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Lattice-dynamical model for the elastic constants and Raman frequencies in (Vi „Cr„)zo3

H. Yang and R. J. Sladek
Department ofPhysics, Purdue University, West Lafayette, Indiana 47907
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We report the first lattice-dynamical study of V203 and (Vo 9»Cro o~5)203 in the long-wavelength
limit using a rigid-ion model with an effective ionic charge and various short-range interactions.
The parameters of the model were determined from nonlinear least-squares fits to the experimental
elastic constants and the frequencies of Raman-active modes at room temperature. The validity of
the model was established by verifying that the calculated elastic constants and Raman frequencies
were in good agreement with experimental data for V203 and (Vo 9»Cr00~5)203 as well as for Al&03
to which the same model was also applied. The effective ionic charge of each (Vi „Cr„)203crystal
was found to be considerably larger than that of A1203 in accordance with the ionicity of V203, es-
timated froin the dielectric theory of Levine, being larger than that of A1203. The short-range force
constants of (V~ „Cr„)203were found to be quite different from those of A1203. It was also found
that most of the model parameters for semiconducting (V09»Cr00~5)203 have values in between
those of metallic V203 and insulating A12O3. The effect of alloying a small amount of Crq03 into

V203 on the interatomic force-field parameters is also discussed.

I. INTRODUCTION

Corundum-structured (Vi „Cr„)203 has been studied
extensively' since the discovery of the metal-insulator
transition in 1969. It was found that this transition can
be induced by a change in temperature, pressure, or com-
position. Despite this strong interest in many properties
of this compound, lattice-dynamical studies have been
very scarce due primarily to a lack of complete informa-
tion about the vibrational spectra as well as to a rather
complicated crystal structure and the presence of d elec-
trons. Infrared-absorption and reflectivity measure-
ments on (Vi „Cr„)203 crystals yielded only a few pho-
non peaks with not so well defined frequencies, probably
due to the relatively high conductivity of these crystals
obscuring the vibrational effects, while neutron-scattering
experiments ' for these crystals were limited to some of
the acoustic branches. However, Raman spectra of
(Vi „Cr„)2O3have been studied in detail to identify the
frequencies of zone-center optical phonons belonging to
the A ~g and Eg species. Furthermore, the measurements
of all six independent elastic constants have also been car-
ried out not only for pure V203, ' '" but also for Cr-doped
Vz03

The purpose of the work presented in this paper was to
construct a lattice-dynamical model in the long-
wavelength limit which could reproduce both the experi-
mental e1astic constants and the frequencies of Raman-
active modes for the (Vi „Cr„)203crystals. The model is
basically similar to that used by Striefler and Barsch' for
rutile-structured fluorides extended to the corundum
structure. Explicit expressions for the external- and
internal-strain contributions to the elastic constants and
for the frequencies of Raman-active vibrations will be de-
rived using the "long-wave method" of Born and Huang'
based on the rigid-ion approximation. The expressions

contain the effective charge parameter for Coulomb in-
teraction and the short-range parameters for two-body
central forces and three-body bond-bending forces be-
tween neighboring atoms. The absence of information on
the frequencies of infrared-active vibrations does not
present a serious problem in this model because in the
corundum structure, which has a center of inversion sym-
metry, Raman-active modes and infrared-active modes are
mutually exclusive and, consequently, the internal-strain
contributions to the elastic constants depend solely on the
frequencies of Raman-active modes. ' It is noted that at
present there seems to be no simple method to incorporate
the presence of d electrons into the model. Although the
alloying of small amount of Cr203 into V&03 is known to
alter the electronic band structure resulting in a drastic in-
crease in the electrical resistivity (from a metallic to an in-

sulating phase), it is not expected to affect the lattice
properties significantly.

To test the general validity of the present model, it was
also applied to an isostructural compound A1203, for
which other investigators have used various rigid-ion' '
or polarizable-ion' ' models to interpret lattice-
vibrational spectra.

II. THEORETICAL MODEL

A. Crystal structure

The a-corundum structure M2G3 consists of a primi-
tive rhombohedral lattice with two formula units per cell
as shown in Fig. 1(a).' The positions of atoms within a
unit cell are completely specified by four structural pa-
rameters, i.e., a, c, u, and U, where a and c are lattice con-
stants (hexagonal indexing) and u and v are positional pa-
rameters for cations and anions, respectively. With the
center of inversion taken as the origin and the twofold
axis as the x axis, cations M(1) and M(2) are located at
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TABLE I. The structural parameters (structural parameters
are from Refs. 21 (V203), 22 [(Vp 9„Crp p„)&03],and 23 (Alq03) )
(a, c, r =c/a, u, and U), Madelung constant (M), and derivatives
of M with respect to the structural parameters (M„M„, and
M„) for V2O3, (Vo 985Cr0 0~5)203, and A1203.

x II o

FIG. 1. (a) The rhombohedral unit cell of the u-corundum
structure which contains two formula units of Mq03. (b) The
projection of the a-corundum structure on a mirror plane per-
pendicular to the twofold axis. Only the atoms in the upper half
of a unit cell and their typical nearest neighbors are labeled.

a (A)
c (A)
T

U

M
M,
Mu
M„

V20

4.9492
13.998
2.823
0.0963
0.3122

30.7416
—3.5851
19.9054

—9.9224

(V0.985CIO 015 )203

4.9978
13.932
2.7876
0.0986
0.3077

30.9639
—3.5922
13.3688

—7.5313

A1203

4.7589
12.991
2.7298
0.102
0.306

31.2197
—3.5102
10.3510

—3.6748

Ri ——R(M(1)—O(4)) =(v —U+s t +w)'—i

R2 R(M(1)—O——(1))=(v +s)'i
two different cation-cation distances,

(la)

( lb)

1

(0,0, ( ~
—u)r) and (0,0, ( —,'+u)r), respectively, and

anions O(l), O(2), and O(3) are at ( —,
'

U, —(~3/2)v, —,r),
( —,'v, (V3/2)v, ~r), and ( —U, O, ,'r), re—spectively, in units
of a with r =c/a. The coordinates of the five remain-
ing ions (labeled with primed numbers) can be readily ob-
tained by inversion symmetry. The projection of the
corundum structure on a mirror plane perpendicular to
the twofold axis is shown in Fig. 1(b), ' where only the
ions in the upper half of a unit cell and their typical
nearest neighbors are labeled.

There are two different cation-anion distances,

@c+C sR (4)

The first term is the Coulomb energy, which, in the
rigid-ion approximation, can be written as

@c M(zq)
(5)

a

where M is the Madelung constant, q (=—2
~

e
~

) the
smallest charge in the lattice, z the effective charge pa-
rameter, and a an arbitrary distance chosen as lattice con-
stant a. The second term in Eq (4) re.presents the short-
range repulsive energy which is assumed to be made up of
two-body central interactions and three-body, bond-
bending interactions between near neighbors so that

8
= gn;P;(R;)+N (6)

R3 =R(M(1)—M(2)) =2ur,
R4 R(M(1)—M——(3))=(4s 2t+co)'~—

and four different anion-anion distances,

Rs ——R{O(1)—O(2))=V 3U,

R6 ——R(O(1)—O(4) }=(4U —2U+w)'~

R7=R(O(1) O(5))=—(U' U+w)'~—',
R s

——R {O(1)—O(6) }='(u'+ s )
' ',

(2a)

(2b)

(3c)

(3d) R=R;
(7a)

where P;(R;) is a pair potential for atoms with interatom-
ic distance R;, and n; =12, 12, 6, 2, 6, 6, 12, and 12,
respectively, for i =1—8. Since the exact forms of these

s are not known, we will assume for simplicity that
they are axially symmetric and define their first and
second derivatives in terms of dimensionless parameters,
3 sandB s, as

where all distances are in units of a with s =u r,
t = —,ur, and w =( 6r ) + —, . The numerical —values of the
structural parameters are listed in Table I for Vq03,
(Vp 9s5Clp p]5)2O3, and AiqO3. Also included in Table
are Madelung constants and their derivatives with respect
to the structural parameters which will be required for the
equilibrium conditions specified in the following section.

B. Parameters of the model

The potential energy per unit cell of the corundum-type
sesquioxides can be written, taking into account a partly
ionic and partly covalent nature of atomic bonding, as' '

BP;(R)
g3 ' R BR R =R.

l

where i =1—5 and the sport-range interactions for four
different types of oxygen pairs (i =5—8) are assumed to
be characterized by only two parameters, A5 and B5. The
latter is a reasonable approximation, because in most corn-
pounds it has been found' ' ' that the force constant
associated with short-range, anion-anion interaction is
much smaller than that associated with the usually dom-
inant cation-anion interaction. The second term in Eq.
(6), N, represents the three-body, bond-bending energy
which reflects the covalency of atomic bonding. In the
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valence-force-field approach, the harmonic part of this
term can be written as

C = , Q—HIJ.(R,J 68;~ )

where R,J ——(R;RJ)', O,J is the bond angle between R;
and RJ-, and the summation is over all possible 0-M-0
and M-O-M interactions. We will further assume that
the bond-bending force constant H J is a constant in-
dependent of equilibrium bond angle, i.e., a dimensionless
parameter H will be defined as H =(a /e )HI.

We have obtained the equilibrium'conditions by minim-
izing the total potential energy in Eq. (4) with respect to
each of four structural parameters (i.e., a, c, u, and v) as
follows:

z(M—+rM„) =(3v —3v+1)Bi+3v Bz+ —,84

+ ( —,' v —15v+ —', )85,

internal-strain contributions to the elastic constants,
respectively. The notation D ~p y y denotes the
nth-order derivative of the aPth component of the
dynamical matrix D(q;kk') with respect to qr, r atyl ''''yn
q =0 and the circumflex means that the macroscopic field
has been removed. In the above equations, U, is the unit-
cell volume, mk is the mass of the kth atom in the unit
cell, and co(A, ) and e(A, ) are frequency and eigenvector,
respectively, of the A,th optic mode at q=0. However, it
will suffice to restrict our attention to the optic modes
which are Raman-active because only these modes have
nonvanishing contributions to the second-rank tensor
F(A, ), defined in Eq. (13), and hence to the internal-strain
part of the elastic constants. '

The a-corundum structure has the symmetry of the
D3d point group, with its irreducible representations at
zone center for the optic modes given as

z =(3u —u+ —,', )Bi+3u Bz+2u 83 I =23) +332 +5E +22)„+232„+4E„, (14)

+ (6u —u + „)B~+,
'—85, — (9b)

2Mu 1z = (3u ——, )8i+ 3u82+2u83+ (6u —, )84, —(9c)
r2

z M, =(3v ——', )Bi+3vBq+( —,' v ——', )Bq, (9d)

where M„, M„, and M„are the derivatives of M with
respect to r, u, and U, respectively. The numerical values
of M, M„, M„, and M„ listed in Table I were calculated
by the usual Ewald method, ' in which the convergence
parameter was chosen for each compound by the cri-
terion that series in both the real and reciprocal lattices
converge at the same rate as much as possible.

In addition to the effective-charge parameter z, the
model contains eleven short-range parameters 3;, 8;, and
H, where i =1—5. However, the total of 12 parameters
can be reduced to eight independent, adjustable parame-
ters by imposing the equilibrium conditions [Eq. (9)] as
constraints.

C. Elastic constants and zone-center optical frequencies

and

[ay, 135]= g(mkmk )'~ D ' ' Iis(kk'),
8m'U, k

F p(A, )Frs(A, )
(aP, y5) =-

co'(A, )
(12)

/

F p(A, )= g g(mk)' D "„'p(kk') e„k (A, ) .
k', p k

(13)

The first three terms in square brackets and the last term
in parentheses in Eq. (10) represent the external- and

The elastic constants Czp y$ in. the rigid-ion approxima-
tion, as originally derived by Born and Huang' using the
"method of long waves, " can be expressed as

C~Ii rs = [ay, p5]+ [y13,a5] —[y5,ap]+(afj, y5), (10)

where

E II —C

EI

—c —d

—C

d
(15)

where the superscripts differentiate the degenerate modes
of the two-dimensional representation Es. Inspection of
Eq. (12) and the structure of F matrices in Eq. (15) show
that 3 ~~ modes make internal-strain contributions to the
elastic constants C~~, C~2, C~3, and C33 but not to C44 or
C~4, whereas Ez modes contribute to C]], C&2, C44, and
C~4, but not to C$3 or C33.

000
Q 0.

A
(g ( S] ) A)g ( Sp )

' Me tol

Oxygen

~ ~ ~
QOQ ~ 0-O-O- 000 0 0

~ Q ~ 0-
Eg ( S( ) Eg ( Sp ) Eg ( S~) Eg( S4 ) Eg (S5)

FIG. 2. The symmetry modes belonging to the Raman-active
species A j~ and E~ according to Cowley (Ref. 20}. Only the dis-
placements of atoms in the upper half of a unit cell are shown,
since those of atoms. in the lower half follow inversion symme-
try.

where the Ais and Es representations contain Raman-
active modes. The symmetry modes of these Raman-
active species are shown in Fig. 2, following the results of
a group-theoretical analysis carried out by Cowley on
the symmetry properties of the normal modes of vibra-

tion. The nonvanishing elements of F(A, ), which has the
same transformation properties as the Raman polarizabili-
ty tensor a(A, ), are indicated below for each representa-
tion:
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The frequencies and eigenvectors of Raman-active
modes, which do not have a macroscopic electric field as-
sociated with their vibrational motions, can be determined
without excessive labor by utilizing a set of symmetry
modes for each irreducible representation. By expressing
the eigenvector e as a linear combinations of all
symmetry-adapted vectors s belonging to the same repre-
sentation as

e(I i)= g c(l i, I j)s(rj),
j=1

where nr is the dimensionality of the representation I
and c(Ii,I j) is the coefficient, the eigenvalue problem
D'p'e =re e is reduced to further diagonalizations of
(2&&2) and (5&&5) submatrices, corresponding, respective-
ly, to A ig and Eg representations, of Db'= UtD ' 'U,
where U is a unitary matrix constructed by combining the
s's columnwise and D"' is the block-diagonalized dynami-
cal matrix. 25

Using the explicit expressions for D '
~, D "&r, and

D & ri, the elastic constants in Eq. (10) can be rewritten(2) 14

in terms of model parameters as

2

Cp„——
2v~ 0

5

z'Q„, + g (a„"Q;+P„'Q;)+y„~
"" Fq(I i)F (I i)

U, r; i rp(ri)

where )Lt, v=1—6 (in Voigt s notation). The first term in
large parentheses is due to the external strain and is a sum
of Coulomb and short-range contributions. The numeri-
cal values of the Coulomb coefficients, Q+„, are listed in
Table II. The short-range coefficients a&i'„', P&' and y&„
are geometrical factors depending on the structural pa-
rameters and are also given in Table II. In order to con-
serve space, Tables II—VIII wil1 contain values for

(Vp9s5Crpp&s)203 only. The double summation in the
second term, the internal-strain contribution, is over all
seven Raman-active modes (nr ——2 for I =His and nr ——S
for I =Fg), and Fz(ri) can be written as

Pg1

F„(r&)=pc(ri, rj)G„(rj),
j=1

with

2 5

G (rJ)= ' z'Q„(I j)+g [6„"(Ij)A;+e„"(rj)&;)+~„(rj)H

nt is the mass of an pxygeii atoiil and the coefficients c (ri, rj) w«e d«tned in Eq (16) The nume~ »
of the Cpulomb coefficients Q„and short-range cpefficients 5&', e&', and X& for the nonvanishing, independen«iements
of G(rj) [in accordance wjth fhe structure pf F matrices in Eq. (1S)] are»sted i»able III ««xyge symmet y modes
and in Table IV for metal symmetry modes. Finally, with the aforementioned (2X2) and (S&&5) submatrices of D be-

TABLE II. Values of the Coulomb coefficients (Q„„)and short-range coefficients (a„'„', p~„', and y„„)
for C„„of(VQ9s5Crpp»)q03. [Equation (17) shows how the coefficients occur in C„„.]

33

—7.515 99.173 —49.594 —114.234 —213.501 22.828

(1)
CXpv

(2)
CX~v

(3)tv
(4)

pv
(5)

&g v

p(5)

0.833
0.474
0
1.468
5.049

0.611
0.662
0
0.532
3.010

0.199
0.804

1.208

0.002
5.116
0.666
1.008
0
0.085
2.655

0.333
0.504

0
0.042
1.328

0.532
1.308
1.208

0.044
6.443

0.278

0.158

0.489
1;683

—1.721
—1.294

0
—2.489
—9.742

0.333
0.504

0.042

1.328
—1.777
—1.640

—2.042
—9.387

—0.058

—0.010
0.058

—0.144
0.010

8.247 10.796 2.921 —2.849 —5.398 0.365
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TABI E 111. Values of the Coulomb coefficients (Q„) and short-range coefficients (5„", sI', and A,„) for the nonvanishing, indepen-

ent elements of g„(1j) of (V0.98scro.ops)203 for oxygen symmetry modes. [Equation (19) shows how the coefficients occur in

G (I j).] For those symmetry modes in which only the oxygen atoms are in motion, 5I '=5„' =eI =&„=Of«»1P.
A (g(S)) Eg(S) ) Eg(S2) E,(S, )

39.653 —114.045 —90.715 —80.642 24. 175 —128.290 —170.551

g(&)

g(2)

g(5)

—0.513
0.593

—0.514

—0.307
0.946

—0.303

0.330
0
0.133

—0.217
0.669

—0.214

—0.256

0.297
—0.257

0.467
0
0.188

0.454

0.297
—0.574

(&)
G~

~(2)

(5)

—0.154

0.473
—0.152

0.307
—0.946

0.303

—0.330

—0.133

0.217
—0.669

0.214

—0.410
0.769

—0.409

—0.467

—0.188

—0.454
—0.297

0.574

1.894 —3.789 —2.392 —0.936 2.046 —3.134 —5.387 0.249

ing defined as d(A ~ ) and d(Es), respectively, the independent elements of these symmetric matrices, which upon diago-
nalization will give co (I i) in Eq. (17) and c (I i, I j) in Eq. (18), can also be expressed as a combination of Coulomb and
short-range contributions as

d„(I )=

where n =(aP) with a(P, i.e., n =1—3 for I =His and
n =1—15 for I =Ex. The numerical values of q„, g'„",
rI'„', and g„are listed in Table V for d(His) and in Table
VI for d(E&). The various Coulomb coefficients present-
ed in Tables II—VI were also calculated using Ewald's
method mentioned earlier.

III. DATA AND CALCULATION

The experimental values of the room-temperature elas-

tic constants were taken from Nichols and Sladek" for

I

V20&, from Yang et al. ' for (Vp 9s5Crp pi5)203, and from
Gieske and Barsch for AlzO3, while those of Raman fre-
quencies are from Fan et al. ' for V203 and
(Vp 9s5Crp p&5)203 (although only four of the five Es
modes were reported for these compounds) and from Por-
to and Krishnan ' for Al&O&.

The eight independent parameters of the model were
determined from a nonlinear least-squares fit to all avail-
able elastic and Raman data. This calculation was per-
formed on a computer using the International Mathemati-
cal and Statistical Library subroutine zxMwD, which min-
imized the sum of squares of the relative deviation of the

TABLE IV. The same as described in the caption of Table III, for metal symmetry modes. For
those modes in which only the metal atoms are in motion, 5„' '= e„"'=0for all p.

A )g(S2) Eg (S4) Eg(S5 )

—6.467 —28.121 27.521

g(1)

g(2)

g(3)

g(4)

0.347
—0.363

—0.198

0.208
—0.579
—0.871
—0.009

0.311
—0.204

0.061
0
0
0.672

—0.347

0.363
0
0.198

~(1)

~(2)

(3)

~(4)

—0.347
0.363
0
0.198

0.695
—0.727

—0.395

—0.311
0.204
0
0

0
0

0

—0.061
0

—0.672

—0.555

0.943
0.871
0.206

0.538 —1.076 —1.361 —0.812 0.017 1.123
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n:
(aP }:

—19.204

2
(2 1)

238.659

3
(22)

0.028

g(2)

g(3)

g(4)

g(5)

0.473

1 ~ 1 13

0
0
5.235

—0.320
—0.682

0.2 17

0.4 1 8

0.628

0.040
0

( 1)
gn

(2)
gn

(3)
gn

(4)
gn

(5)
gn

1.527

0.887

0
0
9.765

0.320
0.682

0
0
0

0.725

0.524

0
1 ~ 844

0

TABLE V. Values of the Coulomb coefficients
'

(q„} and
short-range coefficients (g('), 5}(„'), and g„) for the independent
elements of the symmetric (2 X2 ) matrix d ( A )s } of
(Vp.9()5Crp.p)5 }203. [Equation (20) shows how the coefficients
occur in d„(I' }.]

calculated and observed quantities with respect to a set of
unknown parameters. In the fitting process, we noted the
following.

( 1) The dimensionless quantities (2u, a /e )Cz„and
( mpa /e )co ( I i) were used to treat the elastic constants
and Raman frequencies on an equal footing.

(2) A considerably smaller weight was given to the C)4
elastic constant since the absolute value of C i4 is about
1—2 orders of magnitude smaller than those of other
C„s.

(3) The C44 elastic constant was not used in the case of
(V i „Cr„)203 since its anomalous temperature depen-
dence indicated that even at room temperature it is sig-
nificantly affected by the low-temperature structural
phase transition.

(4) The Ez mode not observed experimentally for V203
and ( V i „Cr„)203 was assumed to have the fourth-
highest frequency among Ez modes, in accordance with
the Raman spectra of other corundum-structured
sesquioxi des .

IV. RESULTS AND DISCUSSIONS

1 1.668 5.994 6.235 The numerical values of the elastic constants and Ra-
man frequencies, calculated from the best-fit parameters

TABLE VI. The same as described in the caption of Table V for the independent elements of the symmetric (5 X 5 ) m atrix d (Eg ).
It is noted that g'„' =9}'„'=g'„'= 9}'„'=0 for all n from 1 to 7 and g'„' =g'„' =3}'„'=0 for all n from 8 to 15.

n:
( aP}:

—3 1 .199

2
(2 1)

4 1 .308

3
(22)

15.580

4
(31)

—106.344

(32)

—58 ~ 143

(33)

—109.282

7
(4 1)

—95.933

g( ()

g(2)

g(5)

0.46 1

0.887

4.047

—0.496

—1.778

0.769
0.556

5 .476

0.496

0
0.085

—0.296

0.556
—0.172

0.769
0.556
2.050

0.340
0
0

. (&)
gn

(2)
gn

(5)
gn

1.539
1 ~ 1 13

10.953

0.496
0
1.778

1 .23 1

1.444

9.524

—0.496

—0.085

0.296
—0.556

0.172

1.23 1

1.444

9.950

—0.340

n:

(aP}:

g(1)

g(2)

g(4)

1 1 .892

8

(42)

166.9 12

—0.203
—0.382

2.20 1

9
(43)

—46.883

0.528
—0.382

0

13.928

10
(44)

23.101

0.362

0.262

0.922

1 .934

1 1

(5 1)

—168.757

0.227

0.482

0

—1.6 19

12

(52)

141 .843

—0.487

9.053

13,14
(53,54)

15

(55)

—0.03 1

0.362

0.262

.922

(1)
gn

(2)
gn

(3)
gn

(4)
gn

0.203
0.382
0
0

2.489

0.844
—0.991

0.34 1

0.580
0.680
0
0.962

5.388

—0.227
—0.482

—4.004

0.487

0
0
0
2.570

0.580
0.680

.628

0.962
5.722

g(3 ——0.338 and g(4 ——l.629.
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TABLE VII. Experimental and calculated C„„(inunits of 10"dyn/cm ) and cur(;) (in units of cm ')
for +203 (Vp.985Cro.p15)203, and A1203.

Expt.
V203

Calc. Expt.
( Vp. 985Cro.o15)20

Calc. Expt.
A1203

Calc.

C

C12

C14

27.1

34.0
8.5
8.2

14.7
—1.9

26. 1

31.7
10.2
8.7

13.6
—0.2

28.7
33.9
5.7

10.5
15.4

—0.3

28.7
30.9
10.9
10.6
14.5

—0.1

49.8
S0.2
14.7
16.3
11.7

—2.3

52.4
47.9
14.7
16.0
11.6

—2.2

(1)1g

~A (2)1g

COE (1)
g

~E (2)
g

~E (3)

~E (4)
g

~E (5)

234

501

210

296

327

595

243

562

217

247

317
378

652

249

516

210

310
337

2S7

572

222

253

337

408

655

418

645

378

432

451

578

751

420

674

382

413

460

534

772

of the model, are compared with experimental data in
Table VII for V203, (Vp9s5Crpp&5)203, and A1203. The
overall agreement between the calculated and observed
quantities is fairly good for all three compounds, the re-
sults differing by less than 10% for both V203 and
(Vp 9s5Crp pig)203 and by less than 5% for A1203 in most
cases. There are, however, a few exceptions in
(Vi „Cr„)203, including ioE (2), for which the calculated

values are about 15—20% smaller than the experimental
values, and, of course, C44, which was not considered in
the fitting process, as already mentioned in the preceding
section. The calculated values of C~ in (Vi „Cr„)203'
which are considerably larger than what were observed,
are, in fact, what one would expect if there were no low-
ternperature structural phase transitions in these corn-
pounds. It should be noted that the only previous attempt
to fit both the elastic constants and optical frequencies in
a corundum-structured sesquioxide was made by Iishi'
on Al203 using a simple short-range force model. Howev-
er, the values he calculated for the elastic constants were
not close to the experimental data. The reasonable success
of our model in reproducing not only the optical frequen-
cies but also the elastic constants, therefore, would imply
that the contribution from Coulomb interactions is signi-

ficant for the elastic constants as well as for the optical
frequencies. It is also noteworthy that in view of the rela-
tively worse overal1 agreement between the calculated and
observed quantities in (Vi „Cr„)203, which contains d
electrons, than in Alz03, an attempt was made to include
the effect of the presence of d electrons in the model for
(Vi „Cr„)@03. The simplest method was to replace the
1lr of the Coulomb interaction by exp( ar)/r, whe—re
u is the Thomas-Fermi reciprocal screening length due to
the presence of d electrons. However, the resulting modi-
fication of various Coulomb coefficients in the model for
several trial values of ar did not improve the fit signifi-
cantly in (Vi „Cr„)203. This is not too surprising con-
sidering the highly directional character of d-electron or-
bitals, and it seems that, to have any reasonable success at
all, one might have to consider an anisotropic screening
which would render the problem much more complicated
as well as introducing additional parameters into the
model.

The eigenvectors for each Raman-active mode obtained
from the least-squares fit are hsted in Table VIII for
(Vp 9s&Crp pi&)203. These eigenvectors, together with the
symmetry modes in Fig. 2, give information about the
vibrational mode of each optical frequency. The His

TABLE VIII. Values of the coefficient c (I i, Ij ) [see Eq. {16)]for the eigenvectors e{Ii ) determined
from the least-squares fit of the model for (Vp 985Crp p15)203.

A1 (1)
W,g(2)

S1

0.086
—0.996

0.996
0.086

S3 S4 S5

Eg(1)
Eg(2)
Eg(3)
Eg(4)
Eg(5)

—0.113
—0.116

0.576
—0.533
—0.598

—0.024
—0.111

0.303
—0.526

0.786

—0.047
—0.049
—0.749
—0.643
—0.146

—0.055
0.983
0.072

—0.1S7
0.008

0.991
—0.068

0.105
—0.034
—0.043



32 LATTICE-DYNAMICAL MODEL FOR THE ELASTIC. . . 6641

mode with lower frequency (A &~), for example, can be
described as a breathing mode in which the metal atoms
move toward each other along the c axis while the oxygen
triangle moves outward in the basal plane. In the higher-
frequency A ts mode (A |g), the inward motion of oxygen
triangle is in phase with that of the metal pair. These
descriptions of the A|g modes, which would imply that
the A |g mode produces a larger modulation of the trigo-
nal component of the crystal field than does the 2 |x
mode, are consistent with the interpretation of the
stronger relative intensity (or the larger magnitude of
the resonance enhancement in Raman scattering ) of the
A iz mode compared to the A i mode in Ti203.

The numerical values of the effective charge of the met-
al ion, ZM (=3z

~

e
i ), and various short-range force con-

stants derived from the best-fit model parameters for
VzOs, (Vp 9ssCrp p]s)pOs, and AlzOs, and AlqO3, are listed
in Table IX. First of all, in the case of A1203, one could
compare some of the results in Table IX with those from
other rigid-ion (RI) or polarizable-ion (PI) models, bearing
in mind the different approaches used in these models.
The effective charge of the aluminum ion, ZA&, has quite
a spread in its values: 1.67 in this model compared to
1.43 (RI, Iishi ), 2.05 (RI, Kappus ), and 1.80 (PI,
Lauwers et al. ' ). It is surprising but satisfying that the
value of 1.67 for Z&i compares most favorably with that
of 1.72 evaluated from the experimental TO-LO split-
ting in the infrared frequencies, despite the fact that
infrared-active modes were not considered in the present

model. The short-range force constants of A1203 are gen-
erally comparable in magnitude to those from other
models. The strong force constants associated with Al-0
bond stretching are 81.0 and 43.9 in units of e /a, or
1.74X10 and 0.94X10 dyn/cm, which are comparable
to the average value of 1.27X10 dyn/cm (RI, Iishi), but
are substantially smaller than that of 1.96X10 dyn/cm
(RI, Kappus) or 1.85X10 dyn/cm (PI, Lauwers et al. ).
The average force constant associated with the O-O repul-
sion, 19.2(e /a ) =0.41 X 10 dyn/cm, is larger than the
values of 0.16X 10, 0.09 X 10, and 0.07 X 10 dyn/cm
quoted by Iishi, Kappus, and Lauwers et al. , respectively,
while the force constants associated with Al-Al interac-
tions are by no means negligible in this model. This is un-
like the results of other investigators, who simply neglect-
ed them (Iishi and Kappus) or found no evidence for the
metal-metal interaction (Lauwers et al).

In the case of (Vi „Cr„)20s, as can be seen in Table
IX, the much larger values of ZM than in A120s, together
with the negligible values of II, suggest that these com-
pounds might be more ionic than A1203. While no other
estimates of the effective charge or ionicity of
(Vi „Cr„)20s to support the current results are available
in the literature, we note that Levine has extended the
dielectric theory of ionicity, developed by Phillips and
Van Vechten for the simple A 8 compounds, to
more complex crystals, including transition-metal com-
pounds containing d electrons. We have therefore utilized
Levine s method to estimate the ionicity of V203 from

TABLE IX. Effective charge of metal ion and various short-range force constants derived from the
best-fitting model parameters for V203, (VQ985Crpp]5)203 and A12O3. The values of Z~ are given in
units of

i
e

i
and those of 3;, B;, and H are in units of e la . Also listed is the ionicity, f;, for V203

and A1203.

ZM

V203

2.38

(Vp 985Crp pi5)203

2.08

A1203

1.67

0.86' 0.80b

M(1)-0{4)
Bi

139.7
—30.1

124.4
—25.2

81.0
—26.6

M(1)-O{1) Ap

B2
112.6

—24. 1

96.7
—18.6

43.9
—15.8

M(1)-M(2)
B3

—36.3
9.4

—15.0
5.0

25. 1

0.0

M(1)-M(3) A4
B4

—35.4
5.0

—252
3.0

5.8
1,0

O(1)-0{k) ' A5
B5

7.2
1.2

9.6
1.3

19.2
3.4

0-M-0
+

M-0-M
0.0 0.0

'Estimated following Levine's method (Ref. 38) with e„=3.75.
Reference 38.

'k =2, 4, 5, and 6.
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structural data and the electronic dielectric constant
e =3.75 determined from the reflectivity-spectra mea-
surements. ' This value of ionicity, f;, for V@03, is also
listed in Table IX, together with the ionicity of A1203
given by Levine. Although there exists no rigorous rela-
tion between ionicity and effective charge, it is clear that
f~ (Vq03) &f;(A1303 ) is consistent with the result of
current model: Zv & ZAt. It can also be seen from Table
IX that the short-range force constants of (V& „Cr„)203
crystals are quite different from those of A1203. The
M-0 stretching force constants (A 1 and A 3 ) of
(Vt Cr„)303, for example, are considerably larger than
those of A1203 despite the fact that the latter has the shor-
test M-0 distances among all the isostructural sesquiox-
ides. Certainly, one cannot expect close similarity be-
tween the force constants of the compounds considered
here because of large differences in the electronic configu-
rations of the cations. Although it is tempting to attri-
bute the strong M-0 force constants of (Vt „Cr„)203 to
the presence of d electrons, they might be a consequence
of relatively higher ionicities of M-0 bonding in these
compounds. On the other hand, the alloying of a small
amount of Cr303 into V&03 is seen to have the effect of
decreasing the effective ionic charge as well as of decreas-
ing the strength of most of the short-range forces. The
latter is in accordance with the interatomic distances of
(Vp 9s5CrQ Q$5}$03 being generally larger than those of pure
V203 Concerning the 3f-hI interactions in V&03 and
(VQ 9s5Crp p]5)203 it is of interest to note that, as can be
seen in Table IX, the force constants A3 and A4 ale nega-
tive while B3 and B4 are positive. In view of the defini-
tions of the A s and B s in terms of the second and first
derivatives, respectively, of the short-range potential with
respect to the interatomic distance R; [see Eq. (7)], it is
clear that the short-range potential for each of these M-M
pairs in the (V| „Cr„)303crystals cannot be represented
by a simple inverse-power (or Born-Mayer) repulsive po-
tential alone, but has to include an attractive term similar
to the van der Waals —type interaction commonly used
for molecular crystals. However, this sign reversal for
both A; and B; is not too unusual for a pair of like atoms
which are relatively far apart (i.e., beyond the nearest
neighbors), since similar results have been reported for the
F-F interactions in BaF2 (Ref. 43) and PbF2 (Ref. 44}, for

the Sn-Sn interaction in SnTe (Ref. 45), and for the Sb-Sb
interaction in NdSb (Ref. 46). On the other hand, the
positive values of B; for the M-M interactions in A1203
and for the 0-0 interactions in all three compounds do
not present a serious problem since they are negligibly
small and, in the case of 0-0 interactions, this may have
been caused by using only one set of parameters for all
four pairs of oxygens although the 0-0 separations of
these pairs are slightly different from each other. Also in-
teresting is the fact that the effective charge and most of
the short-range force constants for semiconducting
(VQ 9s5Clp pt5)203 have values in between those of metallic
V203 and insulating A1203, although it is difficult to
correlate microscopic force-field parameters with the de-
gree of itinerancy of charge carriers, if any, in these com-
pounds.

V. CONCI. USION

A lattice-dynamical model based on a rigid-ion approxi-
mation with an effective ionic charge and short-range in-
teractions between near-neighbor atoms has been used to
reproduce quite successfully not only the experimental
Raman frequencies but also the elastic constants of V203
and (VQ 9s5Crp p]5)203 as well as of A1203 ~ The effective
ionic charge of each of our (V~ „Cr„)203 crystals is
found to be substantially larger than that of A1203. This
result is consistent with the ionicity of V203, estimated
using an extended dielectric theory of Levine, being larger
than that of A1303. The short-range force constants of
(V) „Cr„)203 are found to be quite different from those
of A1203, probably due to the large differences in the elec-
tronic configurations of the cations. The alloying of a
small amount of Cr203 into V203, which is known to pro-
duce a metal-to-semiconductor transition but not to affect
the lattice properties significantly, is found to result in a
systematic variation in the effective charge and various
short-range force constants. The latter is attributed to the
changes in interatomic distances.
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