier. This increase, which is more pronounced for a

deeper well, is attributed to the change in the quantum-well wave function outside the well due to the non-

parabolicity. The nonparabolicity effectively increases the well depth, and this increase is larger for larger

well depths.

The binding energy of a hydrogenic donor in a quantum-
well structure has been recently calculated by a number of
workers. A typical system considered by many is a layer of
GaAs grown between thick layers of Ga~ „Al„As. The
band-gap discontinuity gives rise to a one-dimensional po-
tential well. Bastard' has calculated the binding energy of a
hydrogenic donor assuming an infinite potential at the sur-
faces and found a monotonic increase in the binding energy
with decreasing well size, with the two-dimensional limit
reached as the well thickness goes to zero. Mailhiot,
Chang, and McGill and Greene and Bajaj obtained the
binding energies for the ground state and a few low-lying
excited states assuming a finite potential at the surfaces.
The ground-state binding energy increases as the well thick-
ness is reduced until a maximum is reached, and then de-
creases to the bulk value at zero well thickness. Chaudhuri4
has considered a hydrogenic impurity in a multiple
quantum-well structure. More recently, Chaudhuri and Ba-
jaj5 included the effect of nonparabolicity on the energy lev-
els of hydrogenic donors in GaAs-Ga~ „Al„As quantum-
well structures, and found that inclusion of nonparabolic ef-
fects leads to more binding. It seems that in Ref. 5, the ef-
fect of nonparabolicity on the wave function has been ig-
nored. In all the above variational calculations the donor
electron is assumed to see a potential e /epr, where eo is the
static dielectric constant, in addition to the one-dimensional
well. Chaudhuri and Bajaj have also extended the work
with parabolic bands to the problem of a donor in a quan-
tum well in a magnetic field.

In our present work we examine the effect of nonparabol-
icity of the conduction band on the donor ground state in a
quantum well, taking into account the change in the wave
function due to the nonparabolic effect.

In the effective-mass approximation, the Hamiltonian for
an electron in a hydrogenic donor located at the center of
the well is given by

2 2H=, + +Vs(z) (1)
2m &or

where Vs(z) is a one-dimensional, symmetrical well of
width I. and height Vp, and 6p is the static dielectric constant
of GaAs. The nonparabolicity of the conduction band is in-

I

eluded through an energy-dependent effective mass m',
given by'

m' 1+ r(E)
m 0 0665

where

I'(E) = 0.0436E+ 0.236E2 —0.147E3

(2)

(3)

with E expressed in eV. m is the conduction-band effective
mass at the K=O point.

For a given Vo and L, the subband energies (eigenstates
of H without the Coulomb term) can be computed by solv-
ing the transcendental equation

' 1/2

Vp
=cos (yE)'i2—

2
(4)

cos(az), iz ) ( L/2
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(6)

where n=a yE, P=+y(Ve —E), and B =cos(aL/2)e&~~2
The effect of nonparabolicity of the conduction band is re-
flected in the wave function f (z ) through the factor y.
With a trial function of the form

g (p, z, y) = N exp[ —(p'+ z')' '/Z],
where A. is the variational parameter, the expectation value
of H is minimized with respect to X., and the donor binding
energy is obtained as

Es = E —(H)

The normalization constant W and the expectation values of
the operators of H are given by4 7

The lowest solution of Eq. (4) gives the lowest subband en-
ergy. We use the units of energy and length as in Ref. 5.

For a variational estimate of the lowest energy for the
Hamiltonian in Eq. (1), we use a trial function of the form

y(r) =f (z)g (p, z, P),
where f (z) is the exact solution to the finite-well problem:

r ~ 1/2
2

' 1+
mX3

1 L~„1+ L + cos(aL) L + 1

(1 + a2g2)2 2g 1 + a2g2 2g 1 + a2g2
t

r

nh. sin(nL) 1+ L + 2 cos2(aL/2) 1+ L + 1

2(1+n A. ') & 1+n2P 1+pA. A. 1+pA.
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FIG. 1. Binding energy (in units of effective rydberg 8) as a
function of well size (in units of Bohr radius a~) for x=0.1.
parabolic band model. ———,nonparabolicity included.
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FIG. 2. Binding energy as a function of well size for x=0.3.
—,parabolic band model. ———,nonparabolicity included.
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(q ~( —2/r) ~y) = —~N2Z' 1+ —e-' " 1+1+n A,

nZ sin(nL ) 2B' (e+,],)L,

(1+n'Z') 1+pX

1

m N A. cos (nL/2) L g y 1+ L +
2(pa+ 1) x 1+p&

(12) '

when 1"(E) 0, Ecl. (4) reduces to the parabolic subband
energy-.

Figure 1 shows the variation of binding energy E~ of the
ground state as a function of well thickness L for composi-
tion x=0.1, which corresponds to well height Vo —17R,
where R is the effective rydberg, including the nonparaboli-
city of the conduction band. . Figure 2 gives the result for
x = 0.3 and Vo- 56R. The binding energy shows a large in-
crease for L ( as when compared to the parabolic case (as
is the effective Bohr radius). At the peak position the bind-
ing energy is almost doubled for the composition x=0.3
while for x=0.1 the increase is about 15%. The model, of
course, is less applicable for L (25 A, as remarked by
Chaudhuri and Bajaj.5

Chaudhuri and Bajajs have reported a maximum increase
in the binding energy of only about 20% even for x=0.3
due to nonparabolic effect. %"hen we run our computer
program with values of u and p in the wave function the
same as in the parabolic case, while the nonparabolicity is
included in the kinetic energy term, the results of Chaud-

I

huri and Bajaj could be reproduced. Thus it appears that
Chaudhuri and Bajaj have neglected the change in the
quantum-well wave function due to the nonparabolic effect
and when these are included, the binding energy further in-
creases. This change in the quantum-well wave function
may be seen to be appreciable for the part of the wave func-
tion outside the well and this change is also more for larger
Vo. The nonparabolicity effectively increases Vo by a factor
y and this modification is larger for larger Vo.

Note added in proof. The increase in the binding energy of
a hydrogenic donor in a quantum well due to nonparabolici-
ty reported by us as much more pronounced when com-
pared to the results of Chaudhuri and Bajajs is now regret-
tably noted as due to a program error. The results of Ref. 5
stand within the variational procedure adopted.
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Two printing errors in Ref. 4 have been corrected in the expression

for the expectation of the potential energy (our L is Chaudhuri's
2a).


