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Incommensurate icosahedral density waves in rapidly cooled metals
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(Received 8 February 1985)

There are three simple phenomenological descriptions of incommensurate icosahedral density
waves in rapidly cooled metals, based on stars of the reciprocal-lattice vectors which point to the
vertices, edges, or faces of an icosahedron. The icosahedral phase of Alp 86Mnp &4 is described by the
vertex model. We also discuss extended icosahedral correlations present in a hierarchical Frank-
Kasper phase proposed by Mosseri and Sadoc.

I. LANDAU THEORY AND A10.86Mn0. 14 in the ordered phase:

Recently Shechtman et al. ' have reported the discovery
of a phase of Alp 86Mnp ]4 with well-defined diffraction
spots obeying an icosahedral point group symmetry.
Their observations are consistent with long-range
icosahedral order, with a range of at least 1 pm. Two
models of long-range icosahedral order are possible. One,
proposed by Steinhardt et al. , posits long-range order in
the orientations of icosahedral packing units, with a finite
(but possibly large) translational correlation length, simi-
lar to the bulk hexatic phase of smectic-8 liquid crystals.
In liquid crystals, one observes a pattern of intensity max-
ima in the in-plane scattering characteristic of a two-
dimensional hexagonal close-packed lattice. The transla-
tional correlation length, however, as measured by the in-
verse radial width of the Bragg spots, is finite. In the
hexatic-8 phase of 95SBC (n-nonyl 4'-n-pentylbiphenyl-
4-thiocarboxylate), for example, this length can be as large
as 500 A—about 100 molecular diameters.

The second model postulates a superposition of density
waves with an icosahedral symmetry, leading to a state
with long-range orientational and translational order.
Here the Bragg peaks would be true delta functions, with
additional I/q tails if thermal fluctuations are impor-
tant. Levine and Steinhardt" have proposed a specific
Penrose pattern to model Alp 86Mnp &4, and show that a
simplified version of this model leads to an icosahedrally
symmetric pattern of delta-function Bragg-peaks in re-
ciprocal space. Even if the translational correlation
length in Alp 86Mnp &4 turns out to be finite, icosahedral
density-wave models may provide a good indication of the
experimentally observed peak positions. Levine and
Steinhardt find good agreement with the experimentally
observed diffraction peaks patterns in planes through the
origin and normal to the fivefold and threefold
icosahedral symmetry axes. (The agreement normal to the
twofold axis was not as good, however, for the simplified
model. ) The precise connection between the positions of
aluminum and manganese atoms and the rhombahedral
"bricks" which give rise to a Penrose pattern is, at
present, unclear.

Icosahedral density waves can also be described using a
purely phenomenological approach due to Landau. One
starts by expanding the particle density in an isotropic
liquid in the plane waves whose amplitudes become large

p(r) =pa+ Q pGe
G

For simplicity, we restrict our attention to Cx's whose
magnitudes match the position of the first peak in the
liquid-structure factor. The free-energy density is con-
structed as an expansion in rotationally and translational-
ly invariant combinations of the expansion coefficients
p~~
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At low temperatures, the coefficient of the quadratic term
is assumed to be negative, and the ordered phase is con-
structed from a "star" of wave vectors lying on a sphere
of radius 6 in reciprocal space. The third-order term en-
sures that the transition is first order. The particular sub-
set of reciprocal™lattice vectors which order is determined
by the combined effect of all such nonlinearities in (2).
Other nonlinear terms in this expansion ensure that order-
ing also occurs at "harmonics" given by all possible linear
combinations of the fundamental star.

Particularly simple lattices are associated. with stars
with a high degree of symmetry. The simple cubic, fcc,
and bcc lattices, for example, are generated by stars which
point, respectively, to the vertices, faces, and edges of a
regular octahedron. In view of the results of Shechtman
et al. ,

' it is natural to consider stars composed of
reciprocal-lattice vectors pointing to either the 12 vertices,
30 edges, or 20 faces of a regular icosahedron. Alexander
and McTague used the edge model to describe short-
range icosahedral order in liquids. They went on to argue,
along lines taken earlier by Baym et al. , that the edge
model would be preferred in the limit of an infinitely
weak first-order transition. Freezing transitions are usual-
ly strongly first order, however, and, as we show below,
the icosahedral phase of Al-Mn is in fact best described
by the vertex model.

Phases described by icosahedral stars are fascinating,
because the basis vectors comprising the stars are incom-
mensurate. Instead of a regular lattice of intensity maxi-
ma in reciprocal space, one can generate peaks arbitrarily
close to any given position by taking increasing complex
linear combinations of the fundamental basis set. Within
Landau theory, one expects a decreasing hierarchy of peak
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FIG. 1. Patterns of diffraction spots in reciprocal space plane

through the origin and normal to the twofold symmetry axis of
an icosahedron for the vertex, edge, and face models. Four gen-
erations of spots are shown; larger spots correspond to earlier
generations.

intensities, depending on how many elements of the star
were required to make a particular peak. The two-
dimensional Penrose patterns have a structure factor
characterized by a symmetrical ten-element incommensu-
rate star of reciprocal-lattice vectors pointing to the ver-
tices of a regular decagon. Its existence is closely related
to the concept of "pentagrids" introduced by de Bruijn.

Landau theory suggests that the bewildering pattern of
peaks observed experimentally in Al-Mn can be indexed to
one simple basis set. We shall refer to peaks as belonging
to the nth Landau generation if the minimum number of
elements in the star required to produce them is n. Only
the edge model leads to a tenfold spot pattern normal to a
fivefold symmetry axis, and a sixfold spot pattern normal
to a threefold axis in the first generation. One cannot use
this criterion to distinguish the edge model, however, be-
cause spots with the same symmetry appear in the vertex
and face models already in the second generation. Indeed,
one can show that the spot positions normal to the five-
fold and threefold axes are identical, up to a change of
scale in the edge, vertex, and face models. As shown in
Fig. 1, a clear distinction between the various models
emerges only when one looks at spots normal to the two-
fold axis. Four generations of spots are shown; the vertex,
edge, and face models each have four primary spots in
this plane, forming, respectively, a golden rectangle, a
square, and a more elongated rectangle. The spots in the
edge model are a subset of the spots in the vertex and face
models. It can be shown that the spot positions in the ver-
tex and face models can be made to coincide. The hierar-
chy of intensities predicted by Landau theory, however, is
qualitatively different. A glance at the data of Shechtman
et aI. ' strongly suggests that the vertex model provides
the best fit. A more detailed comparison is shown in Fig.
2, where seven generations of vertex model spots are com-
pared to transmission electron microscope diffraction data
of Kelton and Wu. Both the peak positions and the se-
quence of diminishing intensities 'are properly accounted
for. The agreement is equally good for the threefold and
fivefold axes. The first generation spots occur at a posi-
tion comparable to the expected location of the first peak
in the structure factor of liquid Al-Mn. It is remarkable
that the complex of experimentally observed spots in
Alp 86Mnp ]4 can be indexed to a basis set of just 12 vec-
tors.
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FIG. 2. (a) First seven generations of spots normal to the
twofold axis for the vertex model. (b) Experimental twofold dif-
fraction pattern for Ala q6Mno l4 (Ref. 9).

II. A FRANK-KASPER PHASE WITH EXTENDED
ICOSAHEDRAL ORDER

The discussion in the preceding section is phenomeno-
logical, and does not address the question of particle posi-

Just as in charge-density-wave incommensurate sys-
tems, this hierarchy of spots suggests a hierarchy of gaps
in the band structure of these materials. One simple ar-
gument proceeds as follows: in a nearly free-electron
model, the potential V(r) seen by an electron will have a
large Fourier component V~ whenever 6 is a member of
the icosahedral reciprocal lattice discussed above. Stan-
dard methods' then lead to a gap in the free-electron
spectrum E(k)=A k /2m of order

~
VG

~

at wave vec-
tors k such that

k 6= —,G 2
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tions in real space. The most striking characteristic of the
Penrose patterns is the long-range orientational order of
the Penrose bricks in real space. Here, we now show that
there are also extended icosahedral correlations in a
hierarchical Frank-Kasper phase proposed by Mosseri and
Sadoc." The model was originally conceived as a way of
flattening an ideal icosahedral crystal (called polytope
( 3,3, 5 ) ) imbedded in the curved surface of a four-
dimensional sphere. The flattening is achieved by intro-
ducing successive generations of —72 -wedge disclination
lines according to certain rules. Locally, the particles
form slightly distorted tetrahedra, which combine to form
icosahedra, threaded by the disclination network. The
Frank-Kasper phases' of transition-metal alloys can also
be regarded in this why, ' except that the disclinations ar-
rays exhibit conventional crystalline periodicities. These
special particle configurations play an important role io
recent theories of metallic glasses. Mosseri and Sadoc
point out that the limiting structure is likely to be "more
ordered" than a metallic glass. Here, we carry out the
construction directly in flat space, and show that the
structure factor has long-range orientational order, despite
the presence of a dense network of disclination lines.

To motivate our adaptation of the Mosseri-Sadoc model
to flat space, consider first the problem of densely packing
the plane with identical particles. The natural packing
unit is an equilateral triangle, and we use six such trian-
gles to form a perfect hexagon composed of seven parti-
cles. As shown in Fig. 3(a), each bond of every triangle is
then divided into thirds by adding two additional parti-
cles. Yet another particle is inserted at the center of each
triangle. By drawing near-neighbor bonds between both
old and new particles, one obtains nine new smaller trian-
gles. Iterating this process, and appropriately scaling up
the particle size, one trivially obtains a hexagonal close-
packed lattice.

This construction is nontrivial when applied to three di-
mensions, where frustration prevents packings composed
only of perfect tetrahedra. ' We start by combining 20
tetrahedra to form a regular icosahedron of 13 particles.
The tetrahedra formed by clusters of four neighboring
particles are slightly distorted, with the bonds at the sur-
face about 5% longer than the bonds to the center. The
generalization of the two-dimensional construction is
shown in Fig. 3(b). One new particle is placed at the
center of mass of each tetrahedron, and each bond is again
divided into thirds by the addition of two more new parti-
cles. Just as in d =2, all the old particles are retained.
When near neighbors are assigned using the Voronoi con-
struction, four pairs of smaller tetrahedra appear at the
vertices of each original tetrahedron. The Voronoi con-
struction also leads to near-neighbor bonds between the
particles placed at the centers of neighboring large
tetrahedra, with one such bond exiting through each of
the four faces of every tetrahedron. There are six small
tetrahedra wrapped around every such bond; these are
shared between the two large tetrahedra linked by the
bond. Thus, in all, 4&2+4& —, =20 smaller tetrahedra
are generated for each large one. These tetrahedra are
slightly distorted, even if the initial tetrahedron is perfect.

This operation can be repeated on each of the new

(b)

FIG. 3. Iterative procedures for generating close packings of
(a) triangles in two dimensions and (b) tetrahedra in three di-
mensions.

Z14' = 0 3 4 Z14
Z16' 5 6 8 Z16

(4)

The derivation is topologiml, and does not really depend
on whether the construction is carried out in curved or
flat space. To illustrate their argument, consider what

tetrahedra. Many such iterations, each followed by a
length rescaling, leads to an infinite lattice of distorted
tetrahedra. One might think that the distortions in the
tetrahedra might build up with iteration. This has not
happened in our numerical studies of high-order iterates,
and, indeed, should not be expected because one is in fact
constructing a kind of Frank-Kasper phase. ' Many par-
ticles sit in icosahedral coordination shells. This
icosahedral order, however, is interrupted by a network of
—72-wedge disclination lines. ' Three typical coordina-
tion shells, mlled Z12, Z14, and Z16, are shown in Fig. 4.
All bonds from the central atom to the icoshedral shell
Z12 have five tetrahedra wrapped around them, and are
defined to be defect free. As shown in the figure, two of
the 14 atoms in Z14 are associated with sixfold bonds,
which are colinear links of disclination line. Four out of
the 16 atoms in Z16 terminate a set of four disclination
links meeting at the central atom. A11 remaining bonds to
the central atom in Z14 and Z16 are fivefold. In the
Frank-Kasper phases, the wedge disclination links associ-
ated with Z14, Z16 (and another coordination shell called
Z15) occur in just the right proportions to ensure
minimally distorted tetrahedra. ' ' This is also true of
the Mosseri-Sadoc model. "

Mosseri and Sadoc show that their curved space con-
struction leads to only Z12, Z14, and Z16 coordination
sites. They derive a recursion relation for the number of
new Z12's, Z14's, and Z16's, namely

Z12' 13 12 12 Z12
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happens when the transformation of Fig. 3(b) is applied to
the 28 tetrahedra comprising a Z16 coordination shell.
The Z16 at the center remains a Z16. Our earlier discus-
sion of Fig. 3(b) makes it clear that 28 new Z16's are gen-
erated at the centers of each of the 28 tetrahedra. These
must be shared between four old vertices, however, for a
total of seven per vertex. Each old Z16 vertex, of course,
remains a Z16. It remains to determine the coordination
topology of the new particles one-third of the way out on
the 16 bonds radiating from the center. There are 12 five-
fold bonds. Each one of these is surrounded by an
icosahedral shell with its north pole two-thirds of the way
along the bond and its south pole at the center of the ini-
tial Z16. This Z12 coordination shell is completed by two
staggered pentagonal rings. The one nearest the north
pole comes from the particles at the centers of the five
tetrahedra surrounding the bond; the ring nearest the
south pole comes from the particles one-third of the way
along the five bonds which surround the bond in question.
Thus, each Z16 generates 12 new Z12's. In a very similar
way, the four sixfold bonds give rise to four new Z14's.
In summary then, we have shown that

Z16

Z l2

Z16~ 12(Z12)+4(Z14) + 8(Z16), (5)

which accounts for the last column in Eq. (4).
The asymptotic distribution of coordination shells is

given by the largest eigenvector of Eq. (4)." It follows
that the limiting fractions of Z12's, Z14's, and Z16's are
36/57, 4/57, and 17/57, respectively. The predominantly
icosahedral sites in this structure are laced with a
hierarchical network of disclination lines. Applying the
construction to a regular icosahedron, for example, gives
disclination links along the edges of a regular dodecahed-
ron, similar to the network in the Frank-Kasper phase
Mg3z(AIZn)49, An additional disclination network
threads the tetrahedra in this new structure after the next
iteration, and so on. The construction preserves the dis-
clination networks present in all previous generations. Al-
though the limiting particle configuration is aperiodic, "
the local coordination topologies are indistinguishable
from those in a conventional Frank-Kasper phase.

We have studied correlations in the Mosseri-Sadoc
model by applying the construction several times, starting
with the 20 tetrahedra in a regular icosahedron, and then
Fourier transforming the resulting particle configuration.
The particles were relaxed (via a conjugate gradient tech-
nique) in a Lennard-Jones pair potential. We first mini-
rnized with respect to dilations to determine a position for
the minimum in the potential, and then allowed an uncon-
strained relaxation. The large particle clusters obtained in
this way are somewhat similar to the icosahedral "amor-
phons" discussed by Hoare. ' Unlike most large "amor-
phons, " however, they contain no octahedral configura-
tions, either before or after relaxation. They can, more-
over, be made arbitrarily large by repeated iterations.
There is a kind of translational invariance, in the sense
that all new icosahedra generated after a given iteration
are subsequently treated in the same'way as the initial
icosahedral seed. This self-similarity is also a property of
the Penrose tiles.

FIG. 4. Three coordination cages which occur in the
Mosseri-Sadoc model. Atoms at the centers are not shown.
When near-neighbor bonds are assigned via the Voronoi con-
struction, sixfold disclination lines are connected to the central
particle in Z14 and Z16.

Figure 5 shows the contours of constant structure fac-
tor,

2

S(q)= ge
J

(6)

where the rz's are the positions of a relaxed 197-particle
cluster. These particles were taken from the core of a
1549-particle configuration obtained from two iterations
applied to the initial icosahedron. Only core atoms were
considered to reduce effects due to the boundary. The re-
sults were insensitive to the precise group of core atoms
we used. The patterns normal to the fivefold and three-
fold symmetry axes are quite similar to those observed ex-
perimentally for Ala 8|-,Mno &4. The intensities are dif-
ferent normal to the twofold axis, however. We find that
all peak positions are linear combinations of a
phenomenological basis set of either (i) 20 reciprocal-
lattice vectors pointing to the faces of an icosahedron or
(ii) 12 reciprocal-lattice vectors pointing to the vertices of
an icosahedron.

There are qualitative differences between these diffrac-
tion patterns and those found for three-dimensional Pen-
rose bricks. The peaks decrease in width with system
size, but are slightly broader than could be accounted for

'by finite-size effects. We cannot be sure that they ap-
proach true delta functions as the particle number tends
to infinity. The translational order may be short-range, in
contrast to Penrose tilings. The orientational order, how-
ever, as embodied in a modulated structure factor, appears
quite likely to be long range. Pronounced icosahedral
modulations in the structure factor appeared even when
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FIG. 5. Contours of constant structure factor normal to the (a) fivefold, (b) threefold, and (c) twofold axes in the Mosseri-Sadoc

model, obtained from 197 particles relaxed in a Lennard-Jones pair potential. Full arrows in (c) show the spots which can be used to
index all remaining spots via the face model and the open arrows show the spots which index the spots to the vertex model.

0
d e

4

FIC». 6. Structure factor normal to the fivefold axis for relaxed (a) 299- and (b) 933-particle configurations.
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we examined configurations of several thousand particles.
Although limitations of computer time prevented us from
relaxing such large configurations, relaxation produced
relatively minor changes in smaller numbers of particles.
In large iterates, there was a tendency for the most intense
spots to be concentrated along lines of high symmetry in
reciprocal space (see the relaxed 299- and 933-particle
configurations shown in Fig. 6). This "streaking" appears
to be absent in the Penrose patterns. This effect may be
related to "co-lineations" of regularly spaced particles
which occur along icosahedral symmetry axes at all length
scales. Similar colineations also appear in the Kagome
nets which are incorporated into many Frank-Kasper
phases.

We close this section with some comments about boun-
dary conditions. As used here, the Mosseri-Sadoc con-
struction could be applied to any initial cluster of tetrahe-
dra. The shape of this cluster determines the macroscopic
shape of the limiting particle configuration. The limiting
stochiometry of Z12's, Z14's, and Z16's, however, is deter-
mined by Eq. (4), and is independent of the shape. We
chose an icosahedral shape because 63% of the particles
sit in icosahedral environments. In two dimensions, one
could of course apply the construction of Fig. 3(a) to the
five distorted triangles which comprise a pentagon, in-
stead of the more natural choice of the six triangles in a
regular hexagon. The limiting structure is five regions of
hexagonal close-packed lattice separated by five twin
boundaries. The boundary conditions lead to a fivefold
disclination in the center. The structure factor would be a
superposition of the structure factors due to the five dif-
ferently oriented domains. One might expect similar dis-
tortions in three dimensions if, for example, we started
with the cluster of 28 tetrahedra comprising a Z16; these
boundary conditions force an extra tetrahedral disclina-
tion vertex to the center of the particle configuration. It
is interesting to note that, even with the icosahedral boun-
dary conditions, the surface of the limiting structure is a
highly convoluted, fractal object.

III. DISCUSSION

We have tried to show how Landau theory, already
used to model density correlations in conventional crys-
tals, can be used to describe the icosahedral phases of
rapidly cooled metals. ' Although Alp 86Mnp &4 is
described by the vertex model, it is possible that other ma-
terials will be discovered which are edge or face models,
just as one finds fcc and bcc, as well as simple cubic crys-
tals in conventional crystallography. The incommensura-
bility of the star of icosahedral reciprocal-lattice vectors
leads to peaks everywhere in reciprocal space. There are,
in particular, peaks arbitrarily close to the origin, 1ike a
conventional crystal in the limit of infinite unit-cell size.
This point of view suggests that dislocations in
icosahedral phases will be rather usual; because of the in-
finite unit-cell size all edge dislocation loops may be par-
tials, ' with a finite stacking-fault energy per unit area in
the plane of the loop.

As stressed in Sec. I, the Landau approach is only
strictly correct for materials with an infinite translational
correlation length, which means resolution limited Bragg

peaks. The other possibility is that these phases are a
glassy version of the icosahedral liquid-crystal state pro-
posed in Ref. 2, with a large but finite translational corre-
lation length. If so, there will be a statistical distribution
of particle positions in real space, and it would not make
sense to attempt absolute structure determinations based
on the diffraction pattern in reciprocal space.

In Sec. II, we showed that there are extended
icosahedral correlations in a hierarchical Frank-Kasper
phase. The construction used here is equivalent to pro-
jecting a piece of the curved space Mosseri-Sadoc model
into flat space. We were interested in this model because
of the predictions of recent order-parameter theories of
metallic glasses. ' ' These theories are more microscop-
ic than the phenomenological Landau approach used here,
because they are tied directly to the problems associated
with packing tetrahedra of particles in flat space. Net-
works of —72 disclination lines permeating an
icosahedral medium are an inevitable consequence of these
theories. These lines can be defined microscopically, via
the Voronoi construction, ' and should be present in any
medium composed of slightly distorted tetrahedra. The
Frank-Kasper phases are a particularly simple exam-
ple. ' ' The Shechtman et ah. experiment shows that
icosahedral order can propagate, notwithstanding the
presence of these lines. It is interesting to note that the
complex crystalline phase of A16Mn (which has a 28-atom
orthorhombic unit cell ) is closely related to the Frank-
Kasper phases, although it contains octahedra as well as
distorted tetrahedra. '

The Mosseri-Sadoc model provides an explicit example
of how extended icosahedral order arises in a particular
microscopic particle configuration. Although it does not
describe Alp 86Mnp &4 in detail, other alloys, perhaps with

17
» ——30 at. % concentrations of larger atoms occupying

Z16 sites, could conceivably form something like a
Mosseri-Sadoc phase when cooled rapidly. It would be in-
teresting to use the Voronoi construction to determine the
distribution of disclinations in the Penrose models, once
one decides what particle configuration to associate with
the 3D Penrose bricks.

Rote added in proof. After this paper was submitted
for publication, we received an interesting paper by Levine
et al. which discusses both Landau theory and a contin-
uum elastic theory of icosahedral Al-Mn. The continuum
elastic approach, which is similar to the work by Bak, ' is
used to show that six-index Burger's vectors are required
to describe dislocations in incommensurate icosahedral
crystals. None of these dislocations has a purely edge
character, consistent with the physical argument given
above.
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