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Effects of vibrational optical activity in the reflection spectra of crystals
for the frequency regions of nondegenerate vibrations
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A new method for studying crystal gyrotropy by reflection vibrational spectra is proposed. The
gyrotropy, connected with the dipole-active nondegenerate vibrations, excites a reflected wave polar-
ized normal to the incident wave. This phenomenon is called in this paper reflection nondegenerate
vibrational optical activity. Despite the existence of birefringence, the intensity of thi. s wave pro-
vides information about the gyration tensor and about the frequencies of the nondegenerate vibra-
tions. A Fresnel-type boundary problem has been solved for reflection and refraction at the
air —birefringent-gyrotropic-crystal boundary. The dielectric permittiyity tensor near the optically
active nondegenerate vibrations has been obtained, and the selection rules at the manifestation of
these vibrations in the above-mentioned phenomenon have been found. The peculiarities of the
same phenomenon and of the normal electro-magnetic waves in different classes of biaxial and uni-
axial crystals have been studied.

I. INTRODUCTION

The reflection vibrational spectra of gyrotropic crystals
are studied in this paper. It is well known (see, for exam-
ple, Refs. 1—4) that in gyrotropic crystals two effects are
observed during the propagation of light along the optical
axis: (1) circular dichroism (CD), i.e., the difference in
absorption coefficients for left- and right-hand circularly
polarized electromagnetic waves, and (2) optical rotation
(OR) of the polarization plane, caused by the difference in
the refractive indices for circularly polarized waves.
Another effect has been treated in Ref. 5, namely, the
gyrotropic modulation of the reflection spectra of liquids,
thin films, and isotropic crystals.

Naturally, the gyrotropic effects are particularly dom-
inant in the frequency regions near the electronic or vibra-
tional resonances of the system; near the frequency of the
nuclear vibrations in the molecules or the crystal, the vi-
brational circular dichroism (VCD) and vibrational opti-
cal rotatory dispersion (VORD) can be observed (see, for
example, Refs. 6—9). However, while the contribution of
degenerate vibrations in uniaxial crystals may be studied
successfully by VCD for electromagnetic waves that prop-
agate along the optical axis, ' the contribution of nonde-
generate vibrations to VCD is always masked by the
bircfringence effects. ' Birefringence causes considerable
differences hn =n~ n2 in t—he refractive indices for the
two normal electromagnetic waves that propagate in a
given direction S. The order of magnitude of the gyrotro-
pic contributions to the quantity hn is (a/A, ), and being
10 —10 in the visible and infrared regions, these
corrections are negligible. (here A. is the wavelength of the
electromagnetic wave, and a is the dimension of the
structural unit, the lattice constant, for example). At the
same time, the two normal electromagnetic waves are left-
and right-hand elliptically polarized and the ellipticity is
on the order of a /~ = 10 to 10

A method for studying VOA for nondegenerate vibra-

tions by the crystal reflection spectra is proposed in this
work. It is called reflection nondegenerate VOA. The
linearly polarized s or p wave incident on the crystal ex-
cites two elliptic waves that propagate in different direc-
tions due to birefringence. The boundary conditions re-
quire that the reflected wave have both polarizations s
and p. It is interesting to note that in our case no addi-
tional boundary conditions (ABC' s) (see Ref. 2) are needed
if the gyrotropic terms proportional to (a/1, ) are neglect-
ed in the refractive indices of the two elliptic waves. The
electric field intensity E2 for the second reflected wave
with polarization different from that of the incident wave
is of the order of E2-(a/k, )E;, E; being the intensity of
the incident wave. However, measurements of the "new"
wave E2 are carried out in the initial medium (air) and
they are considerably facilitated by the polarization differ-
ences in E2 and E;. The experimental results demonstrate
that similar studies in the excitonic region of CdS and
other crystals are completely real. "

The situation investigated in this paper is, in principle,
analogous to that considered in Ref. 5. There are, howev-
er, some essential differences between Ref. 5 and our pa-
per, which can be defined as follows: (a) Our calculations
concern anisotropic birefringent crystals. The plane of in-
cidence'and of reflection is perpendicular to the crystal
optical axis, and birefringence is essential, but it is not an
obstacle to the manifestation of vibrational gyrotropy. (b)
We discuss the reflection of electromagnetic waves in the
infrared region with frequencies near those of crystal non-
degenerate vibrations.

For the sake of simplicity we have restricted ourselves
to a discussion of nonabsorbing crystals alone. There are
no essential difficulties in expanding the area of our
research and including absorbing anisotropic crystals- as
well. In the latter case, however, we will have to take into
account the attenuation of nondegenerate vibrations and
its inAuence on the refractive indices and the gyrotropic
terms.
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The outline of this paper is as follows: The next section
contains a general scheme of the proposed new method
for the study of vibrational crystal gyrotropy. Section III
treats the boundary problem at the air—gyrotropic-crystal
boundary. Section IV produces the calculations of the
dielectric permittivity near the frequency of the nondegen-
erate vibrations. Section V contains the selection rules for
reflection nondegenerate VOA, while Sec. VI discusses the
peculiarities of reflection nondegenerate VOA in different
crystal classes.

II. GENERAL SCHEME OF THE REFLECTION
NONDEGENERATE VOA METHOD

A study. of gyrotropy usually consists of measuring or
calculating the difference between the quantities charac-
terizing the response of the crystal to left- or 'right-hand
circularly polarized electromagnetic waves. Our method
however, concentrates on the study of the reflection of a
linearly polarized wave (Fig. 1). In order to obtain a new
polarization in the reflected wave as a result of gyrotropy
alone, the plane of incidence is chosen normal to the crys-
tallographic axis of the crystal (in uniaxial crystals, it is
normal to the optical axis). The crystallographic axis it-
self is parallel to the reflecting crystal boundary. The po-
larizer filters an electromagnetic wave with s or p polari-
zation. The reAected wave contains both polarizations:
(1) The main part of the polarized beam has polarization
coinciding with the incident (s or p); (2) a beam with a
relatively weak intensity I„=(a/A, ) Io (where Io is the in-
tensity of the incident wave), has a polarization perpendic-
ular to the primary (p or s).

As will be shown in the following sections, the appear-
ance of a reflected wave with a new polarization is a pure
gyrotropic effect, which can be observed despite
birefringence. The data about the intensity of this wave
carry information about the optical activity of the crystal,
and in particular, about the frequency region of nondegen-
erate vibrations.

Naturally, the study of the reflected beam with new po-
larization obtained after the filtering of the reflected wave
through the crossed analyzer involves considerable diffi-
culties, caused by its weak intensity. This necessitates the

Opticol
Qx ls

use of high-quality polarizers and analyzers which will fil-
ter electromagnetic waves with a precisely fixed polariza-
tion. Similar investigations"' in the excitonic region
were carried out with a photon-counter technique. In the
vibrational region, additional difficulties may arise as a
result of the absence of sensitive infrared detectors.

Overcoming these difficulties, however, can be very
promising for it may create conditions for the study of the
contribution to gyrotropy of nondegenerate vibrations
with vibrational electric dipole moment directed along the
optical axis.

III. REFLECTION NONDEGENERATE VOA
BOUNDARY PROBLEM
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We shall in this section consider the reflection at the
plane boundary formed by air (refractive index n = 1) and
a dielectric gyrotropic uniaxial or biaxial crystal. Exclud-
ed are crystals from the point groups C&, C2, and C„ in
which some of the principal axes of the dielectric permit-
tivity tensor e,z are not correlated with the crystallograph-
ic axes. We consider the following situation: The in-
cident electromagnetic wave is linearly polarized and the
plane of incidence is normal to a crystallographic axis.
The matrix element p of the electric dipole moment for
the studied nondegenerate vibration is directed along the
same axis X (Fig. 2). The electromagnetic wave frequency
co is near the frequency co, of the dipole-active vibration.
The normal electromagnetic waves a and b propagate in
the crystal due to birefringence. These waves may have
also transverse and longitudinal electric field com-
ponents. ' " The normal electromagnetic waves satisfy
the Maxwell equations in a dielectric medium without
external currents and charges:

kr

pol

FICjr. 1. Schematic of the reflection nondegenerate VGA
method. The linearly polarized electromagnetic wave E, (or E~ )

is reflected by a gyrotropic crystal. The plane of incidence is
perpendicular to the crystallographic (optical) axis. The result
of gyrotropy is a reflected wave with new polarization E~" (or
E,") transmitted by the crossed analyzer.

FIG. 2. Reflected and refracted electromagnetic waves at the
boundary air-birefringent gyrotropic crystal. The plane of in-
cidence is perpendicular to the crystallographic axis x and to the
nondegenerate vibration's electric dipole moment p. k;, k, are
wave vectors of the reflected waves; k„kb are wave vectors of
the refracted waves; no„nob are corresponding refractive indices
(the refraction law sinO/sinO~ q

——no, b is valid). The components
E„E,",E,"',E,' ' and the vector p are parallel. Refracted waves
are elliptic polarized and possess 2 or 3 electric field com-
ponents.
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rotE= —,divD =0,B
ai '

BDrotB=pp, divB=O .
ai '

The relation D=eE between the electric displacement D
and the electric field intensity E is as usually given by the
dielectric permittivity tensor ej(p», k). We seek the solu-
tion of (1) as plane waves:

E i(cot —k r) D - D i(cot —k r)oe
'

~
= oe

(2)
i (cot —k-r)

oe

and obtain the following system:

polarized. We shall show that four waves, appearing in
reflection and refraction, suffice to satisfy the following
boundary conditions at the air-crystal boundary:

E1t E2t~ D1n 2n ~

~ lt 2t~ ~1n 2n ~

where the indices t and n denote the vector components
tangential and normal to the boundary (we assume the
crystal is not magnetic, i.e., p„=p/pp ——1). By taking
into account the first equation (3) as well as (5) and (6),
the boundary conditions (8) may be expressed by the fol-
lowing system of six equations (see Fig. 2):

(9a)

1 , kx(kxE, )
PpCO

(k E —kE k).
PpCO

Dp ———

Bo= k & Eo~ k'Do=0~ k'Bo=0
CO

(3)

(4)

Ey cosO] +Ey cosO2 +Ez slnO1 +Ez slnO2
(~) (b) (~) ~ (b) ~

(E~ +E—~")cos8,

n p E» sln8~+n @ATE»" sin82=(E& —E& )sin8

(a) (b)n pgEy~ +n pbEy~~ —Ep Ep

n p, E,"cos8,+n pbE,'"'cos82 (E, E,"——)cos8, —

(9b)

(9c)

(9d)

(9e)

as well as simultaneous equations for the electric field
components Ep of the normal electromagnetic wave corre-
sponding to npi (Ref. 2, Sec. 2):

e;J(co,k)
6'p

2 k;kj—np((co k) 5"— Epj ——0 . (7)

For frequencies near the frequencies of the nondegen-
erate vibrations, in the expansion in k of the refractive in-
dices npi(co, k), there are no linear terms, and the quadra-
tic and higher-order terms may be neglected. ' ' In such
a case, i.e., when np~(co, k):np~(co), an—d the plane in-
cidence and the wave vectors kg are normal to the matrix
element of the electric dipole moment p (Fig. 2), one of
the principal axes of the tensor e (co,k) coincides with the
p direction, and the corresponding principal value np,
has a resonance for the frequency of the nondegenerate vi-
bration co, . In uniaxial crystals, the second principal
value npb is independent of the kI direction but in lower
symmetry crystals n pb is a two-dimensional. tensor
(without resonance for co, ).

There are also two reflected waves: s polarized and p

The relation between the electric displacement Dp and the
electric field component Ep perpendicular to k may be
expressed by the two-dimensional tensor of the perpendic-
ular dielectric permittivity e (co,k), ' and more specifi-
cally by its principal values npi, I =a,b:

Dp e(co—,—k)E p ~Dpi =epn pi(co, k)EpI,

ep ——8 85 X 10 ' F/m . (5)

We shall employ Eqs. (4) and (5) and the fact that accord-
ing to the second equation in (3) the vector D has no com-
ponents parallel to k (we consider waves for which
Dp&0). The following relation is thus obtained:

—ki, (6)

np E,"si n8& +npbE,
' 'sin8z ——(E,+E,")sin8 (9f)

IV. DIELECTRIC PERMITTIVITY
FOR THE FREQUENCY RECTION

OF NONDEGENERATE VIBRATIONS

The perpendicular dielectric permittivity e (co,k) in the
frequency region of the nondegenerate vibrations has been
found in Ref. 6. This work uses the model of intramolec-
ular vibrations in a molecular crystal but the results may
be generalized for any optical vibration in the crystal; see
also Refs. 2 and 4. However, as far as the boundary con-

In this system the intensities E, and Ep of the incident
wave are given and the independent variables are four
since between the quantities E,",Ey'', E,'' and
E,' ', E» ',E,'"' there exist relations such as (7). The
boundary problem is a generalization of the well-known
Fresnel problem in the case where the second medium is
an anisotropic birefringent crystal. It is readily shown
that the conditions for consistency of six equations with
four unknowns are reduced to the known refraction laws
for the ordinary and extraordinary waves:

sinO sinO
=nod, . =npb

sinO1
"

sinO2

Hence equations (9a) and (9f) on one hand, and (9c) and
(9d) on the other hand, turn out to be identical and the
problem is reduced to solving a system of four linear
equations in four unknowns. Our next program includes
the following stages: (1) finding the form of the dielectric
permittivity e(co,k) that contains information about the
gyrotropy of the nondegenerate vibration; (2) finding the
intensity of the reflected wave with polarization differing
from that of the incident wave, i.e., finding the functions
E,"(E») and Eq"(E, ).
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p2 2COs Ie~(aJ,k)=co ai — 2, Eyy =eoa2
&p~U co —co,

(1 la)

ditions (9) comprise transverse and longitudinal electric
field components, we have to know the complete dielectric
permittivity e(co,k). As shown in Ref. 2, Sec. IV the defi-
nition of tensor e(ai, k) via tensor e (co,k) in the common
case is not unique. In our case, however, this problem
may be solved because the following conditions hold (see
Ref. 2, Chap. IV, and Ref. 13); we are interested in the
dielectric permittivity e(co,k) in the frequency region of
an isolated nondegenerate resonance co, by neglecting the
terms of quadratic and higher powers in k.

Using the procedure described elsewhere, *' we shall
find the tensor e(oJ,k) in the coordinate system
(x~~p, y', z'~~k). The following relations have been ob-
tained for the tensor e (oJ,k):

r

e;J (co,k)

60
J z. g
y'~ b 13ay'z'+

1 —a3
b*

1 —a3

Exy ' b 13ay'z'
+

ep 1 —a3
J. 2
yy yz+

0 1 a

a
1 —a3

1 —a3

ay'z'

1 —a3

1

1 —a3

It should be emphasized that the resonance co, of the
tensor e(co,k) as well as of the tensor e (co,k) coincides
with the Coulomb exciton frequency (Ref. 2, Sec. 1) which
appears in the absorption and Raman spectra.

PkDy'z' 2COs
e„„(oJ,k) =e„'„(oJ,k) = i—

CO —M
(1 lb)

V. SELECTION RULES FOR REFLECTION
NONDEGENERATE VOA

where p is the electric dipole moment matrix elements for
the given vibration induced in the crystal unit cell, and U

is the unit-cell volume. The quantities D~, and D, , (Uide

infra) represent the matrix elements for the same nonde-
generate vibration of the sum of electric quadrupole mo-
ment and the magnetic dipole moment. The quantity a1
expresses the contribution to the refractive index np, by
the remaining different from oJ, lectronic and vibra-
tional excitations in the crystal with matrix elements of
the electric dipole moment along the X axis. Similar con-
tributions ay and a, provide the dipole-active excitations
with matrix elements along the crystallographic axes F
and Z, respectively. In the chosen coordinate system
(X,Y',Z') the quantity (a~,a, ) transforms as a symmetric
tensor with components ay y =a2, a, , =a3, and
a~, =a, ~ (see next section). In the proximity of co, the
quantities ai, a2, a3 may be considered as frequency in-
dependent. To calculate the dielectric permittivity e(oJ,k)
we shall introduce the quantities

—5;, , ij =1,2 (x=1, y'=2, z'—=3) (12a)
E'p

The terms in (14) which express gyrotropy are linear in
k, i.e., these are the terms e„y and b13. The selection
rules studied in the present section refer to dipole-active
nondegenerate vibrations (p~ ~x) for which the quaritities
(1 lb) and (12b) are nonvanishing. In the analysis we shall
use the resu1ts published elsewhere. '

In fact, whether the nondegenerate dipole active vibra-
tions appear in reflection VOA depends on the quantities

Dyz and D being nonvanishing. These quantities are
measured in a coordinate system (X, Y,Z) related to the
crystallographic axes, and the wave vector k of the nor-
mal electromagnetic wave is considered to make an angle
a with the axis Y (Fig. 3). By Q~„Q~~, Q~ we shall
denote the corresponding electric quadrupole moment
components (the symmetrical parts of the quantities D~,
and D~) and by M„ the matrix element of the magnetic
dipole moment of the vibration (i.e., the antisymmetric
part of the quantity D~, ). By taking into account the
known transformation rules for the tensor components
from a coordinate system (X, Y,Z) (correlated with the
crystallographic axes), to the system (x,y', z') (correlated
with the wave vector k), the following relations are readi-
ly obtained:

Ik+z'z' 2~s

EpAU
(12b)

Dz, =M„—Qz, cos(2a)+ 2 (Qzz —Q )sin(2a), (15)

623 —b32 —ay'z'~ 633 —a 3 (12c)

where 5;J is the Kronecker symbol. The quantity a3 fur-
ther turns out to be nonessential.

According to Refs. 2 and 14, the dielectric permittivity
tensor is expressed by the quantities introduced above as
follows: xItp

8 (tz'

F J(co k) Eo 5~J + g d J biJ d J 5 J b 35j 3
I

The following form is thus obtained for the tensor:

(13)

FICi. 3. Two systems of coordinate axes perpendicular to the
vibration's electric dipole moment p. The axes (y,z) are the
crystallographic axes.
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D, , =Q», sin(2a)

+ —,'[Q»»+Q +(Q»» —Q )cos(2a)] . (16)

The corresponding selection rules based on formulas (15)
and (16) are listed in Table I for the nondegenerate opti-
cally active vibrations from the different crystal classes.
It should be noted that the quantity p„D„, is related to
the transverse components of the electric field intensity
and the quantity p„D, , is related via the component e3]
to the longitudinal electric field in the normal waves.

When analyzing the crystal gyrotropy, the gyration ten-
sor g ~

is often used (see Refs. 2—4, 6, and 15). In the
coordinate system employed here at k

~

~z' the following re-

lations hold:2'5

xy' lkgz'z'~ b13 lkgy'z' . (17a)

The quantity e„y proportional to g, , is related only to the
symmetric part of the gyration tensor. This part defines
the optical rotation. ' ' ' ' The quantity b», proportion-
al to the off-diagonal element gy, depends on both the
symmetric and the antisymmetric parts of the gyration
tensor.

The selection rules for the gyration tensor's symmetric
part have been studied in Ref. 15. These rules may be
used via the tensor component transformations to obtain
all the expressions in Table I for the quantity E'zy and the
a-dependent parts of b J3.

The antisymmetric part of the gyration tensor is non-
vanishing only in pyroelectric groups, ' being in the
groups C3„,C4„,C6, the only nonvanishing part (for this
reason the gyrotropy in these groups usually is called
weak). The antisymmetric part does not affect the optical
rotation but, together with its symmetric part, it defines
equally the elliptic polarization of the normal electromag-
netic waves. Namely, it is the antisymmetric part of g l

that defines the addend in (16):

~bi3- zp. (Q»»+Q ) (17b)

ayy a2 ——ayS1n CX+azCOS A2 (18a)

az z a3 ayCOS CX+azS1n a2 (18b)

a», =a, »
= —,(a» —a, )sin2a . (18c)

In uniaxial crystals, the dipole moment of the nonde-
generate vibration is directed parallel to the threefold,
fourfold, sixfold symmetry axis, i.e., in our case along the
X axis. The refractive indices in the plane normal to the
X axis are isotropic a„=a,=a. This simplifies substan-

As may be traced in the subsequent Sec. VI, the
phenomenon reflection nondegenerate VOA provides in-
formation both about the symmetric and the antisym-
metric parts of the gyration tensor.

We shall calculate also the quantities a2, a3, and ay,
that are featured in (14). Recall that the quantities
(a», a, ) represent the contributions to the dielectric per-
mittivity of dipole active vibrations with matrix-element
components for the electric dipole moment along the crys-
tallographic axes ( Y,Z). The following relations are
readily obtained:
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tially formula (18) and the dielectric permittivity tensor
(14):

ayy
——a, , =a, ay, ——0.

VI. PECULIARITIES OF THE REFLECTION
NONDEGENERATE VOA

IN DIFFERENT CRYSTAL CLASSES

Ey- &0, E, =E,- =0.(b) (b) (b) (20)

In the crystal classes considered, the system of equa-
tions (9) has the following form (the quantities,
E,",Ep",E,",Ey-' will be considered as unknowns):

(21a)

E,"cosO+E,"no,cosO~ ——E,cosO, (21b)

A. Crystal classes C3„,C4„,C6„

As seen from Table I, the gyrotropy in these classes
produces only a longitudinal electric field. This facilitates
substantially the theoretical treatment and the experimen-
tal studies. A phenomenon similar to that considered here
(see Ref. 11 and references therein) has been investigated
namely in the C6„crystal group. It is intriguing that in
these classes no gyrotropy occurs if the light propagates
along the optical axis; for this reason in Ref. 11 as in our
case the plane of incidence is perpendicular to the optical
axis.

We shall first consider the properties of normal elec-
tromagnetic waves. We shall define the a-wave com-
ponents by setting noi ——no, in system (7) and e„y=0 in
tensor (14) (see Table I). The following relations between
the electric field components for the normal electromag-
netic wave are readily obtained:

(19)

The second refracted wave b that propagates in a direc-
tion defined by the second equation in (10) at nob=a2
turns out to be a linearly polarized (ordinary) wave:"

E,"(Ep)=E,"(Ep)=0,
n pbcosO —cosO2

nobcosO+cosO2
'

(b) 2 cosO

n pbcosO+ cosO2

(25)

(26)

(27)

Thus, in crystals from the groups C3„,C4„,C6„, nonde-
generate VOA will be observed in a plane of incidence
normal to the optical axis only for s waves, the quantities
b ]3 no and nob in the most important formula (23) will
be independent of the angle of incidence 8 (however, b&3
and no, depend on the frequency ro of the incident wave).

B. Crystal classes with e„y~0

In the remaining classes comprising Table I, the normal
electromagnetic waves have two transverse components of
the electric field (besides the possible longitudinal com-
ponent), and the end of the electric field vector E depicts
an ellipsoid with time. The normal electromagnetic a

'th a refractive index no, =~ /
X axis of the ellipsoid while the other components are ex-
pressed in the following way in terms of E,":

proportional to the quantity b&3 are in the order of a/A.
from the amplitude of the incident wave E, and increase
for frequencies near the resonance co=co, of b~3. The
dependence of Ep"(E, ) on the angle of incidence 8 con-
tains several parameters and the detailed analytical exam-
ination is difficult; the factor sin(28) is however particu-
larly essential: It increases from zero for a normal in-
cidence to unity for 8=m. /4 and vanishes again at
8=m /2.

An important peculiarity of the point groups con-
sidered is observed if the incident wave is p polarized
(E, =Q). In such a case gyrotropy is of no importance;
i.e., the Fresnel formulas hold for reflection and refraction
of p waves with a refractive index noh and no reflected
and refracted s waves appear:

Ep cosO+Ey cos82+Eg b ]3 sinO, = EpcosO, (21c—)
(b)Ey- nob —EJ, ———E~ .

(a) xy (a) (a)Ey' =
g g Es =&aES

ey y
—Exx

(28a)

Let the incident wave be s polarized (Ep ——0). The elec-
tric fields for the four waves are easily obtained:

npacosO~ —cosO (,) 2 cosOE =E E(a)
noacosO~+ cosO noacosO~+ cosO

(22)

(28b)

E(b) y y XX E(b)
S

&xy"

l (b)
S (29a)

In the normal electromagnetic wave b with a refractive
index nob ——a2 ' the ellipsoid axis Yis very long:

b i3 nobsin28/no
E "(E )— '

(no, cosO& +cosO)(noqcosO+ cos82)
I. (b) (b) K (b)—a ii re

(b)
(b)

b
(29b)

Ey'"' Ep'(E, )/nob . ——
(23)

(24)

Formulas (22) coincide with the well-known Fresnel
formulas for reflected and refracted s waves for a refrac-
tive index no, . The gyrotropy excites p-polarized reflect-
ed and refracted waves. The amplitudes of these waves,

The quantities 6, and 5b are in the order of magnitude
a/A, =10 3—10 and as shown elsewhere they may
serve as a measure for gyrotropic effects relative to the
birefringence. (Occasional coincidence of the refractive
indices no, ——nob for which no birefringence is observed is
not studied in this work. The treatment in Ref. 5 is valid
for that situation, too. ) We shall use relations (28) and
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(29) in system (9) and we shall neglect throughout the
terms of the order of k [as adopted also when deriving
(28) and (29)]. Further, for uniaxial crystals we obtain
once again the equalities (22), (26), and (27) that express

the Fresnel formulas. The effects of reflection nondegen-
erate VGA, i.e., the appearance of a reflected wave with
polarization different from that of the incident wave are
described by the following two formulas:

2 cosO[n p, (cosOz —a~-,' sinOz) —n pb(cosOi —a~",' sinO&+ ~sinO& )]Ep'(E, )=E,5,
(n pc osO& +c osO)(n pbc osO +c osO z

—a~-, sinOz)
(30)

2 cosO(npbeosOz n—p, eosOi)
E,"(Ep )=Ep 5b (b) ~

(np, cosOi+cosO)(npbcosO+ eosOz —a~,-sinOz)
(31)

where

a=bi3/5, . (32)

I

dence on 8 for the last two quantities in the crystal classes
Sq and Dzd). Formulas (30) and (31) may be expressed
suitably by the angles 8, Oi, and Oz,

' see formula (10):
Unlike the situation in Sec. VIA, active in reflection

VOA are the incident waves in both s and p polarizations.
The effect considered here exists even under normal in-
cidence 0=8~——62 ——0. In this case the two formulas as-
sume the form

2e~y /epE "(E )—
(np + 1)(npb+ 1)(np +npb)

2E~y" /Ep
E,"(Ep ) =Eq~ (np +1)(npb+1)(np +npb)

(33a)

(33b)

kb npb (——for e —~ )
Ct)

C

and the quantities no„nab, and e „,b&3 are independent of
the angle of incidence 8 (with the exception of the depen-

In both polarizations, maximum effect is produced at the
frequencies co =co, (e„~ resonances).

In the Dz and Cz, crystals (see Table I) the orientation
of the crystallographic axes ( Y,Z) with respect to the
boundary plane of the crystal plays and important role.
In the D2 class at 8=0, if the boundary plane contains
the axes (X,1'), the angle a=m/2 (see Fig. 3), and the
quantities e~ and e~- are proportional to the sum
M, +Qz3 and biz ——0. If the plane (XZ) is the boundary
one and 8=0, then a=0 and e„~,e ~--p&(Mi —Qz3);
compare with Ref. 15. For other cuts of the crystal or for
oblique incidence, nonvanishing will be simultaneously
~xy'~ ~xy" ~ ~ 13

In the C2, class, according to the selection rules, nonde-
generate VOA will be observed only if the plane of in-
cidence is perpendicular to the polar axis of the crystal
and the frequency co is near the frequencies co„, of the to-
tally symmetric vibrations. If, however, the boundary
plane contains also the second crystallographic axis, for
normal incidence 0=0 the quantity e „-sin2a=0 and
according to See. VIA reflectio VOA would not appear.

In uniaxial crystals the quantities. e„~ and ex&- differ
only because of the different wave vector values k~ [see
formula (6)]:

k, =np, (for e„„—),67

C

2 cosO(np, cosOz —npbcosO, —anpbsinO, )E "(E ) —E 5
(np, cosO&+ cosO)(n pbcosO+ cosOz)

sm28[sm(Oz —8&)cos(8&+Oz) —asm 8i]
sin(8+ 8& )sin(8+ Oz)cos(8 —Oz)

2 cosO( n pb cosOz —n p cos8 i )
E,"(Ep ) =Eq5b

( n p+ cosO ~ +eosl9)( n pbcosO+ cosOz )

sin28sin(8& —Oz)=E&b .sin(8+ 8& )sin(8+ Oz)cos(8 —Oz)

(35)

(36)

[n pbcos8, „+(n pb
—sin 8,„)' ]cosi9,„

(n pb
—sin 8,„)'~ —cosO,„

(37)

Evidently, the frequency dependence of the refractive in-
dex np, will generate a frequency shift of the angle 8,„.

In the crystals of the classes D3, D4, and D6 (the gyro-
tropic effect in the reflection spectra for crystals of these
classes have been reported elsewhere' for electromagnetic
waves propagating along the optical axis and not normal
to it, as in the case under consideration here), the quantity
Ic & i3 =0; see Table I. Besides the simplification of
dependence (35) for such crystals, the quantity E&'(E, )
may vanish when relation (38) is fulfilled:

0+0 =—
2

Such a vanishing effect of' the reflection nondegenerate
VOA is an analog of the reflection at the Brewster angle
and it will be observed for an angle of incidence 8;„of
the s-polarized light, defined by the equality

The two quantities (35) and (36) vanish with increasing
angle of incidence up to O=m. /2. The analytic expression
of the quantity (36) shows that it retains its sign regard-
less of 0 but may have a maximum at an angle of in-
cidence 8,„, which is a root of the equation (the lengthy
and standard calculations will be discarded here):

(np, —sin 8,„)'~
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2 2 —1/2Sln8mm panpb(nOa + nub ) (39)

[evident if the quantity on the right-hand side of (39) is
less than unity].

C. Nondegenerate VOA in the refracted waves

The considerations discussed thus far refer to a possibil-
ity that because of gyrotropy the reflected electromagnetic
wave should possess two polarizations. Evidently, such a

I

phenomenon may appear also in the refracted (and
transmitted by the crystal) electromagnetic wave. Formu-
la (24) illustrates the possibility of obtaining a b-type
wave in refraction of an s-polarized wave, the new b wave
corresponding to p polarization in the C„groups. For
completeness we shall write down two formulas without
analysis, thus supplementing formulas (30) and (31) in
classes with e„~&0, referring to waves refracted in the
crystal and having a "new" polarization:

E'(E ) —E g(a) 2 cos8( n obcos82+ cos8)

( no, cos8I +cos8)(n obcos8+ cos8I —a~-,' sin82)

2 cos8[no, cos8+ cos8I+ (a.—a~", )sin8I]E „(E)—
(np cos8I+cos8)(npbcos8+cos8I —aII z sin82)

(40)

(41)

Two important effects will be noted.
(1) Because of birefringence the two waves a and b are

separated, and the greater the difference in the refracted
indices no nab—, the stronger is this wave-separation ef-
fect. Evidently, this may favor a study of the wave with
the new polarization.

(2) In crystal classes in which the normal electromag-
netic waves may also have longitudinal components, the
direction of the Poynting vectors S=EXH of the refract-
ed electromagnetic waves differs from the direction of k,
defined by equality (10) with angles in the order of magni-
tude of 6„5b.

VII. CONCLUSION

A method for studying the vibrational gyrotropy of
uniaxial and biaxial crystals by their reflection spectra is
proposed in this work. The method is devoted to the
study of gyrotropy induced by nondegenerate vibrations.
To eliminate the masking birefringence effect which man-
ifests itself in their frequency region, a special geometry

was chosen. Unlike the vibrational circular dichroism
(VCD), linearly polarized waves should be used in the
method proposed here, and the signal studied in the re-
flected light is polarized normal to the polarization of the
incident wave. Similar gyrotropic effects must exist also
in the infrared transmission spectra of crystals as well as
in the case of multibeam interference from thin gyrotropic
crystal plates.

When studying gyrotropy induced by nondegenerate vi-
brations, we obtain two types of information: (1) that of a
purely spectroscopic nature, namely, the frequencies and
the matrix elements of the electric dipole and quadrupole
moments as well as the magnetic dipole moment of the
nondegenerate vibrations, and (2) the peculiarities of the
normal electromagnetic waves (see Ref. 11). Relatively
simple connections between these two types of informa-
tion have been obtained in this work and these connec-
tions may turn out to be useful when studying different
linear and nonlinear processes with polariton participation
in gyrotropic crystals.
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