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We have developed a theory of low-temperature thermal expansion of glasses explaining a number
of existing experimental data. We assume that thermal expansion, like many other low-temperature
properties of glasses, is determined by associated two-level systems (TLS s); this concept has been in-
troduced to explain these properties by Anderson, Halperin, and Varma and by Phillips. Our theory
is based on the Karpov-Klinger-Ignat'ev model of two-level systems in glasses. The deformation po-
tential of the TLS's is calculated. We have shown that it consists of two parts: The larger part (of
the order of 0.3 eV) is responsible for the'observed transport properties of glasses; however, it does
not contribute to the thermal expansion of glasses. The latter is caused by a relatively small second
part of the deformation potential which is, within logarithmic accuracy, proportional to the TLS in-
terlevel spacing E. This is why at low temperatures the coefficient of thermal expansion of glasses
is approximately a linear function of the temperature. Its sign is determined by a microscopic struc-
ture of the TLS. We have calculated the Griineisen parameter I . It appears to be of the order of
{8',/AcoD) =100, where 8', is an energy of the order of 30 eV and coo is the Debye frequency.
Such large values of I are connected with the softness of local anharmonic potentials that produce
the TLS's in glasses. Our principal result is the dependence of the coefficient of thermal expansion
a on the time of experiment, ~,„pt. It is shown that if a & 0, then after heating glass it is at first con-
tracted and afterwards, after the time about 10 ' sec (at T=0.3 K), a slow expansion begins. At
~,„pt-1 sec the parameter I can have the absolute value of about —, of that at ~,„pt-10 ' sec. Such

behavior of the thermal expansion coefficient is due to the fact that the contribution of the TLS's
with large relative tunnel splitting {60/E 1) is negative while that of the TLS s with small relative
tunnel splitting {60/E &~1) is positive. The latter, however, have large times of relaxation which

can be comparable with the time of experiment. Finally, we discuss the relative role of the TLS's
and free-electron contributions to the thermal expansion of metallic glasses.

I. INTRODUCTION

A number of low-temperature thermodynamical and
transport properties of glasses can be understood within
the framework of a phenomenological model of two-level
systems (TLS's). This model has been introduced by An-
derson, Halperin, and Varma' and Phillips. According
to the Anderson-Halperin-Varma-Phillips (AHVP) model,
an atom or a group of atoms is associated with a TLS
which resides in a double-well potential V(x) in regard to
some generalized coordinate x (see Fig. 1).

We suppose that the spacing between the two lowest
levels E (Ref. 3) of such a system is much smaller than
the distance to the third level. In such a case we have a
two-level system with

( g2+ g2) 1/2

kp = i%et)0 exp( —A, ) being the tunneling parameter of the
two-level system, while 6 describes the asymmetry of the
potential V(x) or, more exactly, the difference between
the level positions in the two potential wells without re-
gard to the tunneling. Here, too is of the order of the vi-
brational frequency in a well. The asymmetry 6 and the
overlap parameter k are supposed to be randomly and uni-

X(X,b, ) =No . (1.2)

The coupling of a TLS with strain s is described in the
AHVP model by a deformation potential

FICx. 1. Double-well potential Y(x) [Eq. (2.1)j and the three
lowest energy levels for g = 6rtt. , t =0.l~sit. . —

formly distributed over comparatively wide intervals of
their values so that the corresponding density of states
N ( A, , b, ) is constant:
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(1.3)

a= ——g1 aE
& ~z,s 4k~T cosh (El2kgT)

where k~ is the Boltzmann constant,

av
K V BP

(1.5)

(1.6)

is the compressibility, and E. is the dilatation. The sum-
mation in Eq. (1.5) is over all of the TLS s in the unit
volume of the nondeformed glass and we assume that
their number depends on neither the pressure applied nor
the temperature T.

For the derivative BE/BE, which is by definition the de-
formation potential D, we have

BED= =2—ya~ E (1.7)

Combining Eq. (1.7) with (1.5) and (1.2), one gets the
temperature-independent coefficient of thermal expansion
a. However, by experiment at sufficiently low tempera-
tures, a is almost a linear function of T, so that one has
approximately the Gruneisen relation

Ko.I = =const,
C

(1.8)

where C is the specific heat and I is the Gruneisen pa-
rameter. For a number of glasses it is only weakly depen-
dent on temperature. Moreover, it has the two following
unusual properties that need theoretical explanation: (1)

It is usually supposed to be uncorrelated with the TLS pa-
rameters b, and b,o. Its value in glasses is of the order of 1

eV.
The AHVP model appeared to be very productive. On

this basis, a number of low-temperature physical proper-
ties of dielectric and metallic glasses have been under-
stood, such as heat capacity, thermal conductivity,
sound absorption and sound velocity variation with tem-
perature, microwave absorption, phonon echo, etc. Prop-
erties of a number of other kinds of disordered systems,
such as polymers, superionic conductors, '
neutron-irradiated quartz, ' ' crystals with point de-
fects, ' ' etc., were explained on the basis of the AHVP
model (see also Ref. 20). At the same time extremely in-
teresting experiments on the thermal expansion of
glasses ' resulted in no explanation on the basis of this
model.

A thermodynamical calculation gives the following
equation for the coefficient of thermal expansion:

1 BV 1 BSa (1.4)
V BT, V aP,

Here, V is the volume of the glass, P is the hydrostatic
pressure, and S is the entropy. It is natural to assume
that at sufficiently low temperatures (roughly, below 1 K)
thermal expansion is mainly due to the TLS contribution.
For this contribution one can easily obtain the following
equation (Phillips ):

as a rule, I is negative, and (2) the absolute values of I
are very large, i.e., of the order of 10 .

In solids whose thermodynamics is determined by pho-
nons the Griineisen relation is a direct consequence of the
fact that the phonon-frequency variation with strain is
proportional to the frequency itself, —I being the coeffi-
cient of proportionality of the order of unity. The theory
based on Eq. (1.5) would yield immediately the Gruneisen
relation if one postulated proportionality between the de-
formation potential constant D and the TLS interlevel
spacing E. However, such proportionality seems to be in
contradiction with experimental data, especially those
concerning ultrasonic absorption in glasses. Indeed, the
relaxational absorption coefficient l,,~' at low tempera-
tures is proportional to T, while the assumption that y is
proportional to E would give the dependence l,,~' —T
(for I,,t' —y ).

In order to resolve this contradiction Ackerman et al.
supposed that different TLS's with the same value of in-
terlevel spacing E might have deformation potentials D of
opposite signs, so that the difference of TLS concentra-
tions with given values of E and

~
D ~, but opposite signs

of D, is itself proportional to E. This implies the ex-
istence of some sort of correlation between the interlevel
spacing E and the sign of deformation potential D.

Bartell and Hunklinger in their paper where they
studied ultrasonic absorption in amorphous Si02 under
hydrostatic pressure also suggested that the deformation
potentials of different TLS's might have opposite signs.
These experiments show that the density of states of the
TLS's per unit interval of E is practically independent of
the pressure applied. Such independence was observed up
to pressures of 4 kbar. Variation of interlevel spacing of
the TLS at such pressures is of the order of 100 K (pro-
vided that y is of the order of 1 eV), which exceeds by or-
ders of magnitude the energies of those TLS's that are re-
sponsible for ultrasonic absorption at low temperatures.
Therefore, the authors came to the conclusion that there
are approximately equal numbers of the TLS's with posi-
tive and negative y.

The assumption that there are TLS's with both signs of
deformation potential in glasses is quite natural. It does
not alter the interpretation of the experiments on such
transport phenomena as thermal conductivity, ultrasonic
absorption, microwave absorption, etc., that are deter-
mined by the deformation potential squared. However,
the second part of the hypothesis discussed in Ref. 26 in-
troducing a correlation between the quantities D and E
does not follow from the AHVP model and seems to be
somewhat less natural. More precisely, it is not clear
what physical reason results in a proportional to E
predominance of the TLS's with a definite sign of defor-
mation potential D.

To develop a theory of thermal expansion of glasses at
low temperatures one should use a model where the corre-
lation between the deformation potential and other pa-
rameters of a TLS emerges in a natural way. Such a
theory should give the Griineisen relation (1.8), i.e., ap-
proximately linear dependence of a on temperature, and
explain large absolute values of the Gruneisen parameter.

To develop such a theory we shall exploit a model of a
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TLS worked out by Karpov, Klinger, and Ignat'ev
(the KKI model). We shall see that this model, being
equivalent to the AHVP model in other respects, permits
one to obtain the Ciruneisen relation (1.8) and accounts for
the large observed values of the Gruneisen coefficient.
Our calculations within the framework of the KKI model
amount to calculation of the deformation potential
D =BE/Be and subsequent summation of the contribu-
tions of the TLS according to Eq. (1.5). These results
have been briefly reported in Ref. 33.

II. THE KKI MODEL

According to the model, the two-level systems are
described by the anharmonic oscillator potential =(A' /2Ma 8', )'/ Q.4)

Here, M is the mass of the tunneling entity which for es-
timating purposes we shall set to be equal to the average
atom mass M.

The scale of characteristic energies and displacements
of the anharmonic oscillator was found in Ref. 31. It is
given by the solution of the Schrodinger equation (2.2)
(for the lowest eigenvalue) with discarded small terms
proportional to ri and t. For the potential V= 8', (x/a)
the scale of characteristic energies is

g4/3g &/3
a

2/3 4/3 '
2 M a

(2.3)

while the characteristic displacement x/a is i)L, where

V(x)= 8', [i1(x/a) +t(x/a) +(x/a) ] . (2.1) The order-of-magnitude estimate for i)L, is

Here, x is the generalized coordinate having the units of
length and describing the motion of the tunneling entity,
a is the characteristic length of the order of the inter-
atomic spacing (a=i A), and Ã, is the atomic energy of
the order of Ms =30 eV, M and s being the average mass
of atoms constituting the glass and the sound velocity,
respectively. The values of the dimensionless parameters
q and t are independent and random. Their distribution
functions are schematically depicted in Figs. 2(a) and 2(b).
The distribution of r is even because on the average a glass
has a center of symmetry, while the distribution of i) re-
flects the hypothesis introduced in Refs. 30—32 concern-
ing the existence of the so-called soft potentials in amor-
phous media. These are quasilocal and, in general, anhar-
monic modes with small and maybe negative values of the
local quasielastic constants. These soft modes correspond

. to the tail of il distribution at
~
i)

~
&&1 and are due to

fluctuations of the structural parameters of a glass. It is
possible to confine oneself to three terms of expansion of
V(x) because the ratio x/a is small for the typical values
of the parameters i) and t [see Eq. (2.5)]. In the end such
a possibility is due to the softness of the potential V(x).

The spectrum of the potential V(x) is determined by
the Schrodinger equation for an anharmonic oscillator

fi dg + V(x)Q=E„Q .
2M dx

(2.2)

I
J
I
I
I
I

x g — t
1/2 ' I ' 1/2a QL ~L 9L

(2.5)

These formulas reflect the fact that the scales of variation
of the parameters g and t for the TLS's are gL and gL
respectively. In the new variables Eq. (2.2) turns into

d2
+ V(x )f=E„P, Q 6)

where V(x)=i)x +tx +x is the potential in the new
coordinate x. It is dimensionless and differs from the ini-
tial potential by the factor 1/W. The eigenvalues E„are
related to the eigenvalues E„by the equation

Q.7)

Thus, the characteristic energy scale for the potential
(2.1) is W=30 K and characteristic atomic displacements
are of the order of x/a =i)L =0.1. Following the paper '

we shall assume that the characteristic scales of variation
of the distribution functions 4(i1) and F(t) for the pa-
rameters g and t are bigger than gL and qL, respective-
ly, so that in the regions of i1 and t variation in which we
are interested, these functions can be considered as con-
stants, independent of i) and t

At t=0 and i) &0 the function V(x) corresponds to
symmetric double-well potential with the height of the
barrier Vo ——Wi) /4 and the distance between the minima
a (2

~
i1

~

)'/2. The interlevel spacing between the two
lowest levels is at

~
i)

~
&& 1:

i)r -(fuuD/5', )
/ =10

where coD is the Debye phonon frequency. For estimating
purposes we assume Ma coD —Ã, =30 eV and
ficoD/kji —300 K. The characteristic energy W is of the
order of ~DgL —30 K..

Now we introduce the dimensionless variables

(a) (b) o= W exp—
21/2

(2.8)

FIG. 2. Distribution functions of parameters g and t. The
alternative possibility for the form of F(t) is depicted by the
dashed line.

This formula describes adequately the behavior of the
function ln( W/b, o) at

~
i)

~
&&1. We shall see that this

approach is sufficient to obtain all the results in the lead-
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(2.9)

One can show that in general there are several points in
the t-ri plane that correspond to potential V(x) of the
same form. Their coordinates are connected by the
transformation (see Karpov and Parshin )

g'= —„[9t —32' —3t(9t —32')'~ ],
t'= —,

' [(9t'—32')'~' —t] .
(2.10)

In particular, if one of these points, say, A' belongs to the
line t=O,g ~0, two other points A belong to the parabola
rl=t /4 (see Fig. 3). The point 2' with coordinates O, rj

FIG. 3. The g-t plane. Solid lines discriminate between re-
gions with a different form of the potential V(x). SP is the
single-well potential, DP is the double-well potential, SDP is the
symmetric double-well potential, BSP is the single-well potential
with bending. The points A and A' correspond to the potential
V(x) of the same form.

ing approximation in ln '(W/T), which is considered as
a small parameter of the theory. As for the calculation of
kQ itself, the accuracy of Eq. (2.8) is insufficient because
the terms of higher order in

~ g ~

' make a significant
contribution to the exponent in (2.8). Indeed, for instance,
for q = —6, Eq. (2.8) gives 50/W=10, while numerical
solution of the Schrodinger equation gives b,o/W=0. 04
(which is approximately equivalent to the tunnel splitting
60 of 1 K). Under these conditions the distance to the
third level is of the order of 1006O, which gives some idea
of the accuracy of the two-level model. Thus, according
to the KKI model the TLS concept in glasses can be ade-
quate only for energies E much smaller than W=30 K.

If t&0 and q & 0,
~ g ~

&&1 and the potential V(x) still
remains a double-well potential, the condition of its weak
asymmetry being

~

r
~

&& I g ~

. The energy spacing
between the bottoms of the wells in this case is
5V=2 '~ W

~

t
~ ~

r)
~

~. The spacing between the levels
in two isolated wells (the asymmetry b, ) coincides with 5V
in the leading approximation. Thus,

transforms into the point 3 with coordinates
(v' —8g, —2g). According to Eq. (2.8) at

~

t
~

&&1, the
tunnel splitting is

bo ——Wexp( ——„ i
t

i
) . (2.11)

Moreover, if point 3 is in the vicinity of the parabola
g=t /4, it corresponds to a weakly asymmetric double-
well potential with

t '= 8R /t, —R =ri r'/4—,
~

R
~

«1/t ' . (2.12)

Here, the parameter R describes the asymmetry for these
TLS's.

If
~

R
~

&&1/t, g
' is determined by the same relation

t /8 as—before. Therefore, the asymmetry b, is for
this case [see Eq. (2.10)]

b, = —,
' W iR [t'. (2.13)

The TLS's that belong to the vicinity of the line t=O,
g &0 we shall call the TLS's of the first type while those
that belong to the vicinity of the parabola q = t /4 will be
called the TLS's of the second type. For both types the
TLS's energy E is given by Eq. (1.1) where b,o and b, are
determined by formulas (2.8) and (2.9), or (2.11) and (2.13)
for TLS's of the first or second type, respectively.

III. TLS—PHONON INTERACTION

Our task is to formulate the Hamiltonian of TLS's with
regard to the slow varying in time of the deformation a.
It is natural to assume that in the presence of a the coeffi-
cients g and t of the Hamiltonian (2.1) acquire additional
contributions. In the linear approximation these contribu-
tions are proportional to E: g~g+A„c, t~t+A, c.. A
question arises as to whether there is any correlation be-
tween Az and A, on the one side and the TLS parameters
E and b,o on the other. Such a correlation, if it existed,
would strongly influence the general behavior of the
thermal-expansion coefficient a, as can be seen from Eq.
(1.5) and will be shown in more detail below. It will be
apparent that Az and 3, depend on the parameters g and
t, and inasmuch as E and 50 also depend on q and t, this
dependence is a source of the aforementioned correlation.

To describe what we believe to be the main source of
such a correlation let us recall that the potential V(x) de-
scribes the "slow" motion of the tunneling entities with
characteristic frequencies =W/A'. Thus, V(x) has a
physical meaning of a potential averaged over the high-
frequency vibrations of atoms of the glass (their frequen-
cies being of the order of the Debye frequency coD). In
the temperature interval kq T & F the high-frequency De-
bye modes are not excited; therefore, it is the
temperature-independent interaction with the zero-point
vibrations that we will discuss here.

So far it has been sufficient to consider this interaction

implicitly for it was natural to formulate the theory in
terms of renormalized coefficients q and t. However, to
evaluate the relation between A z, A, and the TLS parame-
ters one should take into account such interaction explicit-
ly. We begin with an analysis of the role of the interac-
tion for c=O; the case of nonvanishing deformation will
be considered below.
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Let us start with the "bare" Hamiltonian describing an
anharmonic oscillator (with the parameters go and to in-
teracting with the high-frequency Debye modes Q;). We
need not consider harmonic terms of the form xQ; be-
cause we assume x as well as Q; to be normal modes and
the harmonic part of the potential energy to have been di-
agonalized. The main anharmonic contribution is due to
the cubic anharmonicity. Taking it into account, we can
write the interaction term in the form

b 8', (x/a) g (Q;/a) (3.1)

b being a dimensionless constant of the order of unity.
As is well known (see, for instance, Ref. 40) the average of
the sum is of the order of fuuD IO', . Thus, after averaging
we get an additional term to the oscillator potential of the
orm

XS'.g3"x/a, (3.2)

where X is another dimensionless constant of the order of
unity.

The term is linear in x, i.e., it describes a constant force
acting upon the anharmonic oscillator. This force shifts
the equilibrium position of the oscillator, the shift being
equal to 5a(gL )'~, where 5 can be obtained by solving
the equation

X+2g5 3t5'+45'=0 —. (3.3)

gp ——g —3t5+65

tp=t —45 .

(3.4a)

(3.4b)

It is convenient to consider the "bare" parameters tp, gp,
and 5 as functions of the renormalized ones because it is
natural to assume that the distribution functions depicted
in Fig. 2 are those for the renormalized parameters rather
than for the bare ones. '

As one can see from Eqs. (3.2)—(3.4), order-of-
magnitude estimates show that the differences
and

~

r tz
~

do not exceed u—nity in the actual region of g
and t variation. Thus, the renormalization does not ruin
the softness of the potential.

One can see that for both the TLS's of the first and
second types (at

~ g ~
&&1 and

~

t
~

&&1, respectively), the
second item in Eq. (3.3) considerably exceeds the third
and the fourth ones. In the approximation of interest the
latter term can be discarded. Iterating Eq. (3.3) (the small
parameter being

~ g ~

'), we get

2n
(3.5)

For TLS's of the first type the last equation can be used
directly; for TLS's of the second type it should be ex-
pressed through parameters t and
R=g —r /4(gati » l, iR i

(&r ):

Such a shift leads to the change of both the harmonic and
anharmonic constants. In other words, the parameters go
and tp should be replaced by the renormalized parameters
g and t that are present in Eq. (3.3) and are given by

As we shall see, only the two last terms of Eq. (3.6) con-
tribute to thermal expansion.

Now let us turn to the case of nonvanishing deforma-
tion c., which we shall assume to be a normal mode. The
contribution of cubic anharmonic interaction in the linear
approximation in E can be written in the form

2

cS', — s, (3.7)
a

where again c is a dimensionless constant of the order of
unity. In contrast to the constant b (or X) introduced
above, the constant c, being a coefficient at the second
power of x, has a nonvanishing average value. Moreover,
it is the sign of this average that determines the sign of
the thermal expansion of the glass.

It is necessary to note that within the framework of our
approach we have to consider the coefficients b and c as
uncorrelated with the parameters g and t. This is justi-
fied because such correlation if it existed would include
the scale of variation of the parameters of the order of un-
ity, while we have so far discussed the possible correlation
with the parameters g and t on the scale of their variation
g~ and gL, , respectively.

The term (3.7) is equivalent to variation (c/gL, )s of the
dimensionless parameter g. However, this is not the only
contribution. There is another one; The shift of the center
of the oscillator, which we have just discussed, is now de-
formation dependent. Indeed, to obtain the position of
the center one should eliminate the linear in the x term of
the whole Hamiltonian, including the deformation-
dependent part. Because of anharmonicity this results in
deformation-dependent contributions to the both parame-
ters g and t. These contributions have the same origin
and therefore each of them depends on both the parame-
ters q and t.

To obtain explicit expressions for these one should
eliminate the linear in the x term, as above, and retain in
the resulting equations the term linear in c. As a result,
one gets for the derivatives Bq/BE and Bt/Be,

3c t5
gL 'g

(3.8)

4c 5

jL 'g
(3 9)

BR c
c=o '9L,

1 —45 16
~3 (3.10)

The first term in (3.8) is the direct contribution of the cu-
bic anharmonic (3.7), the other terms are due to the
change of the harmonic and anharmonic constants as a re-
sult of the deformation-dependent shift of the equilibrium
point,

Again for TLS's of the first type one can use these
equations directly, inserting for 5, Eq. (3.5). For TLS's of
the second type we also need the derivative BR /BE. Using
the equation g=R+t /4, we get within the accepted ac-
curacy

5= 2Xt +8XR t —+24X t —288X R t (3.6) 5 being determined by Eq. (3.6). The derivative dt/Be is
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determined by Eq. (3.9) where one should insert 5 from
(3.5) and express all the quantities in terms of R and t.
As a result, we have

D, = 1.10(1—p)'~ g +0;91 pL '~—

Bt 32cg 4R R
~5

qLt t t
12'
~3t

(3.11)
2E 1 —p—0.2g 8/38 I,

(4.5)

Only the last term proportional to t is important for
the thermal expansion; it originates from the third term in
Eq. (3.6).

IV. DEFORMATION POTENTIAL OF A TLS

The deformation potential D =BE/Ba is determined as

BE ~o B~o b Ba
Ba E Ba E Ba

(4.1)

To calculate it, one should make use of Eq. (2.8) or (2.11)
and of Eq. (2.9) or (2.13) (that relate the parameters b„b,o
with g and t for the TLS of the first and the second type,
respectively) as well as of Eqs. (3.8) and (3.9) for the
derivatives Bq/Ba and Bt/Ba. For the TLS of the first
type we have

Bb,
I

'f'exri exp (4.2)

v 2cW
Xsgnt —

4 ~ g t
I

—4X z

1 BA 6 ~y3 8 sgnt
y( =— =6 cX

qL, 1n'~ (W/b. o)
(4.4)

We believe that this is the deformation potential of the
AHVP theory that determines a number of transport coef-
ficients of glasses such as thermal conductivity, sound ab-
sorption, phonon echo, etc. These coefficients are deter-
mined by y, thus, the oddness in t is immaterial. A
rough order-of-magnitude estimate of y is W/riL 0.3
eV, which seems to be in accordance with the results of
experimental study of thermal conductivity (see Refs. 4
and 5). However, the term given by Eq. (4.4) does not
contribute to the thermal expansion for it is odd in t,
while the distribution function F(t), as we have assumed,
is even [see Fig. 2(b)].

The second and the third terms in Eq. (4.3) have come
from (BE/By)(Bg/Be) and (Bb,/Bt)(Bt/Bs) [from the
second term in Eq. (3.5) for Bt/Be], respectively. Both
are estimated, as compared to the first one, as the small
parameter 6/8'~& 1. However, being even functions of t,
they contribute to the thermal expansion.

One may anticipate that it is needless to retain the third
term as compared to the second one, for their ratio is pro-
portional to the small parameter

I g I

' —ln (W/b, o).
Yet, for the reason we shall discuss below, the third term
will also be retained.

As a result, using Eqs. (2.8) and (2.9), we get

(4.3)

The first term in (4.3) is the largest. It comes from the
term (B&/Bt)(Bt/Ba) and gives the main contribution to
the deformation potential y of the TLS of the first type:

where we have introduced the notations

p =(b,o/E), L =in(w/Ep'~ ) . (4.6)

Only the three last terms in Eq. (4.5) contribute to the
thermal expansion.

In the same manner, making use of Eqs. (2.11), (2.13),
(3.6), (3.9), and (3.10), we get for the TLS of the second
type,

Ba,
BE

=24cX ( W/rIL, )ItI 'exp( —ItI'/48),

Bb,

BE.
( —,

' t sgnR + 192X
I
R

I
t 6) .

IL

(4.7)

(4.8)

The ratio of the main contributions to the deformation
potentials of the TLS of the second and the first types is

3 ln( W/b, o)

x (4.10)

If W/b, o——600 (which corresponds to the tunnel splitting
4o ——0.05 K or b,o/2M=1 GHz), the numerator in Eq.
(4.10) is about 20. P being of the order of unity, it is
natural to conclude that the TLS's of the second type are
coupled to phonons much stronger than the TLS's of the
first type. This agrees with the concept introduced by
Black and Halperin that there are TLS's of two kinds in
glasses, that interact with phonons in a different way.
The concept permits one to reconcile the fact that the
values of deformation potential y given by experiments
with phonon echo are much bigger than those extracted
from combined data on ultrasonic absorption and heat
capacity.

In the temperature range of interest ( T && W) the distri-
bution functions N(q) and F(t) of the random variables g
and t can be considered as constants independent of q and
t. This is a direct consequence of the assumption that
@(g) and F(t) can be considered as constants at least in
the intervals of the order of qL and gt of g and t varia-
tion, respectively, near the points q=0 and t=O. As
(BR/Bg), = 1, the same is true for the distribution of the
parameters t and R. This means, in particular, that the
distribution functions are even functions of these parame-
ters, and only even terms in the expression for the defor-
mation potential D2 can contribute to the thermal expan-
sion. Only such terms are retained in Eqs. (4.7) and (4.8).

The first term in Eq. (4.8) is the exception. It is the
largest term (by its absolute value) coming from
(Bb,/BR)(BRIBe). Being odd in R, it does not contribute
to the thermal expansion. However, this is the deforma-
tion potential describing the contribution of the TLS of
the second type to the transport phenomena. We have

y2
——— ——( —, )

~ c(w/gL )ln1 aa
sgnR . (4.9)

2 BE. ~p
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Using (4.7) and (4.8) one can easily calculate the defor-
mation potential for the TLS of the second type. Intro-
ducing the variables E and p, we get

D2 —— 3.30(l p)—'/ I. / sgn

Qi(E)=1.82 Iin '[W/E(p11)' ]

—0.07X ln ( W/E) I

for the TLS's of the first type and

Q2(E) =0.09cX 21i E ln ( W/E)

(5.5)

(5.6)

+0.038X 5/3 +0.67
8 3

(4.11)

To calculate the coefficient of thermal expansion a us-
ing Eq. (1.5) one should know the density of states
Ni 2(E,p) for the TLS's of the first and the second types
as a function of E and p. Going from the variables 2), t
(for the first type) or from the variables t,R (for the
second type) to the variables E,p we get

2
(

4 )1/3 t. 3/2W —1 —1(1 )
—1/2L —4/3

1 2 3 3 'V1 29I. I I
where

(5.1)

QJ =@(21J)F(tq), (5.2)

We see that Eqs. (4.5) and (4.11) for the deformation
potentials of the TLS's of the first and the second types
are quite different, although the potentials V(x) for both
cases may be identical. The point is that for the TLS of
the second type the potential V(x) can be a double-well
one only because of an asymmetric environment, whereas
for the TLS of the first type the potential can be a
double-well one regardless of the environment. This is
why strain acts upon the TLS's of the two kinds in a dif-
ferent way.

V. DENSITY OF STATES IN THE KKI MODEL:
AVERAGING OVER TUNNEL PARAMETERS

for the TLS's of the second type.
It is readily seen from Eq. (5.5) why it appeared neces-

sary to take into account a finite time of experiment while
averaging over the tunnel parameter 50. Although the
first term in Eq. (5.5) vanishes at re„pt~ec, it can still
exceed the second one for finite r,„pt because the second
term contains, in the denominator, a large logarithm in
the third power. Note that the second term of Eq. (5.5)
originates in the third term of Eq. (4.3). This is why we
have not discarded it: at 7 pt~ Do there is a full compen-
sation of the contributions into thermal-expansion coeffi-
cient from the variation of the tunnel parameter b,o [Eq.
(4.2)] and of the asymmetry b, [Eq. (4.3), the second term]
with deformation. The origin of such a compensation lies
in the fact that on the one hand, within accepted accura-
cy, the distribution function $1 is considered as a constant
independent of 2) and t, and on the other hand, there is a
contribution to B2)/Be for the TLS of the first type in-
dependent of the TLS parameters [the first term in Eq.
(3.8)]. It can be shown that the corresponding contribu-
tion of the TLS's of the first type vanishes at re„pi—+ oo,
irrespective of the explicit form of the functional depen-
dence of b, and 60 on 2). For the TLS's of the second type
such cancellation of the two terms at 7 pt~oo does not
take place and the terms depending on ~,„~, have been dks-
carded in comparison with the terms retained in Eq. (5.6).

j= 1,2, and the characteristic values of the parameters 11J.

and tJ are weakly (logarithmically) dependent on E and p
[see (2.8), (2.9), (2.11), and (2.13)]. Therefore, QJ will be
further considered as constants independent of E and p
and thus as additional parameters of the theory.

We shall perform the integration in Eq. (1.5) with the
weight (5.1) in two stages. At first we shall average over
the tunnel parameter p, introducing an auxiliary quantity

1

QJ(E)= f D~p '(1 p) '/ I. /—dp, j=1,2 . (5.3)

VI. COEFFICIENT OF THERMAL EXPANSION:
GRUNEISEN RELATION

W+ —,
' ln

+min

Making use of Eqs. (5.5) and (5.6) and performing an
integration over E in Eq. (1.5), we obtain the contribution
to the thermal-expansion coefficient from the TLS's of
the first type:

2+ &PirlL,"kaT
9 8'K

The lowest limit po corresponds to the smallest value of
50/E. This value can be found from the following argu-
ments. Equation (1.5) is a thermodynamical formula tak-
ing into account the contributions of those TLS's that are
in thermal equilibrium with their environment. Roughly,
these are the TLS's that had time to make at least one
transition during the duration of the experiment, r,„pt.
According to Ref. 6,

where

W =ln( Wlk11 T),

—007+ W (6.1)

po +min(E) /+expt ~ (5.4)

where r;„(E) is the minimal value of the relaxation time
of the TLS occupancy for a given value of E.

Inserting Eqs. (4.5) or (4.11) into (5.3) and performing
the integration, we get

and from the TLS's of the second type,
1/2k 2 T

&(21 0 11
~2 L + y2~ —3

RK
(6.2)

Both contributions are proportional to the temperature T
and, in addition, have a weaker (logarithmic) temperature
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dependence. It is interesting to note that the
independent contributions from the TLS's of the first and
the second types have opposite signs.

For the heat capacity in the KKI model we have [see
Ref. 31 and also Eq. (5.1)]

C =—( —)' m f W 'k TW ' j=12 (6.3)

Inserting this equation, as well as (6.1) and (6.2) into Eq.
(1.8), we get for the Cxruneisen parameter,

+exptI = —0.55cgL '(1+l() 'W'~ M+0. 51n r; (T)
—0.037X (1——,", P)W (6.4)

[I+In(W/Ev p )] '&p & 1, (6.5)

i.e., with relatively small barriers and small times of relax-
ation [of the order of r;„(E)]at c & 0, make negative con-
tributions to the thermal-expansion coefficient. On the
contrary, the TLS's of the first type with

p & [1+in( W/EV p ) ] (6.6)

i.e., with large times of relaxation, make positive contribu-
tions to the thermal-expansion coefficient a and to the
Griineisen parameter I. Therefore, glass, after initial

where g =g2/f~ is the ratio of the densities of the TLS's
of the second and the first types. The first term in the
square brackets is the ~,„p,-dependent contribution to the
Griineisen parameter; it vanishes at ~ pt~ 00 The second
term is ~,„p, independent; its sign is determined by the ra-
tio l( =lt2/P, .

The sign of the Griineisen parameter, i.e., the sign of
the thermal-expansion coefficient, is determined also by
the sign of the numerical coefficient c describing the
deformation-induced variation of the harmonic parameter
g of the oscillator (2.1). The coefficient c in Eqs. (6.1),
(6.2), and (6.4) should be understood as an average value
of the coefficient introduced by Eq. (3.7). The inequality
c&0 corresponds to the physical picture where under
compression of the glass the parameter g diminishes. If
prior to application of deformation its value is negative its
absolute value enhances, i.e., the height of the tunnel bar-
rier increases. One can see that the same is true for the
TLS of the second type as well.

One can give the following qualitative explanation of
the s pf dependence of the Griineisen parameter. The
enhancement of

~ g ~

for the TLS's of the first type under
compression of the glass results (at c~ 0), on the one
hand, in a decrease of the tunnel parameter b,o [see Eq.
(2.8)] and, on the other hand, in an increase of the asym-
metry b, [see Eq. (2.9)]. Therefore, the contributions to
the thermal expansion from the TLS's of the first type
with the almost symmetric double-well potentials (5 & b,o)
and with strongly asymmetric potentials (b. &&60) are of
opposite sign and cancel each other exactly, provided
Bg/Be is independent of g and the distribution function
g~ is constant. In other words, there is a cancellation of
the contributions of the first and the second terms in the
square brackets in Eq. (4.5) originating in Bho/Bs [Eq.
(4.2)] and in BEIGE [Eq. (4.3)], respectively. Namely, the
TLS's of the first type with

heating, at first contracts (provided c & 0 and the contri-
bution of the TLS's of the first type is predominant) and
then begins to expand as the TLS's of the first type with
larger times of relaxation are thermalized. The final re-
sult depends on the time of the experiment r,„~, and on
the ratio of the concentrations of the TLS's of the first
and the second types (the parameter 16/1 it( as compared
to 1).

Thus, for r;„(T)=10 sec, which in dielectric glasses
corresponds to a temperature of about 0.3 K and r,„~,= 1

sec, we have ln[ W/k&T(po)' ]=10 and W =40. The
resulting sign is determined by the constant X in Eq. (6.4).
If one uses the estimates based on the experimental
data4 4'

y2/y& —5 for E/2M=1 C'rHz,

then one gets from (4.10) X=4. On the other hand, it is
known (see Ref. 42) that in glass the TLS's strongly cou-
pled to the phonons have a much smaller concentration
than those weakly coupled to the phonons. As a result, it
appears that the second term in Eq. (6.4) is smaller than
the first one by approximately a factor of 7. This means
that for typical times of experiment the main contribution
to the coefficient of thermal expansion is negative and,
T pt increasing, sl owly decreases by the absolute value.
For example, as r,„~, increases from 1 sec up to 1 min,

~

I
~

diminishes by about 20%%uo of its initial value.
As it is seen from Eq. (6.4), the order of magnitude of

the "constant" I is determined by the "adiabatic" param-
eter gL and appears to be gL, '-100. This agrees with the
experimental data for the fused silica where I'= —70.
The values of this order can be obtained from Eq. (6.4)
setting c =5—7. Such large values are not surprising for
the potential energy of the interaction of atoms in solids
can usually be approximated by a function going as a
large negative power of interatomic distance (e.g., the
Lennard-Jones potentials), and the constants c and X are
proportional to the third derivative of this function.

VII. DISCUSSION AND CONCLUSIVE
REMARKS

One of the most important predictions of our theory
that permits direct experimental verification is a nonsta-
tionary behavior of the Gruneisen "constant" I . The log-
arithm in the denominator of the corresponding term in
Eq. (6.4) is
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+expt

TO

where ro r——;„(T). At T=0.3 K, ro is about 10 sec
This means that two experiments where I is measured
may give two values that differ by, for instance, 30% if
one experiment is performed during a minute and the oth-
er during a day [we suppose that the first term in Eq. (6.4)
is predominant].

On the other hand, it is the nonstationary part that
should give large absolute values of the Gruneisen con-
stant, for in the denominator of the corresponding equa-
tion there is a small parameter r)t. Of course, the same
parameter is present also in the denominator of the second
term of Eq. (6.4). However, there is also a large factor

so that the resulting product should by no means
necessarily be small.

Observation of such nonstationary behavior of I would
provide serious evidence of the correctness of both the
KKI model and the estimation of the deformation poten-
tial based on the analysis of the zero-point vibrations.
Moreover, it can appear that there exist several types of
glasses. Glasses of one type may behave according to the
KKI model while glasses of another type may be
described by some other model. We think that it is very
interesting to investigate the behavior of the thermal ex-
pansion in other models describing the low-temperature
properties of glasses.

Another conclusion following from Eq. (6.4) is that the
Gruneisen parameter I is slightly temperature dependent
[see Eq. (6.4)]. If the temperature goes down,

~

I
~

enhances, which is in qualitative agreement with the ex-
perimental data.

Experimental investigation of the low-temperature
thermal expansion of glasses can provide a number of im-
portant data concerning the TLS's. Analysis of the whole
complex of experimental data on thermal expansion, heat
capacity, thermal conductivity, phonon echo, and sound
absorption would permit one to determine the ratio P of
the densities of the TLS's of the first and the second types
and their constants of deformation potential contributing
to these phenomena (i.e., the parameters c and g). Inves-
tigation of thermal expansion can permit one to determine
the sign of the constant c, i.e., to make conclusions con-
cerning variation of the tunnel barrier under the influence
of deformation and thus to elucidate the problems con-
cerning the microscopic structure of the TLS's and check
the adequacy of various microscopic models.

Indeed, let the TLS's be a stretched linear three-atom
system so that the middle atom is in a double-well poten-
tial. Contraction of such a three-atom system diminishes
the height of the barrier, so that in this case c&0. If, on
the other hand, the atomic configuration is not linear (an-
gular configuration), contraction of the system may
heighten the barrier, which would mean c&0. Phillips
was the first to point out that thermal expansion is sensi-
tive to the microscopic structure of the TLS.

The results obtained above are based on the assumption
of constancy of the distribution functions of the parame-
ters g and t on the scale gl and gI, respectively. There
are indications in the literature (see Ref. 46) that introduc-

tion of impurities in glass may violate the constancy. In
such a case one may anticipate that the thermal expansion
of glasses at low temperatures is more sensitive to the ad-
dition of impurities than, for example, such properties as
heat capacity or thermal conductivity. Indeed, as we have
seen, for the same value of energy E the TLS's of the first
type with ho «E make a positive contribution to thermal
expansion while the contribution of the TLS's with 60—E
is negative. We assume that in pure glasses the distribu-
tion functions of the parameters g and t are almost con-
stant within the range of their variation of the order of gL
and gL, respectively. As a result, both contributions al-
most cancel out each other,

If the introduction of impurities of a certain kind
violates the constancy, thus bringing about predominance
of the TLS with, say, a certain value of the tunnel param-
eter 60, there will be no such compensation. This may be
related to the experimental fact that the thermal expan-
sion of glasses is sensitive to the impurity contents.

Such sensitivity may be characteristic not only of
thermal expansion but of some other properties of glasses
too. For instance, if the peak in the b,o distribution is suf-
ficiently pronounced, the nonresonant ultrasonic absorp-
tion coefficient may go in the low-frequency limit as co3~2

instead of the usual proportionality to the first power of
the frequency co.

Finally, let us discuss the thermal expansion of metallic
glasses where conduction electrons provide- an additional
contribution to thermal expansion. This contribution
can be written as

00a"=—— dE v(E)
K

. A(E) .
4k T cosh

2k' T

Here, v(E) is the density of the electron states as a func-
tion of the electron energy E, p is the electron chemical
potential, and A(E) is the electron deformation potential
averaged over the electron states with the same energy E.
Expanding the deformation potential near the Fermi level,
we have

~2 v(I )A'k,'r
3 E (7.3)

For the free-electron model, A'= ——, (see Ref. 48) and

( )
2m-' v(V)ka&

9 L (7.4)

a" is proportional to the temperature T and is positive.
Let us compare the contributions from the free electrons
and the TLS's. We have

A(E)=A'(E —p) .

Here, we have taken into account that A(p)=0: this is
the electric neutrality condition (see Ref. 48). As a result,
we get for the electron contribution to the thermal-
expansion coefficient,
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a" v(P )'tlL

~~( )~
(7.5)

Here, No is the density of the TLS's states:
Xp—g~'tlL3, /W=10 erg ' cm . Inasmuch as for typi-
cal metals v(p)=10 erg ' cm and gL —10, the ratio
(7.5) is of the order of unity. This may provide an ex-
planation for the fact that the coefficients of thermal ex-
pansion for a number of metallic glasses are positive and
have the same order of magnitude as for dielectric
glasses.

We think that to check the hypothesis we have just for-
mulated, it would be very interesting to investigate experi-
mentally the thermal expansion of metallic glasses in the
superconducting state. At T & T, ( T, being the tempera-
ture of the superconducting transition) the electron contri-
bution to a would decrease with temperature exponential-

ly and what remained would be the TLS contribution. If
this surmise is correct and the TLS in dielectric and me-
tallic glasses are similar, one might expect an essential
change of a in the temperature interval near T, and even
the change of its sign.

Finally, let us emphasize once more that, in our
opinion, large absolute values of the Griineisen parameter
in glasses are directly connected with the softness of the
local anharmonic potentials that produce the TLS. A
similar picture will probably be found in crystals with
tunnel defects, and to analyze thermal expansion of such
crystals an analogous approach may prove fruitful.
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