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Holes at CxaAs-Al„C'ra& „As heterojunctions in magnetic fields
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The effects of anisotropy of the valence-band structure and of the mixing of the heavy and light
holes on the Landau levels of the hole inversion layer in a normal magnetic field are studied. Some
of the crossings of the Landau levels which occur when anisotropy is neglected are removed when it
is included. While the measured multiple cyclotron-resonance frequencies are explained qualitative-

ly by our calculation, there is quantitative disagreement.

I. INTRODUCTION

Recently, the Landau levels for the topmost valence
subband in a p-channel inversion layer at a GaAs-
Al„Ga~ As heterojunction under a normal magnetic
field have been calculated independently by Bangert aiid
Landwehr' and by Broido and Sham. Both theories are
based on the Luttinger effective Hamiltonian for the
spin-orbit split valence bands. The interaction of the
heavy- and light-hole bands gives rise to Landau levels
that are unequally spaced and have a very nonlinear
magnetic-field dependence such that some levels actually
cross. The unequal level spacings give rise to a multiplet
of cyclotron frequencies at a particular value of the field
which are qualitatively similar to observation, but the
calculated frequencies are generally too high compared
with the measured ones. Broido and Sham have suggest-
ed that the discrepancy may be due to many-body interac-
tion.

In a calculation of the hole subbands, both groups in-
clude the band anisotropy between the normal direction
and the directions parallel to the interface, and the aniso-
tropy in the plane of the interface itself. Inclusion of the
in-plane or subband anisotropy results in the warped Fer-
mi surfaces shown in Fig. 2 of Ref. l and Fig. 3 of Ref. 2.
In determining the Landau levels, both groups, for simpli-
city, neglect the terms which produce this anisotropy. In
this paper, we study the effect of the subband anisotropy
on the Landau levels. In Sec. II the k p method with the
subband basis is used to determine the energy levels in
magnetic field, with the anisotropy effect included. In
Sec. III the calculated Landau levels are presented togeth-
er with a discussion of the effect of anisotropy. The resul-

where the t 2 I are the components of the vector poten-
tial.

Following Luttinger, we define the creation and annihi-
lation operators for the harmonic oscillator with frequen-
cy to, =eB/mc and cyclotron radius R, =&Pic/eB:

~2 &2

Note that m is the free electron mass.
The effective Hamiltonian in the presence of the self-

consistent inversion layer potential V(z) and the magnetic
field is given by

II.ff =Irr+0
Hr is the "isotropic" part of the Hamiltonian used in
Refs. 1 and 2:

Ht Ho(a, a,k, )+ V(z), ——
with

(4)

tant cyclotron frequencies are compared with experiment.
Section IV presents our conclusions.

II. THE SVBBAND k p METHOD

The 4&4 Luttinger Hamiltonian is used to describe
the four uppermost valence bands. If the normal to the
interface and the direction of magnetic field are taken to
be along the z axis, k, stands for the operator (I/i)a/az,
and the in-plane components, k„and k„stand for the
operators,

Ho(a, a t, k, ) =

R
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In Luttinger's notation, P, Q, Rf, and S have the follow-
ing expressions (in atomic units with hole energy mea-
sured as negative):

P= (k, +2co,a a+co, ),
2

Q= ( —2k, +2co,a a+co, ),
2

Rr ———v 3Tco,a, S=W6y3k, co,a,
17=-, (~3+~3) .

(Sb)

V(z) enters along the diagonal of matrix Hr. The Lut-
tinger parameters, yI, y2, and y3, and ~ are taken to be:
y) ——6.85, y2 ——2. 1, y3 ——2.9, and ~=1.2. Hq contains the
previously neglected anisotropy terms

H~(a, a )=

0
—Rg
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0
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0
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0

0

0

0

Pn k(x,y)=e' u„(y —R, k)

if we choose the gauge A=( —By,0,0). v„and n, label
the subbands and Landau levels of the product basis

Then, expanding the envelope functions in
terms of P„kg„j gives

FJ'= g /I' „J-Q„I f I .
v„n

Rz v3pco——,a, 1Lc = —,
'

(y3 —y2) .f2

In general, the four-component effective-mass wave
function has the form

1p'= QFJ'uj .
J

The Iuj J are the (J,mq) basis states for J= —,
'

(see Appen-
dix of Ref. 2), and j stands for the branch index of the
valence band complex, m& ———,', ——,', —,', ——,'. The I'J' are
the components of the column vector solution of H, ff.
The index s represents all the quantum numbers needed to
specify a state in the Landau level spectrum; i.e., it labels
an eigenstate of H, ff, and it consists of the set Ii,v, n, k j.
Here, i characterizes the nature of the subband as one of
two heavy-hole (h+, h —) and two light-hole (l+, 1 —)

solutions. If the band mixture (i.e., the off-diagonal ele-
ments) were reduced to zero, i would be identical to j, and
the characterization would be exact. v ranks the subband
for each i, n identifies one of an infinite set of Landau
levels for each (i,v), and k specifies one of the N-fold de-
generate states within each Landau level (i, v, n)

In the subband k p method, the set of eigenstates at
k„=k„=O is chosen to be the basis set for motion along
z. Denote these functions by Q„J(z). The motion parallel
to the interface is expressed in terms of products of har-
monic oscillator functions and plane waves, which take
the form

(G'" iH„iG"")-n „, (10)

so that only states whose Landau indices differ by multi-
ples of four are connected in a perturbation expansion of
the O'. Note that this coupling is independent of i and j.
H~ has been treated in second-order perturbation theory
in the three-dimensional case. In our calculation, we find
it easier simply to diagonalize a sufficiently large matrix
for the expansion coefficients in Eq. (8). We use perturba-
tion theory only to examine qualitatively the splitting of
the crossed Landau levels.

Consider the effect of Hq treated as a perturbation on
the eigenstates of HI given by Eq. (8). From Eq. (10), H~
has no diagonal elements in the HI representation. The
strongest coupling of two nondegenerate levels then
occurs between states whose Landau indices differ by 4.
A second-order energy shift of each level results. Nonde-
generate states whose Landau indices differ by 0, 8, 12,
16, etc., are coupled in higher order. The nonlinear char-

Taking the matrix element (F'
~
H, ff ~

F'), where F' is the
four-component vector, (F3/z F 1/z F1/z F 3/3), we ob-
tain a matrix equation for the A~ n J. The energy valuesv n„j.
and eigenstates are found by diagonalizing this matrix.
Note that 1I/' is a linear combination of the products of
@„J,Pn k, and uj. Therefore, i, v, n, which label an eigen-

state s are not to be confused with the labels of the basis
functions v„,n„,j.

At this point, let us consider the degeneracy
associated with each Landau level, (i,v, n). Since ct(1„k is

an eigenstate of a a with an eigenvalue that is indepen-
dent of k, i.e., ap„k (n„——)' $1n 11k, and a pn k

=(n„+1)' p1„+11k, the eigenvalues of H,ff must also be

independent of k. Each k specifies a unique orbit center
y11

——R, k which must lie within the y dimensions of the
interface. By the same argument used for the equally
spaced free-electron Landau levels, the degeneracy per
unit area of each level is then just the free-electron factor
N =eB/he.

Luttinger has found that when the anisotropy is
neglected (i.e., 1rc=0), the solution simplifies considerably.
Then, the coefficient A'„n J. has, for a given j and v„, only
one nonzero component in the whole range of n„values.
For example, at a particular value of v„and j= ——,, the
only nonzero component is for n„=n. Then, for the same
v„, at j = —, the nonzero component is at n, =n —2. At
j = —,', n„=. n —1 and at j = ——,, n, =n+1. Each n then
specifies a unique set of four running indices In„I and
ranges from —1 to oo. The p=0 envelope functions can
be expressed in place of Eq. (8) as the vector

u„

Gs
an 143,n-
fln + 1rt 4, n

with g1 „——g„A', 2 3/QI/J j etc.
For p&0, the anisotropy terms in Hz introduce more

nonzero n, components and consequently mix the unper-
turbed states O'. In particular,
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aeter of the unperturbed Landau levels results in many
level crossings. At a crossing, if the degenerate states
have Landau indices which differ by 4, then, by degen-
erate perturbation theory, a first-order energy shift lifts
the degeneracy. We expect that levels corresponding to
these states will be the most strongly mixed by the aniso-
tropy. For other coupled levels that cross, the energy
shift is of higher order.

0-40

B(T)
l2 l6

III. LANDAU LEVELS OF THE HOLE
INVERSION LAYER

As in Ref. 2, we consider the topmost hole level v=0,
i =6+ occupied to a hole layer density of 5)& 10" cm
The dopent in the GaAs is taken to be n type with a den-
sity of 10' cm . Bangert and Landwehr, in contrast,
take the GaAs to be pure. Also, they do not use the k.p
subband basis set. We use the same subband basis as in
Ref. 2, consisting of two heavy-hole and two light-hole
bands. Our result for the Landau level energies is valid to
three significant figures. Typically 12—. 17 harmonic os-
cillator functions are used. The p=0 energy levels check
with those of Ref. 2.

We classify the levels according to their prominent
character in the region of fields where the mixing is small,
and label them in the manner of Ref. 2. Figure 1 illus-
trates the anticrossing behavior of the 1 —and 5 + levels
caused by anisotropy. (Here, the shorthand notation 1—
refers to i =h —,v=O, and n =1, while 5+ is i =h +,
v=O, and n =5. Note that an error exists in the labeling
of the Landau levels of Ref. 2. Levels labeled 2 —and 3—
should be labeled 1 —and 2 —.) It is evident that the an-
isotropy removes the degeneracies at B—3.5 T and
B-8.5 T. Note that the levels with anisotropy included
are labeled according to the prominent character above
the degeneracy at 8.5 T. However, between 3.5 and 8.5 T
the character is reversed. Figure 2 displays several p&0
levels along with a trace of the Fermi level. The Fermi
level jumps between Landau levels at B =20.7, 10.4, 6.9,
5.2, 4.1 T, etc. Note first that the anisotropy terms tend
to zero as the field tends to zero, so that the p&0 Landau
levels converge to those for p=0 in the low-field limit.
Also, for a given value of B, levels with larger n shift
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FIG. 2. Landau and Fermi levels with anisotropy effect in-

cluded.

more since the matrix element in Eq. (10) goes like n. In
addition, in the region between 4 T and 8 T, the levels la-
beled 2 —,3 —,and 4 —are mixed strongly with 6+,
7+, and 8+, respectively, and below 4 T the prominent
character of these levels is actually 6+. , 7+, and 8+ .
Finally, note that levels whose indices differ by other than
multiples of four still cross.

The cyclotron frequencies are specified by the energy
difference between two particular states subject to the
conditions b.n =+1 [with anisotropy included, this condi-
tion must be relaxed because of the mixing of the states in
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FIT+. 1. Mixing of the 1 —and 5+ Landau levels. Dotted
(solid) lines correspond to the neglect (inclusion) of anisotropy.

FIG. 3. Measured cyclotron frequencies compared with
theory neglecting anisotropy. Experimental data from Ref. 4
shown as follows: solid circles are strong transitions, open cir-
cles are weak transitions. Theoretical results shown as follows:
solid lines are strong transitions, dotted lines are weak transi-
tions. Arrows indicate where the Fermi level jumps.
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tion between 1 —and 5 + . In both cases, the theoretically
determined number of transitions at a given value of mag-
netic field matches the experiment over the range of fields
below 12 T. The calculated frequencies, however, are still
much larger than the measured ones. A proper correspon-
dence between theory and experiment requires the
2+ —+3+ and 3+—+4+ transitions to be matched to the
lowest two sets of points and the 1 —~0—transition to
be matched with the upper set of points. Also, the corre-
sponding transition strengths do not match the data.

IV. CONCLUSIONS
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FIG. 4. Measured cyclotron frequencies compared with
theory including anisotropy. Symbols are defined in Fig. 3 cap-
tion.

Eq. (10)]. Transitions from completely filled to complete-
ly empty states are designated as strong transitions. All
others, some of which arise from partially filled levels, are
considered weak. The measured frequencies are taken
from the data of Schlesinger et al. Figure 3 compares
the measured frequencies with those of the p =0 case. In
Fig. 4 the measured frequencies are compared to those ob-
tained from the current work. Examination of Figs. 3 and
4 shows that with the inclusion of anisotropy, the
0—~1—transition exhibits the largest shift, while the
shifts for the 2+~3+ and 1 —~0—transitions are
comparably small. This is a result of the strong interac-

The' effect of subband anisotropy on the Landau levels
in a p-channel GaAs inversion layer has been examined.
This work includes a detailed study of the anticrossing of
the levels which results from the inclusion of band aniso-
tropy. This effect does not change the cyclotron frequen-
cies significantly except when the mixing between two lev-
els is strong. The calculated cyclotron frequencies are still
too high compared with experiment. We again conjecture,
as in Ref. 2, that many-body effects .in the hole plasma
may be the cause of this disagreement. The effect of an-
isotropy on the Landau levels in an undoped well is not
masked by many-body effects due to the hole plasma, and

may be relevant in determining exciton binding energies in
finite magnetic fields. A study of this effect on excitons
in the undoped quantum well in the presence of magnetic
field is planned.
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