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We show how the free energies of defect processes may be calculated directly from a microscopic
model. In addition to the calculation of internal energies, we also calculate the vibrational entropy,
using a large-crystallite method. Using the results obtained, we comment on the nature and range of
validity of the Arrhenius relation. We calculate the ionic conductivity and compare it directly with
experiment. Defect volumes are also calculated and compared with the available data.

I. INTRODUCTION

It has long been possible to calculate accurate internal
energies of formation for point defects in ionic crystals.
Programs such as HADES (Ref. 1) and CASCADE (Ref. 2)
have been written to make such calculations a matter of
routine provided that the interionic forces within the crys-
tal are known. A review of the assumptions used in such
programs is given in the articles in the book edited by
Catlow and Mackrodt.

Progress in methods for calculating entropies of forma-
tion has been slower. The high-temperature entropy of
formation in the harmonic approximation is given by
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(provided that the number of degrees of freedom does not
change), where k is Boltzmann’s constant and w;,w; are
the normal-mode frequencies of the defect and perfect
crystal, respectively. The subscript v for the entropy
denotes a quantity at constant volume, a necessary conse-
quence of the use of the harmonic approximation.

Three ways have been used to calculate entropies with
use of (1). The first method, discussed by Harding and
Stoneham,* uses a periodically repeating cell- containing
the defect and surrounding ions and an analogous cell for
the perfect lattice. The required frequencies w;,w; are as-
sumed to be the phonon modes at zero wave vector. The
method relies on the fact that for the large unit cell, the
dispersion curve will be folded back onto the I' point of
the reduced Brillouin zone, thus making the phonon
modes at this point a reasonable approximation to the re-
quired phonon density of states. For a large enough re-
peating unit this should work. However, the units used
up to now*> have been rather small.

The second method, the Green-function approach, re-
casts the entropy formula in terms of the Green functions
of the perfect lattice and the changes of force constant
due to the introduction of the defect. The utility of the
method rests on the possibility of confining the changes of
force constant to a small region close to the defect. The
method is discussed by Jacobs in his article in Ref. 3 and
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by Gillan and Jacobs.® However, it has disadvantages
when considered as the basis for a general code to calcu-
late the entropies of defects. The calculation of Green
functions of sufficient accuracy is a tedious business.
Further, as Sangster and Rowell” have pointed out, the
Green functions used in most calculations refer to the ion-
ic core displacements as calculated from a static lattice re-
laxation using the shell model. In such a case the effec-
tive force constants should be calculated the same way.
This adds further complications.

The third method, the large-crystallite method, is much
more suitable for machine computation. This method as-
sumes that the crystal may be divided into two regions, an
inner region around the defect where the ions are allowed
‘to vibrate and an outer region where they are held fixed
and contribute only to the diagonal elements of the force
constant matrix. The required frequencies w,w’ of Eq. (1)
are those of the inner crystallite region for the defect and
perfect lattice. The SHEOL?® code (“simple harmonic
evaluation of lattices”) has been written to calculate defect
entropies with use of this method. ,

The availability of computer codes to calculate energies
and entropies of defects means that the main problem
remaining is the correct specification of the interionic po-
tential. For entropy calculations this is especially impor-
tant as we require not only an accurate specification of
¢(r) but also of its first and second derivatives. Indeed, if
we wish to calculate the entropy as a function of tempera-
ture (and therefore of lattice parameter) we require the
third derivative as well. The question of how such a po-
tential is found and verified is taken up in a later section -
of the paper.

Calcium fluoride is a convenient system to use as an il- -
lustration of the problem of calculating free energies of
defects. There have been a number of previous attempts
to calculate the entropy of formation of the anion Frenkel
defect,*~%° and one attempt to calculate the anion dif-
fusion rate.! A good deal of experimental data is avail-
able on the cation and anion defects and the transport
processes. The ionic conductivity has been measured over
a range of temperatures by Ure'! and by Jacobs and
Ong.!? Oberschmidt and Lazarus'® have also measured
the pressure dependence to obtain the defect volumes of
formation and migration, extending and, to some extent,
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contradicting the earlier work of Lallemand.!* Data on
the cation processes are less easy to come by; however,
work has been done by Matzke and Lindner,!® Berard,!¢
and King and Moerman.!” In this paper we shall confine
ourselves to defect processes on the anion sublattice.

We shall first discuss the methods of calculating defect
energies and entropies. We shall then turn to the question
of the specification of interionic potentials and the calcu-
lation of perfect lattice properties before turning to the
calculation of defect free energies and their comparison
with experiment.

II. THE CALCULATION
OF DEFECT PARAMETERS

Methods of calculating defect energies have been fre-
quently discussed before.! =3 Here we merely summarize
the main points. The crystal is divided into two regions,
an inner region (I) containing the defect and an outer re-
gion (II). The ions in region I are iteratively relaxed with
use of a fast Newton-Raphson procedure until they reach
their positions of zero force. The outer region (II) is treat-
ed as a dielectric continuum and the ion positions in this
region are obtained by the method of Mott and
Littleton.'® Most calculations assume that the crystal
may be described by a simple shell model. In essence, the
ions in the crystals are modeled by considering them as
massive cores linked to massless shells by a harmonic
spring constant. Short-range forces simulating the Pauli
repulsion and dispersive attraction terms between the ions
act between the shells. Coulomb forces act between cores
and shells except for cores and shells on the same ion.
Such models give a good representation of the perfect lat-
tice and defect properties. Also, important for our pur-
poses, they give a good representation of the phonon den-
sity of states.!®

We now turn to the question of calculating entropies.
Using the obvious definition of the defect entropy of for-
mation ASy,

AS;=S(defect crystal)—S(perfect crystal) , (2)

where the defect crystal contains a single defect, we obtain
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where the primes denote the defective crystal. The final
logarithmic term is necessary to correct the dimensions of
the first term when N’'s=N. This equation defines defect
entropies with respect to ions brought in from at rest at
infinity or removed to there and so corresponds to the
usual definition of internal energies of formation used in
codes such as HADES.

It is often useful to express (3) in terms of the deter-
minant of the dynamical matrix. In the harmonic ap-
proximation we may write the equations of motion of the
ions as

(2—w’*M)u=0, 4)

where @ is the force-constant matrix, M the mass matrix,
and u the vector of vibrational displacements with respect
to the static ion positions. This therefore gives us the
product of the vibrational frequencies as

3N d

I_Il“" ::tt((M)) ©)
and we can therefore rewrite (3) as

AS;=—+kln %Qb—l))— ]

+3k(N'—N)[1—1n —ﬁ_l/TH , (6)
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where D is the dynamical matrix given by

D=M~-12oM'/? 7

and mg is the atomic unit of mass. Again the last term
corrects the dimensions of the first term for N's£N.
We require the dynamical matrix D in terms of the

force-constant matrixes for cores and shells. These are
given by
D =5y {E(Cﬁ +Ci) | —CF+ K8y (8a)
-
i =—Ci' — Kby (8b)
i =—Cif —Kidy » (8¢)

D=8y ‘2(511"4- Citn+Cif) | —(Sp+CiF )+ Kby

IQ

(8d)

The matrices C™ represent the Coulomb forces, the su-
perscripts denoting cores (c¢) or shells (s). The matrix S
refers to the short-range forces acting between the shells
and the diagonal matrix K the harmonic spring constants.
The subscripts /,I’,]” denote ions and Cartesian coordi-
nates. The Coulomb sums in (8) are calculated using the
Ewald technique as described in Ref. (1) and (6).

We may write the dynamical matrix in terms of these
force-constant matrices and obtain

Dy = |Dff— 3 DF, (D), D5

m,n

/ MM\, 9)

where again the indices denote ion and Cartesian coordi-
nates. We now introduce the basic assumption of the
large-crystallite model. We divide the crystal into two re-
gions: an inner region, containing the defect and sur-
rounding ions where the ions are allowed to vibrate, and
an outer region, where the ions are held fixed in the posi-
tions calculated by the static lattice calculation. Thus the
sum over normal modes in (3) or the determinant in (6) is
calculated only for ions in the inner region. The ions of
the outer region contribute through the diagonal elements
of the force-constant matrix, the sums over !” in Egs. (8a)
and (8d).



32 CALCULATION OF THE FREE ENERGY OF DEFECTS IN CALCIUM FLUORIDE 6863

In the calculation of charged defects we must apply a
correction which arises from the effects of the long-range
distortion field. The displacements of the ions far from
the defect cause changes in the force constants that fall
off as R ™2 Since the number of ions in a shell of dis-
tance R from the defect grows as R? it is clear that the
effect of a charged defect on the crystal force constants
does not die away with distance. Gillan and Jacobs® have
discussed this problem and we apply their correction here.
The problem arises not from the defect charge, but from
the distortions that it causes. Gillan and Jacobs show that
we can obtain the correction we require by considering the
entropy of a perfect lattice but with the ionic distortions
due to the defect. We require only the term linear in the
distortion field and so the ionic displacements are scaled
down by a factor A and the entropy multiplied by the
same factor. The correction term AS_,,, is given by

AScorr =A[S"(A)—S(perfect lattice)] . (10)
The corrected entropy of formation is given by
sv:ASd_AScorr . (11

With this correction, we now have a method for calculat-
ing s,, the entropy of formation at constant volume. It is
simple to check the convergence with increasing inner re-
gion size and extrapolation to the infinite crystal may
readily be done.

In practice, we shall need at least 100 ions for the size
of the inner region. The dynamical matrices are large and
it is desirable to reduce the problem as much as possible.
We therefore block-diagonalize the dynamical matrix D
by the use of symmetry projection operators. The prob-
lem of calculating such operators is well understood and
the methods discussed in standard text books. However,
the scale of the problem considered here (up to a few hun-
dred ions) makes many of them unsuitable. The one used
in SHEOL is an adaptation of the method of Nielsen and
Berryman.”® The details of how the operators are con-
structed are given in a report by Ball and Harding.?!
Having obtained the required projection operator U we
may obtain the block diagonal matrix D by the standard
transformation

D=U'DU. (12)

It is possible to reduce the double summation over ions
and coordinates implied in (12) to a single summation us-
ing a result of Crawford.??> Again the details are discussed
in Ref. 21.

A SHEOL calculation consists of two parts. The first
part is a lattice statics calculation to evaluate the static re-
laxation of the defect and the internal energy of formation
u,. This is done with the AERE Harwell HADES code.
The second part consists of taking the positions of the
ions, defining an inner region, and performing three
large-crystallite calculations: one on the defective lattice,
one on the perfect lattice, and one on the distorted perfect
lattice. This gives us AS; and AS,, and so enables us to
evaluate s,, the entropy of formation at constant volume.

If we are calculating the vibrational entropy of forma-
tion, we should also calculate the vibrational contribution

to the internal energy of formation. We can, however,
show that this vanishes in the high-temperature limit.

From standard statistical mechanics the vibration inter-
nal energy U of a crystal is given by

N fiw;
U=2 xptior /KT —1 ° (13)

i=1
For high temperatures, this reduces to
U=3NkT . (137

Since in the defects we shall be considering the number of
ions does not change (although Schottky defects change
the number of lattice points in a crystal they do not
change the number of ions), the contribution to

u, = U(defect crystal)— U(perfect crystal) (14)

is zero. If, however, we consider a case where the number
of ions in the crystal does change (for example, a non-
stoichiometric oxide interacting with oxygen gas), there
will be a contribution of

u,=3(N'—N)KT . (15)

A SHEOL calculation thus gives the Helmholtz free en-
ergy of formation of an isolated defect,

fo=u,—Ts, . (16)

Any configurational terms must be calculated separately
and any defect-defect interactions (apart from those that
can be calculated by Debye-Hiickel theory) must be ob-
tained by considering explicit clusters.

Our calculations are calculations at constant volume.
However, most experiments are done at constant pressure
and so produce the Gibbs free energy of the defect g,.
The various relations between thermodynamic defect pa-
rameters have been much discussed in the literature. A
convenient collection of the most useful results is to be
found in the paper of Catlow et al.?* In particular, we
note that to first order in the defect volume Up,

gpzfv . (17)

We may thus use SHEOL to calculate the enthalpies and
entropies of defects at constant pressure using the stan-
dard relations

ag,
== == , (18)
? oT |,
hy=gp+Ts, . (18)

This avoids the necessity of calculating the volume of for-
mation as has been done in previous estimates of #,.

It is instructive to consider these expressions a little
more closely. From (17) and (18) and the standard rela-
tion

U | _ | w1 (19)
aT |, | dT [, |dT |, |3V |7’
we obtain
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assuming that u, and s, are functions of the crystal
volume only. If we further assume that the entropy s, at
a given temperature can be obtained from the value calcu-
lated using the zero-temperature lattice constant, i.e.,

as,,
5,(V)=s,(Vp)+ Y% T8V , (21a)
14
SV=T 3T (21b)
then we obtain
v ou, ds,
—SU(VO) aT FY% —2T Y% 22)

Note that (21b) assumes that the lattice thermal expansion
is constant and that any defect contribution to the thermal
expansion is negligible. Since the variation of u, with
volume is usually large, it is most unlikely that s, (V) will
be a reasonable approximation to s,. However, if we per-
form a similar analysis on the enthalpy we obtain

v | |9

hy=u,(Vy)+T? oT |,

(23)

Thus u,(¥,) will be a good approximation to /4, provided
the variation of s, with volume is small and the lattice
thermal expansion is constant. A similar point has been
made by Gillan®* and is of considerable importance for
two reasons. First, many calculations have been calcula-
tions of u,(¥,) and it has been assumed that this is a
reasonable approximation to 4,. Second, most experimen-
tal analyses have assumed that 4, and s, are constant
over the temperature range of interest. From (22) and (23)
it is clear that this will only be so provided u, is a linear
function of volume and that the variation of s, with
volume is small. This point will be illustrated in more de-
tail later.

If we know u, and s, as a function of volume we may
also calculate the volume of formation or migration of a
defect. The defect volume of formation is defined as

ag,,
24
UP 3P (24)
It may be shown?* that this may be written as
9fy
=—kV , ' (
Up K FY 4 r (25)

where « is the isothermal compressibility. This is much
more useful for calculation than (24). It has been assumed
in the past that the volume variation of the entropy is
negligible. As we shall see in Sec. IV, this is a risky as-
sumption to make.
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III. THE CALCULATION
OF PERFECT-LATTICE PROPERTIES

As noted above, an important part of calculating defect
properties is the correct specification of the interionic po-
tential. Gillan and Jacobs used the potential set of Catlow
and Norgett,”> except they assumed that the potential ex-
tended to third neighbors rather than second neighbors, as
assumed by Catlow and Norgett. In a later paper Catlow
et al.? point out that the F~-F~ interaction in their ear-
lier work had an unreasonably large van der Waals term.
They fitted a new potential using a splining scheme.
However, their scheme enforced continuity only up to the
second derivative in the potential. As explained above, for
entropy calculations we require continuity in the third
derivative. This has been done by changing the splining
scheme of Ref. 26 and refitting the parameters. Only
small adjustments are required. The details are given in
Table I. Figure 1 shows a calculation of the free energy
of formation of the anion Frenkel defect for the two po-
tentials. It is clear that the differences are important.
This may also be seen from the parameters for the har-
monic approx1mat10n, u and s0. For the Catlow and
Norgett potentlal ul=2. 496 ev, sd=2. 84k For the po-
tential used in this work u2=2.71 €V, s)=—1.65k. Both
parameters are significantly different, but clearly the en-
tropy is far more sensitive than the energy. It is therefore
of interest to know how adequate the potential of Table I
is. We can gain some insight into this by calculating the
perfect-lattice properties over a range of temperature and
comparing with experiment. We first consider the lattice
parameter. The method of calculating this given the in-
terionic potential is given in Ref. 7 and we summarize it
here.

As the crystal is expanded there is in general a pressure
change. We may divide the pressure change on expanding
the crystal from its initial state (of zero-temperature
volume ¥Vj and O K) to the volume and temperature re-
quired into two parts. We have an elastic pressure change
AP, due to the effect of lattice expansion on the interion-

Interionic potential used
in this work

3.0 —~—— Interionic potential
used in ref

Free energy (eV)

o

1 1 1]
500 1000 1500
Temperature (K)

FIG. 1. Effect of interionic potentials on defect parameters
(anion Frenkel defect).
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TABLE 1. Potential parameters for CaF,. All short-range interactions are assumed to be zero for
r> 1.5a (ay is the anion-anion distance).

Shell model
Y(Ca’*)=5.24]¢ |
Y(F~)=—-2.38|¢ |

K(Ca’*)=390.9 eV A2
K(F)=101.2 eVA-2.

Interionic interactions

Ca?t-F~ ¢(r)=A exp(—r/p)
A=1272.8 eV p=0.3002A.
F~-F~ $(r)=4 exp(—r/p), r<r,
=seventh-order polynomial, 7, <7 <7,
=fourth-order polynomial, 7, <r <7,

=—C/rS, r>r. .
A=11272 eV, p=02753 A, C=120 eVA~*
ra=20 A, r,=2726 A, r,=3.031 A
(rn is the minimum of the potential).

ic forces and a vibrational pressure change AP.;, due to 3N i
the effect of lattice expansion on the phonon density of Fyy=kT ¥ In |1—exp ~%r ||’ (28)
states. i=1
We obtain AP, from the definition of the lattice OF i,
compressibility &, APjp=— |——
1| oV ,
TV |ery |, 20 -3 A Qo | 29)
= explfiw; /kT)—1 | 3V |,
i.e.,
, The frequencies and estimates of their derivatives with
AP = — f v_dv . 27) respect to volume are obtained using a supercell method
€ Vo k( V)V

The dependence of k upon volume may be calculated us-
ing the AERE Harwell PLUTO program.?’

as discussed by Harding and Stoneham.?® We require the
lattice-parameter—versus—temperature relation for one at-
mosphere. Thus to a very good approximation we require

The vibrational contribution to the pressure is obtained
by differentiating the vibrational contribution to the
Helmbholtz free energy in the harmonic approximation

—=—— Expt (Rao and Smakulal

Calculation

Dielectric constant

Anion - anion distance (A}

—=— Expt (Hutchings and Kjems)

2.70F Calculation

1 1 - J
(9 500 1000 1500
Temperature (K)

| L L
0 500 1000 1500
Temperature (K)

FIG. 2. Lattice parameter for CaF,. FIG. 3. Dielectric constants for CaF,.
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APy +AP;,=0 . (30)

The resulting relation is shown in Fig. 2 compared with
the data of Hutchings and Kjems.?”’ The agreement is ex-
cellent. We are now in a position to calculate the other
bulk properties using the PLUTO program. The tempera-
ture variation of the dielectric constants is shown in Fig. 3
together with the available experimental data of Ref. 30.
We may use the temperature variation of €, together with
the Brillouin scattering data of Catlow et al.! to obtain
experimental elastic constants. The shift in wave number,
AVg, of the Brillouin-scattered light is

Avg = sin(6/2) , 31)

2vg

(4 }\«0 K
where v, is the velocity of sound waves causing the
scattering, 7 the refractive index of the crystal, A, the
wavelength of the incident light in vacuo, c the velocity of

light, and 0 the scattering angle. The elastic constants are
then obtained using the relation

cij =pUs2 . (32)

We obtain the elastic constants shown in Fig. 4 where
they are compared with those calculated using the PLUTO
program. One interesting point is that it is clear from
these calculations that the effect of lattice expansion is
adequate to explain the variation of c¢;; with temperature,
contrary to the suggestion of Catlow et al. We may esti-
mate the defect contribution to the compressibility below
the fast-ion region as follows. The free energy of the crys-
tal is given by

G=G°+xgp—lenW ) (33)

where the last term is the configurational entropy, x is the
concentration of Frenkel defects, and G is the perfect-
crystal free energy. Equation (33) assumes that all

———= Expt (Catlow et al)
Calculation Ny

Cjj (10" dyn em?)

1 1 Il
0 500 1000 1500
Temperature (K)

FIG. 4. Elastic constants for CaF,.
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x o
20.01~ /o

Entropy (k!

Expt (Janaf, 1971}
x  Caiculation
©  Harmonic calcuiation

5.0F

Temperature (K}

FIG. 5. Entropy of crystalline CaF,.

defect-defect interactions may be ignored. Then the crys-
tal volume is given by

3G

V= %p

=Vxv, , (34)
T

where V° is the perfect-crystal volume and v, is the de-
fect volume of formation. Thus the compressibility x of
the defect crystal is

2
9 xv,

1
T ke

14

aV

oP

(35)

assuming that V°>>xvp. We may obtain x knowing g,
from Fig. 6, V° from Fig. 2, and v, from Fig. 9. The
correction is of the order of 1% at 1400 K.

The last bulk property of interest is the perfect-lattice
entropy. This is shown together with the experimental
values®? in Fig. 5. The quasiharmonic approximation is
clearly accurate enough to reproduce the experimental re-
sults.

The comparison with bulk properties suggests that we
have a set of interionic potentials that should give excel-
lent results over a range of temperatures. We now turn to
the results of calculation of defect parameters.

IV. DEFECT CALCULATIONS:
THE ANION FRENKEL DEFECT

It is convenient to begin by considering the free energy
of formation of the anion Frenkel defect. Most attempts
to calculate defect parameters in CaF, have confined
themselves to this. The HADES code may be used to cal-
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z.s}— X\X

2.4

Uy lev)

2.0 ' \

1 L i
‘o 500 1000 1500
Temperature (K)

FIG. 6. Anion Frenkel defect: variation of internal energy.

culate the internal energy of formation u, as a function of
temperature. This is shown in Fig. 6. The entropy as a
function of temperature is shown in Fig. 7. An idea of
the accuracy of the convergence of the SHEOL calculation
is shown in Table II. It is clear that the crystallite sizes of
about 100 ions are adequate to give an answer to within
+0.1k. It is unlikely that the potentials are capable of
giving an answer to greater accuracy than that. This is
accordingly shown as an error bar on Fig. 7. Also shown
are two other calculations of s,, those of Sahni and
Jacobs® using the supercell method and of Jacobs et al.®
using a Green-function method. They clearly differ both
from each other and from the current calculation. Two
sources of error may be suggested. First, the defect region

6.0~

4.0

This work

T

0 560/1/‘41/ 7000 T800

Temperature (K)
/’ ’

FIG. 7. Variation of s, with temperature: anion Frenkel de-
fect.

Entropy at constant volume,s, (k)
~
=)
T

-2.0L

6867

TABLE II. Convergence of entropy calculation for anion

Frenkel defect.
Vacancy Interstitial
Number of ions Number of ions
in crystallite sp(k) in crystallite sp(k)
10 —4.54 15 3.04
34 —4.52 39 3.0
84 —4.42 71 3.03
108 —4.54 127 2.9
160 —4.46 175 2.85
250 —4.46 253 2.83

size for both calculations was small, in the case of the
Green-function calculation being only eleven ions.
Second, although both calculations used the interionic po-
tentials of Catlow et al.,?® neither required continuity in
the third derivative of the F~-F~ potential.

Figure 8 shows a plot of the free energy of formation of
the defect as a function of temperature. Of particular in-
terest is the point that the calculations fit very well to two
straight lines, the changeover point being about 800 K.
This corresponds closely to the change in slope in the
thermal expansion shown in Fig. 2 and hence to the
change of slope in the u,-versus-T curve in Fig. 6. Table
III shows the values of h, and Sp, the defect parameters at
constant pressure, extracted from the calculation. Also
shown are the values of the parameters extracted from ex-
periment. It is clear that the values reported are not in
substantial disagreement with each other. The differences
in value result from the different temperature ranges used.
Also, only the lower-range value of 4, corresponds with
the standard HADES calculation of #..

Since u, and s, are functions of volume only, and only
functions of temperature through the variation of the lat-
tice parameter, we can consider Figs. 6 and 7 as showing

X,
2.6 hp=2 81ev-
\x S 81 eV

\ sp=5 4k

X,

X,
Xy
2.4

2.2+ hp=317 eV
sp=10 8 k

Free energy leV)

i 1 J
0 500 E 1000 1500
Temperature (K)

FIG. 8. Calcium fluoride (anion Frenkel).
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TABLE III. Anion Frenkel defect parameters.

Temperature
range (K) h, (eV) sp(k) Reference
500—1000 2.71 5.5 12
300—1200 - 2.74 13.4 35
910—1200 - 2.82 13.5 11
870—1100 3.0+0.16 13
400—800 2.81 54
calculation

800—1500 3.17 10.8

the variation of u, and s, with volume. Figure 6 shows
that the plot of u, versus temperature does analyze into
two straight lines. If we consider the variation of s, with
volume the situation is more complex. At high tempera-
tures (large volumes) the variation is negligible. Even at
lower temperatures the effect is not large. The slope is
about 7.2 10~° eV K~! A~3, which gives a correction to
u, (Vo) of about 0.06 eV to obtain 4, at 700 K from Eq.
(23). The experimental error in fitting defect parameters
is frequently as large as this.

However, the volume variation of the entropy does af-
fect the volume of formation. This is shown in Fig. 9
both including and ignoring the entropy term. The calcu-
lations give good agreement with the data of Oberschmidt
and Lazarus,!? but not with those of Lallemand.!* This is
due to Lallemand’s low value for the activation volume.
We note also that these calculations support the original
analysis of Oberschmidt and Lazarus and not the revised
analysis of Fontanella et al.,’* who based their revised es-
timate on the assumption that there is a considerable in-
terstitial contribution to the activation volume in the tem-
perature range 800—1000 K. If we compare the calcula-
tion with the earlier work of Gillan,2* we see that the
volumes of formation calculated here at high tempera-
tures are higher than his. This is partly because of his

Su,
®  Calculation using (_6\/ )
4 Calculation using (%\7—)
o Experiments of Oberschmidt
and Lazarus
15.0+ —o— Experiments of Lallemand
4
. A =
- A 4 -
E 4 .
°
E 10,0 ‘.
- []
E 4 L]
K] « * L] .
K (]
5.0
—_——
0 1 L !
0 500 1000 1500

Temperature (K]

FIG. 9. Anion Frenkel volume of formation.
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npglect of the entropy term and partly because he underes-
timates the lattice expansion and increase of lattice
compressibility.

V. MIGRATION PROCESS

We calculate free energies of migration using
Vineyard’s®® analysis of the simple equation for defect
jump rates,

C=%vexp . (36)

_m

kT
In this expression I' is the jump rate, u,, the energy of
migration, and ¥ an effective frequency association with
the vibration of the diffusing ion in the direction of the
saddle point. Vineyard’s analysis gives a precise meaning
to and expression for these quantities. Since experimental
results are usually presented using an enthalpy and entro-
py of migration rather than an effective frequency and an
energy, it is convenient to use the alternative formulation
of Flynn.® We write the jump rate " as

C=wveexp | — T | (37
T N | ; 3N hv;

Sm=tm+ j§1 n T —-jélln T , (38)

ViN="vp , (39)

where the primes refer to frequencies at the saddle point
and u,, is the internal energy of migration. Although (37)
bears a superficial resemblance to (36), it should be noted
that in (37) the frequency vj is arbitrary. It is common to
use either the Debye frequency or an optic mode. The fre-

\

°

0.8 Interstitialcy hp = 0-80 eV °

(T<1200K)  sp=-0-46k

o
~
T
%

Free energy (eV]

Vacancy hp=028eV
(T<1200K) sp=-1-1k

0.2-

o] L L S
500 1000 1500

Temperature (K}

FIG. 10. Migration mechanisms is CaF,.
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TABLE IV. Anion migration parameters.
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TABLE VI. Association parameters for anion conductivity.

Vacancy hy (V) sp(k) Reference hy (V) sp(k) Reference
(free) 0.33—0.55 1.1—-1.9* 12 Vacancy bound —0.71 —1.54 12
0.55 36 to Na* —0.85 —2.78 calculation
0.51 1.23%0.59%) 35 (T <1000K)
0.52 13
0.26 —1 calculation Interstitial bound —0.65 0.0 to —0.8 12
to M3t -0.6 0.0 calculation
Interstitialcy 0.78 5.3—7.3% 12 ' (T <700K)
(free) 1.0 36 —0.81 —34 calculation
0.83 —1.4* calculation (T>700K)
Vacancy 0.504 1.24° 37
(bound to Nat) 0.51 0.56° calculation
. (T <250K) )
0.49 0.0° calculation the literature*>*! and are shown in Table V. Comparison
(250 < T < 1000K) with the fitted data of Jacobs and Ong is shown in Table
VI, and the free energies are plotted in Fig. 11.
Interstitialcy We may now calculate the conductivity using the for-
(bound to Y3+) 0.42 0.81° 42 mulas set out by Jacobs and Ong. Figure 12(a) compares
0.56 © 081° calculation the calculated conductivity for sodium-doped CaF, with

2y, taken to be 1.4 10'3 sec™! (optic mode).
by, taken to be 8 < 10! sec™!.

°y, taken to be 7.14 X 10'? sec~! (Raman mode).

quency used is noted in the tables where necessary. The
SHEOL program may be used to evaluate the frequencies in
(38) and so produce an entropy of migration. Calculated
free energies of migration for the vacancy and noncol-
linear interstitialcy process are shown in Fig. 10 and com-
pared with the available experimental data in Table IV
(we assume that the interstitialcy saddle point is where the
two F~ interstitials are equidistant from the F~ vacancy).
As can be seen, the calculations predict that the intrinsic
conductivity should be completely dominated by the va-
cancy mechanism, even at high temperatures. The up-
ward curvature of the free energy for both processes is
due to the high value chosen for the arbitrary frequency
Yo-

It is of interest to try and compare these calculations
directly with the experimental data. For this we require
free energies of association. For convenience we take the
M3t impurity assumed by Jacobs and Ong to be Y>+.
We may then calculate the free energy of association of
the interstitial with Y>* and that of the vacancy with
Na%t. Suitable shell-model parameters were chosen from

TABLE V. Shell-model parameters for Na* and Y3+.

Shell model .
K(Y3t)=252.4 eVA—2
K(Na+t)=125.2 eVA~?

Y(Y3*)=7.53] e |
Y(Nat)=2.216] e |

Interionic interactions: ¢(r)=A4 exp(—r/p)
A=2298.5 eV, p=02917 A
A=1189.8 eV, p=0.2677 A

Y3+-F-
Nat-F~

the data of Jacobs and Ong. There is one parameter used
in the fitting, the concentration of Nat. This is higher
than the fitted value quoted by Jacobs and Ong,
2.2X10~° as opposed to 7.8 10~°. The calculation of
the “intrinsic” conductivity is shown in Fig. 12(b). Here
agreement is poor. The reason is that the calculated free
energy of interstitial migration has little dependence on
temperature compared to that obtained from the fitting
process. Thus the assumption of an M3% impurity can-
not bring the calculation into agreement with experiment.
It is unfortunate that the data on M3+ doped CaF, are
too poor to give a value for the migration entropy of an
interstitial. It is worth noting that the assumption of an
0%~ impurity would allow much better agreement with
experiment, and this impurity is known to be a common
contaminent of CaF,.

It is possible to calculate migration volumes for the va-
cancy and interstitialcy mechanisms using Eq. (25). These

Temperature (K)
500 1000 1500
T T —

-0.21-

Interstitial bound to Y3*

Free energy (eV]

x
x/
/chuncy bound to Na*
/‘ hp=-0.85eV

/x Sp=-2.78Kk

{T<1000K)

0.8 /

FIG. 11. Association free energies.
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FIG. 12. Conductivity of calcium fluoride.

are shown in Fig. 13. Thus it is possible to calculate the
activation volumes and compare the results directly with
experiment without having to rely on an analysis to
decompose the activation volume into a formation volume
and a migration volume. Figure 14 shows the activation
volume for the vacancy mechanism compared with the ex-
perimental data of Oberschmidt and Lazarus'® and of Lal-
lemand.'* There is, as with the formation volumes, a sig-
nificant difference between the results including and ig-
noring the volume variation of the entropy. Figure 15
shows the activation volume for vacancy and interstitial-
cy. They are very similar. In particular, the results of

®w Vacancy mechanism
® Interstitialcy mechanism

6.0

3 -
vp lem® mole™)
S
o
T

2,01

1 1 —J
0 500 1000 1500
Temperature (K)

FIG. 13. Migration volumes for CaF, (theory).
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duy
®  Calculation using (5v-)

f.
4 Calculation using (%\‘; )

o Experiments of Oberschmidt
and Lazarus

15.0f —o— Experiments of Lallemand
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FIG. 14. Activation volume for vacancy migration.

Figs. 13 and 15 taken together do not support the
reanalysis of Fontanella et al.,3* which suggests that the
migration volume of the interstitialcy is about 7 cm?
mol~! and that there is a substantial interstitial contribu-
tion to the conductivity. The comparison of experiment
with the calculated activation volumes suggests that the
experimental results are compatible with a mixture of va-
cancy and interstitialcy conduction pathways, but that the
interstitialcy migration volume is similar to or smaller
than the vacancy migration volume.

We may also obtain the migration volumes of the
bound vacancy and interstitial and compare with the
values derived from the pressure dependence of the com-
plex impendance by Fontanella et al.>* This is shown in
Table VII. The agreement is very reasonable, especially
for the interstitial. It has frequently been assumed and
indeed may be derived from the dynamical diffusion

Vacancy mechanism
Interstitialcy mechanism

a Experiments of Oberschmidt
and Lazarus

o Experiments of Lallemand

P
2 0.0k - L] %
-
L]
§ . 5
a .
’ . 30 "y
[ ] . ——
5.0 %
0 ) | ]
0 500 1000 7500

Temperature (K}

FIG. 15. Activation volume for anion migration.
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TABLE VII. Comparison of migration volumes of bound de-
fects at 200 K.

v, (experiment) vp(calculation)
Defect (cm®mol~?) (cm®mol ™)
Vacancy 1.74 0.79
Interstitial 29 2.88

theory of Flynn*® that the migration volume is directly
proportional to the free energy of migration. It was this
assumption that allowed Fontanella et al. to estimate the
migration volume of the free interstitial. Table VIII
shows the free energies and volumes of migration for the
four defect processes considered in this paper. There is no
evidence of such a linear relationship in this case.

VI. CONCLUSIONS

We have shown that a general method exists for calcu-
lating entropies of defect processes in ionic crystals, and
that the results of such calculations can be of use in
understanding a wide range of defect processes, including
the routine calculation of defect volumes. The major
problem remaining is the validation of interionic poten-
tials. The comparison shown here suggests that the po-
tentials used give a good representation of the crystal
properties over a wide range of temperatures. However,
in many systems at high temperatures it will be necessary
to address the problem of calculating temperature-
dependent corrections to the potential. Work on this
problem is currently in progress.

It has frequently been suggested (e.g., Ref. 43) that a
useful approximation to the frée energy of a defect is
given by

g, =CBQ, (40)

where B is the bulk modulus, Q a “volume of dilatation,”
and C an arbitrary constant characteristic of the defect.
It is usually assumed that Q is the atomic volume of the
atom involved in the defect. Here we take it to be the mo-
lar volume of the crystal. The ratio between this and the
atomic volume is a function of the crystal structure and
can be absorbed into the constant C. It is of interest to
see how well this simple formula performs. Figure 16
shows the calculation of the anion Frenkel free energy
compared with that obtained by (40). The constant C is

TABLE VIII. Comparison of calculated volumes and free en-
ergies of migration at 800 K.

Mechanism v, (cm® mol™!) gm (V)
Bound interstitialcy 0.0 0.51
Free interstitialcy 0.8 0.84
Bound vacancy 1.7 0.49
Free vacancy 2.9 0.34 .
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FIG. 16. Comparison of full calculation and Varotsos corre-
lation for the anion Frenkel defect.

obtained by assuming that Eq. (40) gives the correct free
energy at 600 K. As can be seen, the formula predicts the
qualitative behavior of the free energy. This is not
surprising. From Eq. (35) we can see that Eq. (40) states
that the free energy is proportional to (3P/3V)r. Thus
Eq. (40) states that the free energy of formation of a de-
fect scales as the stiffness of the crystal lattice. Equation
(40) has been applied to free energies of migration. This
will work provided that the effect of the change in inter-

- nal energy dominates the change in the effective frequen-

cy ¥ of Eq. (36). The variation of these with temperature
is shown in Table IX for the vacancy mechanism.

What this suggests is that Eq. (40) has some value as an
empirical correlation. However, such an equation has no
predictive value. Given the defect free energy for one pro-
cess one cannot use it to try and predict the free energy
for another one. This is because all the detailed physics of
the process of defect formation is in the arbitrary con-
stant. Such correlations, therefore, although they may
have their uses, must not be confused with serious at-
tempts to calculate defect parameters from a microscopic
model.

TABLE IX. Comparison of the internal energy of migration
and the effective frequency ¥ [see Eq. (36)] (calculation).

T (K) u, (eV) v (THz)
400 0.27 3.28
600 0.26 3.62
800 0.24 3.28
1000 0.22 2.46
1200 0.19 1.84
1400 0.14 1.08
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