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It has recently been proposed that surface-stabilized layers of adamantane NiSi& as thick as 180 A may

exist on Si(100}. We calculate the adamantane structure to have 1.54 eV less cohesive energy than the
fluorite and conclude such thick layers cannot exist. Comparisons of the energy bands, projected densities
of states, and charge densities give some insight into why fluorite is the preferred structure.

Ion channeling experiments' indicate that low coverages
of Ni deposited on Si(100) disperse into the tetrahedral in-
terstitial voids of the Si lattice at room temperature. Chang
and Erskin, " based on photoemission data and a (200)
transmission-electron diffraction (TED) spot, observed
after annealing at temperatures below which cubic NiSi2 or-
dinarily forms, concluded that a thin ordered diffusion layer
of NiSiz (adamantane structure') exists between the Ni2Si
or NiSi and the silicon. For Ni films that were not too
thick, 25-50 A, an 800 C anneal resulted in 90-180 A of
NiSi2 covered by a thin layer of 2X'1 reconstructed Si. Be-
cause the NiSi2 diffused below the Si, they speculated that
fairly thick layers of surface-stabilized adamantane NiSi2 ex-
ist in spite of the inability of their TED data to distinguish
between the adamantane and fluorite structures.

Using a semiempirical approach, Bisi, Chiao, and Tu cal-
culated partial densities of states for adamantane interstitials
and ordered structures and concluded there was evidence
for the existence of both interfacial phases containing Ni in-
terstitials in an adamantane geometry and epitaxial silicon-
silicide interfaces. Hamann and Mattheiss7 found the
adamantane NiSi2 1.33 eV less stable than the fluorite and
concluded the thick surface-stabilized adamantane film does
not exist. They also compared adamantane and fluorite
monolayers on two-layer hydrogen terminated Si(111) films
but we are not convinced that conclusions about (100) dif-
fusion layers between silicon and silicides can be drawn
from these results. In this Brief Report we compare both
the electronic structure and the energetics of the two struc-

tures using the linear combination of Gaussian-orbitals
method.

We discovered that in our previous fluorite NiSi2 calcula-
tions we had misweighted a few of the points in our 74
point sample9 of the irreducible wedge of the Brillouin zone
(Bz). With that correction and the addition of xyze " fit-
ting functions'0 to the adamantane Ni, the self-consistent
calculation here is identical to that of Ref. 8. We used the
Si lattice constant of 5.429 A for the adamantane structure
and a =5.395 A for the fluorite. These are confirmed by
Ref. 7 to be very close to the equilibrium lattice constants.
The total energy per unit cell (in Ry) is given by

Er = g J y~ ( —7'+ ~..——,
' Vc,„, )P„d'r

k occ

+~ XZ, Vc,„) (R;) (1)
I

Here Vc,„~ is the total Coulomb potential" and Vc,„~ (R, )
is the Coulomb potential at the ith nucleus due to the elec-
trons and all other nuclei in the crystal. e„,= ( —0.916/r, )
—0.88/(r, +7.79) is the exchange-correlation density func-
tional and Z; is the ith nuclear charge. It is well known' '
that because it is variational, Ey will be quite insensitive to
small errors in the input potential from which Pq and p, the
charge density (upon which e„, and the Coulomb potentials
depend), are calculated. The self-consistent input potential
was calculated by extrapolating the charge density calculated
at 16 points of the ~th irreducible wedge of the BZ to 74
points at which eigenvalues were obtained. In Table I we

TABLE I. The total energy (in Ry) per unit cell of both NiSi& structures calculated with 6, 16, and 74
point samples of the BZ irreducible wedge. The column labeled 74 has a more tightly packed set of fitting
Gaussians on atomic sites; 74 has, in addition, Gaussians on empty sites.

Points 74 74»

Adamantane
Fluorite
Difference

—4161.801 73
—4161.936 56

1.834 eV

—4161.818 89
—4161.947 47

1.749 eV

—4161.820 11
—4161.948 11

1.741 eV

—4161.839 96
—4161.953 71

1.548 eV

—4161.841 77
—4161.955 19

1.543 eV
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We consider the 1.54 eV higher energy of the adamantane
structure to be convincing evidence that it does not exist in
the thick surface-stabilized films proposed by Chang and
Erskine. ' Whether very thin ordered adamantane dif-
fusion layers exist between 'silicon and silicides remains an
open question, as does the stoichiometry of the layers if
they exist. That isolated Ni impurities live in Si adamantane
cages is almost certainly the case. ' A comparison of the
adamantane and fluorite electronic structures yields some
insight into the total energy difference. Correcting our BZ
weighting error caused negligible changes in the fluorite
band structure and density of states (DOS) and we refer to
Ref. 8 for those figures. In Fig. 1 we display the adaman-
tane energy bands. Note the gap at the top of what looks
like the Si valence bands. A Lowdin' projection indicates
that the I ~5 level at the top of these bands has 68% nickel d
character compared with 70% for the corresponding fluorite
I 25 level. The fluorite level lies 1.51 eV lower relative to
the Fermi energy, however. The I j2 levels are 92% and
94% Ni d with the fluorite lying 0.97 eV lower. The I q5 just
below EF is only 7.4% Ni d. The I ~5 lying 1.72 eV above E~
which is 35% Ni corresponds to the fluorite I 2q, 2.44 eV
above EF which is 43% Ni d. (We use three Ni d radial
basis functions. That the projected d character adds to more
than one, implies some 4d character in the high-lying

states. ) Thus we conclude that the reduced adamantane
cohesive energy arises more from having occupied d levels
lying closer to E~ than from reduced hybridization. Figure
2 compares the total DOS and the Ni d DOS, confirming the
results based on I levels only. The total projected Ni d
charge is 9.09 electrons compared with the fluorite 9.08;
however, the, total Ni Lowdin projected charge is 10.50 elec-
trons compared with the fluorite 11.12. The Si with
(without) Ni near neighbors has 3.80 (3.70) electrons.
Thus the adamantane structure also appears to have a much
reduced ionic contribution to the bonding. Figure 3 is a plot
of contours of constant charge density. In the adamantane
structure there are four Ni—Si and four Si—Si bonds of
length J3a/4, whereas the fluorite structure has eight
Ni—Si bonds of the same length. If the covalent bond
strength is assumed to be proportional to the bond charge
density minimum, we see that the adamantane Si—Si bonds
are about the same strength as the fluorite bonds but the
adamantane Ni—Si bonds are slightly weaker. The Si—Si
bonds are, however, much weaker than they are in silicon. '

We thank Dr. D. R. Hamann for fruitful discussions.
This work was supported by the Robert A. Welch Founda-
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