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The integer quantum Hall effect is characterized by the observance of plateaus or steps in the
Hall resistance for certain regimes of density and magnetic field. These steps are centered about the
midpoints between adjacent Landau levels. The value of the Hall resistance at these steps is found
to be equal to h/ie . The two-dimensional (2D) systems that have been used previously to investi-

gate this effect have been relatively homogeneous within their boundaries. In the quantized Hall re-

gime the boundaries of these systems are equipotentials, with potential discontinuities occurring at
the boundary with the resistive contacts where current enters or leaves the sample. The investiga-
tions discussed here explore the interaction between differently characterized macroscopic 2D re-

gions in a given sample. These different regions are either quantized Hall regions of integer
Landau-level indices or nonquantized regions. The results show that the boundary of a 2D quan-
tized region is not necessarily an equipotential and that the interaction between different regions at
the boundary between two 2D regions is determined predominantly by the values of the Hall resis-
tance that characterize each region. As a result, the equipotential distributions for an inhomogene-
ous sample can be predicted. It is also shown that the current may cross the boundary between re-

gions anywhere along its length. This leads to the solution of the "two-terminal" quantized resis-
tance problem as potential lines are allowed to cross the boundary between a 2D quantized region
and the end contacts along the entire length of the boundary.

There has been a great deal of interest generated recent-
ly in the physics of quasi-two-dimensional systems, Two
startling new effects have been discovered in these systems
in the last five years. The first was the discovery of the
quantized Hall effect (QHE) in 1980.' This effect was
discovered on a two-dimensional system of electrons in a
Si metal-oxide-semiconductor field-effect transistor
(MOSFET). The MOSFET structure is shown in Fig.
1(a). The Hall resistance of these devices was found to ex-
hibit integer quantization, characterized by steps in the
Hall resistance equal to h lie, where i is an integer. This
integer i corresponds to the index of the filled Landau lev-
el about which the Hall step is centered. The second new
effect to be discovered was the fractional quantum Hall
effect (FQHE), discovered in 1982. This effect was
discovered in an extremely-high-mobility layer of elec-
trons formed in a GaAs-Al„Cxat „As heterostructure.
The Hall resistance in this system was found to exhibit
fractional quantization, characterized by steps in the Hall
resistance for certain fractional filling factors of the lower
Landau levels. A representative heterostructure device is
shown in Fig. 1(b).

The quantum-Hall-regime (QHR) state is marked by its
nearly lossless character and by its universality; the state
is observed in samples of widely differing mobility, im-
purity concentration, etc. Recent experiments by Fang
and Stiles have shown that the two-terminal resistance of
a region in the QHR is equal to the Hall resistance to at
least a few parts in 10 under usual conditions. These ex-
periments were followed by ones combining multiple con-
nections of a single sample to obtain rational fractions of
the basic quantized resistances. Together with the previ-
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FIG. 1. MOSFET structure and GaAs-Al„Gal „As hetero-
structure systems with their associated band-bending diagrams.
The 2D electron gas is denoted by 2DEG.

ously published results on multiple connections of isolat-
ed samples, these experiments show that the sample is in a
macroscopic lossless quantum state, where the quantized
resistance is due to an interaction on a microscopic scale
of the two-dimensional carriers at the interface with the
source and drain contacts. Thus, in the quantum Hall re-
gime, any two points on the perimeter will be at the same
potential unless current enters or leaves the sample be-
tween those two points. This is the basis for analyzing
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any set of multiple connections between QHR regions.
The results from these experiments raised man ues-

tions coconcerning the nature of the macroscopic state, and
how it is affected by inhomogeneities or by the existence
o . other states within the quantized region. These ques-
tions are the basis for the work presented here. The pri-
mary concern addressed is the effect of macroscopic vari-
ation in density across the sample. In addition to infor-
mation regardmg the interaction between regions of
di ering density, it was hoped that this set of experiments
would provide some insight into the nature of the special

Hall re
'

current-voltage profiles of samples in whi h th
'

d
a resistance can be observed. By the very nature of the

geometric independence of the QHE, the key to this spe-
cia relationship lies at the interface betweenween a region rn

e Q and other regions. In all previous experiments
on the AHE h, three-dimensional resistive regions were ad-
jacent to the quantum Hall region. The experiments

escribed here look at the interaction with other two-
dimensional states.

Ourur experiments were performed on specially prepared
devices with two distinct regions of different densities.
The devices were made with two different thicknesses of
oxide spanning either the length or width of a MOSFET
of Hall-bar geometry. The two basic sample designs
shown in Fig. 2 are the "series" regions where the boun-
dary between the two regions is parallel with the end con-
tacts, and the "parallel" regions where the boundary be-
tween regions is parallel with the sides of the sample. The
ratio of the two oxide thicknesses is about 4:3. At a given
magnetic field value, the variation of the gate voltage
sweeps the carriers through the Landau levels at different
rates, giving many different contiguous combinations of
quantized resistance regions and nonquantized regions.

At a magnetic field of 19 T and a temperature f 1 5 K
thehe gate voltage was swept and the state of the sample
monitored under constant-current conditions of 1 pA,
source to drain. For both types of devices the monitoring
included measuring two Hall voltages (one nearer the
source and one nearer the drain), the potential drops along
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FIG. 3. Experimental results for the case of parallel contigu-
ous regions.

both sides (proportional to p~) and the source-drain volt-
age.

The experimental results for the parallel regions are
shown in Fig. 3 along with a schematic of the device.
One of the first things to notice about this data is the
qualitative similarity between the potential drops along ei-
ther side of the sample. The drop along the side of either
region does not exhibit the Landau-level oscillations ex-
pected for that region alone. These V» oscillations con-
tain features from both regions and indicate that the in-
teraction between the regions is dominating the state of
the sample. This is most noticeable at the V~ minima as-
sociated with the two i =4 Landau levels. The data also
show a strong similarity between the two Hall voltages, as
seen in Fig. 3.

The experimental results for the series regions are
s own in Figs. 4 and 5 for both polarities of the magnetic
field, along with the device schematic. The Hall voltages
across each region exhibit the proper behavior for that re-
gion alone, with the separate Hall plateaus observed as ex-
pected. The V potential drop across the boundary be-
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FIG. 4. Experimental results for the case of series contiguous
regions with normal magnetic field polarity.
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FIG. 5. Experimental results for the case of series contiguous
regions with reversed magnetic field polarity.

tween regions is large on one side and much smaller on
the other. This behavior of the V potential drop across
the boundary is seen to switch sides when the magnetic
field is reversed. The source-drain (S-D) voltage is dom-
inated by the region of lower density, and therefore higher
overa11 resistance, as would be expected of series regions.

This set of data is very rich since it contains informa-
tion about the interaction between two quantized regions
(Q-Q'), a quantized region and a nonquantized region (Q-
NQ), and two non-quantized regions (NQ-NQ') for both
parallel and series configurations. The cases of interest
concern the interaction with quantized regions, either Q-
Q' or Q-NQ. Each of these cases will be analyzed
separately for the parallel and series configurations.

It was noted from our initial work on this subject that
our preliminary data could be explained by two models.
One model replaced the boundary between two different
contiguous regions by two isolated regions with an infinite
number of connections between them, and the other model
held that the interaction between the two regions was
determined by the relative values of p„» for the two re-
gions. The infinite-connection model was an extension of
the model for determining the potential distribution and
current paths for isolated quantized resistance regions
with arbitrary interconnections. This model is easily gen-
eralized to. include the case of multiple connections with
nonquantized regions, and is outlined in the Appendix.
One of the main consequences of this model is that the
current (and therefore equipotential lines) pass through
the boundary between regions in a very sma11 region at
one end of the boundary for the cases of interest where at
least one region is quantized. In the interactive-boundary
model the current and equipotential distributions are
determined by the relative values of p„» in the contiguous
regions. Hence, the current lines and equipotential lines
across the boundary along its length in proportion to the
relative values of p„» of the two regions. This model cov-
ers all quantized and nonquantized cases. The experimen-
tal results are analyzed with respect to these models.
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FICi. 6. Corrected value of the source-drain resistance of the
series regions compared to the Hall resistance of each separate
region when both regions are quantized at Vg =4.6 V.

In this case both regions have the same current flowing
through them, and we would expect the Hall voltage for
each region to be determined by the quantized resistance
of each region. This is observed for each region. The case
of two contiguous quantized resistance regions can be seen
at Vq

——4.6 V in Figs. 4 and 5. Here the thin oxide region
is at an i =8 Hall step, while the thick oxide region is at
an i =6 Hall step. The potential drop across the boun-
dary between regions is equal to zero on one side of the
device. The potential drop across the boundary on the
other side equals the difference between the Hall voltages
of the respective regions. This shows that the quantum
Hall effect in each region is separately determined by the
quantum state of each region. In addition, there is a very
small V potential drop across the boundary on the sides
of the sample due to a small nonzero value of p~ in each
region which is observable because of the low mobility of
these devices. When corrected for the nonzero value of
p the S-D resistance is equal to the Hall resistance of
the region with the lower-Landau-level index as shown in
Fig. 6. From this alone it is clear that the two regions are
not acting as independent series regions.

Both models agree with these observations for series
quantized regions, but give different views about the
current paths and equipotential distributions within the
device, as presented in the Appendix. The different distri-
butions are shown in Figs. 12 and 13 in the Appendix. In
the infinite-connection model all the current and equipo-
tential lines must pass through an "infinitely" small re-
gion of the boundary at one side of the device. In the
interactive-boundary model some of the current and equi-
potential lines can pass through the boundary anywhere
along its length while some must pass through the boun-
dary very near one side. This is due to the potential drop
across the boundary on one side of the sample. The ratio
of the current or equipotentials that can cross anywhere
along the boundary to the total current or potential drop
is equal to Op„»/ p„», where ~p„» is the Hall resistance of
the higher-Landau-index region and op„» is that of the
lower-Landau-index region.
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FIG. 7. The resistances and structure of quantum Hall resis-
tor "sandwiches. " The arrows in the structure at the top show
the current entrance and exit paths at the corners of each quan-
tized region.

Concurrent quantized regions are seen in Fig. 3 at
V~=3.6 V. This is the same configuration as with the
series regions where the thin oxide region is at an i =8
Hall step and the thick oxide region is at an i =6 Hall
step. The Hall resistance is seen to be equal to the resis-
tance expected at an i =8 Hall step. The potential drop
along both sides of the sample drops close to zero at this
step. When corrected for the nonzero p~ value of these
regions, the S-D resistance is equal to the Hall resistance.

Both models agree with these results for parallel re-
gions, and again give different views of the current paths
and equipotential distributions within the device. The dif-
ferent distributions for this case are shown in Figs. 12
and 13 in the Appendix. In the infinite-connection model
all the current or equipotential lines must pass through an
"infinitely" small region of the boundary on one end of
the device. In the interactive-boundary model the current
and equipotential lines are allowed to pass through the
boundary everywhere along its length.

It is worth noting that both models have current enter-
ing from the corner of the device and at the boundary be
tween the two regions of differing density on one side of
the sample. The amount of current entering at the boun-
dary is determined by the difference between the values of
p„z of the two regions. This ensures that each region has
the correct S-D voltage and Hall-current relationship (re-
quired by the QHE in each region), but raises interesting
questions about the nature of current injection into any
quantized regions. In the interactive-boundary model
there is no high electric field at this point as there is in the
corners of the device, yet current still enters there. If this
model is correct, we must either accept a lossless injection
of current at this point or allow the Hall angle associated
with this current to be something other than 90' over
some macroscopic region of the sainple. Either of these
options are'surprising results.

Regardless of which model is correct, the existence of
the current entering or leaving at the boundary gives us

the ability to create new quantum resistors of new deter-
minable values which have the same accuracy as the in-
teger quantum Hall resistors. -By stacking different quan-
tized regions in parallel, many different resistances can be
created as shown in Fig. 7. The examples shown here
show how quantized resistance "sandwiches" create an ef-
fective parallel resistance. For example, a parallel com-
bination of i =4,6,4 results in an i =4 current through
the whole device plus an "extra" current flowing only
through the i =6 region. This results in an effective Hall
resistance of an i =4 resistor in parallel with a resistance
equal to the difference between an i =4 and an i =6
quantum resistance.

II. A QUANTIZED AND A NONQUANTIZED RECi'rION

A. Series regions

The two best examples of the effects of a quantized and
a nonquantized region in series are the i =4 Hall steps
centered about V ——2.0 and 2.6 V as shown in Figs. 4 and
5. On one side of the sample the potential drop across the
boundary is equal to the difference between the Hall volt-
ages, just as in the case of two quantized regions. The
other side of the sample has no potential drop across the
boundary, but a small V potential drop is seen betwe|:n
the probes due to the nonzero value of p of the non-
quantized region.

Here the two models for this contiguous system give
very different predictions for the potential drop between
one of these pairs of probes near the boundary. They both
predict the same potential drop across the boundary on
the side where the drop is not equal to zero, but give dif-
ferent predictions for the V~ potential drop between
probes on the side where there is no drop across the
boundary. For both models the potential drop is due to
the nonzero value of p~ in the nonquantized region. The
different predictions arise from the different current paths
required by the two models as shown in the Appendix.
Unlike the interactive-boundary model, the infinite-
connection model requires all the current to pass through
a small region near one side of the boundary. The result-
ing approximate potential distributions are shown in Fig.
8 for both models and both cases of thin and thick quan-
tized oxides. These distributions are drawn for the case
where the value of p„z for the two regions is similar, as is
the case for two i =4 examples shown in Figs. 4 and 5.

When the thin oxide region is nonquantized the
infinite-connection model states that V„should be about a
factor of 2 greater than when the thick oxide region is
nonquantized for the same value of p of the nonquan-
tized regions. This difference is due to the different "en-
trance" and "exit" points of the current in the nonquan-
tized regions as shown in Fig. 8. The value of V„ for
these two situations is predicted to be about the same by
the interactive-boundary model since most of the current
is allowed to pass through the boundary anywhere along
its length. In reality, the ratio of p~ for a region charac-
terized by i &4 to a region characterized by i &4 is of the
order of 7:5 for these devices. This would mean that V„
should be about a factor of 3 greater when the thin oxide
region is quantized in the infinite-connection model, and
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of the respective i =4 Landau levels are indicated by the arrows.

about 7:5 in the interactive-boundary model. The experi-
mental plot of V„versus Vs (and corrected for the actual
position of the boundary relative to the potential probes)
is shown in Fig. 9. The ratio of the peak V„values for
the respective i =4 quantized regions is seen to be about
8:5. This is well below the factor of 3 required by the
infinite-connection model and is very close to the ratio of
7:5 required by the interactive-bouridary model. In addi- '

tion, Fig. 9 shows the experimental value of the source-
drain resistance (RsD) along with those values of RsD
calculated from the observed V potential drop. It shows
that RsD can be closely calculated from the interactive-
boundary model, but is overestimated by the infinite-
interconnection model.

Three important examples of a nonquantized region in
parallel with a quantized region are shown in Fig. 3 at
Vg

——1.25, 1.6, and 4.8 V. The first two examples corre-
spond to the i =4 Hall steps of the thin and thick oxide
regions, respectively. The last example corresponds to the
i =8 Hall step of the thick oxide region. For all these ex-
arnples the potential drop along the side of the nonquan-
tized region is larger than the drop on the side of the
quantized region. The example at Vz

——4.8 V shows this
difference especially well, and the two examples at
Vg =1.25 and 1.6 V show how the potential drops along
the thin and thick regions switch character as the quan-
tized region switches from the thin to the thick region.
This general character would not be expected in the
infinite-connection model, where this potential drop
would reflect only the characteristics of the region they
are probing. For this model, as with a noninteracting one,
we would expect the potential drop along one side to only
give the quantum oscillations of the region they are
directly probing.

The infinite-connection model would also predict a
lower value of the potential drop along the nonquantized
side of the sample at Vg =4.8 V than at 1.6 V due to the
smaller value of p in between the higher Landau levels.
Again, the infinite-connection model does not correlate
well with the observed data.

The interactive-boundary model predicts exactly what
is observed. As noted in the Appendix, the magnitude of
the V~ potential drop along the nonquantized region de-
pends on the ratio of p„~ of the quantized region to the ef-
fective value of RsD of the nonquantized region (as if it
were not contiguous with any other regions). Smaller
values of RsD of the nonquantized region would result in
a larger V potential drop measured along the side of the
nonquantized region. At 4.8 V in Fig. 3 the ratio of RsD
for the nonquantized region to p„~ of the quantized region
should be much smaller than at 1.6 V. This would give a
larger potential drop at 4.8 V than at 1.6 V, and agrees
with the data. For this case, both values of RsD (1.6 and
4.8 V) of the nonquantized region are probably larger than
the value of p„~ ior the quantized region, and the value
the source-drain resistance for the whole device should be
equal to the quantized-region resistance. Again, as seen in
Fig. 3, this is essentially what is observed.

The results at lower fields also support the interactive-
boundary model. Figure 10 shows the Hall resistance as a
function of gate voltage for one of these parallel region
devices at a magnetic field of 8 T and at a temperature of
1.2 K. At V~ =1.7 V the thin oxide region has filled the
i =8 Landau level, and the Hall step is seen at the correct
resistance value. At V~ =2.2 V the thick region has filled
the i =8 Landau level, and a change in slope of the resis-
tance is seen, but it is at a lower value than the i =8 Hall
step. This indicates that the Hall voltage is a strong func-
tion of position along the channel when the thick region is
quantized. The low value of this latter I, =8 Hall resis-
tance is due to the low value of p~~ and p~ of the thin re-
gion, and is predicted by the interactive-boundary model.

To summarize the results from the contiguous regions,
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FIG. 10. Hall resistance versus gate voltage for a parallel-
region device at a magnetic field of 8 T. The Hall step occurs at
the correct value when the thin region is quantized, but not
when the thick region is quantized.

the model where the boundary is represented by an infi-
nite number of connections between isolated regions is
clearly inadequate. The model where the interaction be-
tween the regions is determined primarily by the relative
values of p„z of the two regions does a very good job at
correctly predicting the data. This model allows current
to pass through the boundary between the regions, and
shows that the boundary of a quantized region is not
necessarily an equipotential. The success of this model al-
lows the equipotential distribution in the quantum Hall
regime to be predicted for a sample whose density varies
with position in the sample, giving equipotential distribu-
tions similar to those shown in Fig. 13. In the quantum
Hall regime, the current path stays in the region of
minimum p for a sample with inhomogeneities. The re-
sults from the analysis of these contiguous regions also
predict the ability to make parallel "sandwich" devices
whose Hall resistances are calculable rational fractions of
the quantum Hall resistance. These fractional Hall resis-
tances from contiguous regions are predicted to be con-
stant with the same precision as the integer Hall resis-
tances, currently about 0.01 ppm.

III. DISCUSSION OF "TWO-TERMINAL"
QUANTIZED RESISTANCE

As a result of the success of the interactive-boundary

p~ model, we can attempt to explain the anomaly of the
"two-terminal" quantized resistance. The anomaly lies in
the fact that one observes the source-drain resistance to be
equal to the quantized Hall resistance to within several
parts in 10 . The usual picture of the QHE in a Hall-bar
sample has the current entering and leaving at the corners
of the quantized region, where there is a high local elec-
tric field, into the contacts. Using appropriate values for
the resistivity of doped n+ contacts, a simple spreading
resistance calculation will show that one needs the current
to enter the contacts from the two-dimensional (2D) re-

gion over a space of about 10 to 100 pm in order to ex-
plain the data. This is clearly no longer possible if the
current leaves at the corners of the devices. The key to
explaining this comes from the interactive-boundary
model, where the boundary of the 2D quantized region is
not necessarily an equipotential. The region outside the
boundary of the 2D quantized region will probably make
some smooth transition to three-dimensional (3D)
behavior. If the immediate area of the 3D contact outside
the quantized 2D area has a certain effective 2D value of
p~ and (low) mobility, then in a magnetic field the region
will be characterized by p~~ =p~pH as well. The results
from the contiguous-region experiments show that
the equipotentials (and thus the current) can cross the
boundary between regions in relative proportion to the ra-
tio of the two values of p ~ of the regions. For certain
contacts, this will. allow the current to enter the contact
area from the 2D quantized region over a broad length,
giving a two-terminal resistance close to the quantized
Hall resistance.

It is interesting to note that the two-terminal quantized
resistance would not exist for samples with very-low-
resistivity contacts corresponding to high doping levels.
Such samples would be characterized by a very small
value of p„~ in the contact just outside the quantized re-
gion, and most of the current would leave at the corners
of the samples. This would give a large series resistance
due to the spreading resistance of the contact, resulting in
a two-terminal resistance quite different from the quan-
tized resistance. This is observed in samples we have
made where the doping of the n+ contact was very high.
These samples give a two-terminal resistance which is
several hundred ohms larger than the quantized resis-
tance. In addition, this series resistance should be larger
at the lower-Landau-level indices due to the larger
mismatch in p~z values, and has been observed.

APPENDIX: MODELS FOR CONTIGUOUS REGIONS

1. Multiple-connection model

This model is an extension of the multiple-connection
scheme for isolated regions. ' The two regions are
represented as isolated regions with an infinite number of
connections along one edge that represents the common
boundary of the regions. This model is presented for the
case of closed-geometry devices (e.g. , Hall bars) as this is
the more illustrative case, with open geometries (e.g. , Cor-
bino disks) giving little in the way of observable predic-
tions. The model relies on the discontinuity in potential
at any point on the perimeter where current enters or
leaves the region to determine the equipotential distribu-
tion at the boundary. The potential difference across any
entering or leaving current element is equal to Ip„~ re-
gardless of whether the region characterized by p~„ is
quantized or nonquantized. Multiple connections of
quantized regions therefore reduce to simple comparisons
of potentials on the perimeter, and are easily calculated.
These results can be easily extended to any case involving
nonquantized regions. For all cases, the boundary is
represented as a collection of n interconnections as shown
in Fig. 11.
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FIG. 11. The representation of the boundary between regions
as given in the multiple-connection model.

where Rz is the quantized resistance for region 3, and in
all the above equations f is the ratio of the Landau-level
index associated with region 3 to the Landau-level index
associated with region B.

For any differing contiguous regions this model would
predict the following: (a) the current at the boundary
would all pass through a very narrow channel (becoming a
point as the current tends to zero) at one side of the sam-
ple; (b) the S-D resistance of the configuration would be
the quantized resistance of the lower-Landau-level-index
region; and (c) the'Hall resistance for each region would
be the quantized resistance expected for that region.
These results are shown pictorially in Fig. 12.

(ii) Parallel regions The .current iz in the jth intercon-
nection relative to the total current ip through the config-
uration is

a. Taboo quantized regions

(i) Series regions. The current ij in the jth interconnec-
tion relative to the. total current i p through the configura-
tion is

l+f+f'+ +f""
voltage Vz following the jth interconnection relative to
the S-D voltage Vo is

l+f+ +f'
l+f+f'+ +f"

and the Hall resistance as well as RsD is

l+f+ +f"
l+f +f'+ +f""

'tot

FIG. 12. Approximate equipotential distributions as given by the multiple-connection model. Series and parallel regions are shown
for both cases Q-Q (both regions quantized) and Q-NQ (one region quantized, one nonquantized}.
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where f is the ratio of the Landau-level indices of regions
A and 8.

For any differing contiguous regions this model would
predict the following: (a) some current enters into the
higher-Landau-index region directly from the source [the
amount is equal to Vo/px&(A) —Vp/px&(8)]; (b) the
current in the lower-index region is all directed into the
higher-index region within a small region at the boundary
near one of the end contacts; and (c) the Hall resistance
and RsD are equal to the quantized resistance of the
higher-index region. These results are shown pictorially
in Fig. 12.

It is worth noting at this point that this model makes

an odd prediction for the case of f= I (same quantized
region in both halves of the device). In this case the
current in each interconnection is predicted to be equal to
i„=in/n .This says the current would be uniformly dis-
tributed perpendicular to the sides of the device (for this
parallel case), while we know it will be parallel to the sides
for a long device. Furthermore, it sets up a linear poten-
tial profile along the boundary from the source to the
drain, which is also contrary to the expected results.
These problems are inherent to this model since we are
trying to represent an internal phenomenon by creating
artificial boundaries.

RNQ
SD

Q
p xy

NQ Q
SD ~pxy

pNQ ( pQ

SD )& P
pNQ ( pQ

FIG. 13. Approximate equipotential distributions as given by the interactive-boundary model for both series and parallel cases.
For parallel regions in the Q-NQ case (one region quantized, one nonquantized) the distribution also depends on the value of p~ of
the nonquantized region as shown through the effective value of the source-drain resistance of the nonquantized region.
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b. A quantized and a nonquantized region

The extension of this model to a quantized and a non-
quantized region is fairly simple. We will look at the case
where the number of interconnections n is very large,
which probably best represents the contiguous boundary.
In the previous case of two quantized regions, the current
was found to be directed between regions within a small
region near the end (parallel case) or side (series case) of
the sample. It is important to determine how a contigu-
ous nonquantized region affects this result. The resistive
drop between interconnections is very small compared to
the discontinuity in potential due to the difference in p„»
between the regions. This is easily shown to be the case
by noting that the resistive drop between current elements
is p„„(x/w), where x/w becomes very small as the num-
ber of connections increases, while the potential discon-
tinuity is not a function of the distance between current
elements. So the current is still directed between regions
within a very small region at the boundary. Only in the
case of equal values of p„» for the two regions will the
current in these connections become small, and this is not
the case of interest.

For series regions we still have the correct quantized
Hall resistance in the quantized region and a similar
current distribution at the boundary. For parallel regions
we have a similar current distribution at the boundary,
but the Hall resistance is equal to the resistance of the
quantized region only if it is less than the value of p„» of
the nonquantized region. This last point can be seen by
noting that the solution of the isolated multiple connected
regions is dominated by the region with the lower value of
p„„. The approximate equipotential distributions for both
parallel and series regions are shown in Fig. 12 for a par-
ticular polarity of magnetic field.

2. Interactive-boundary p„„model

a. Two quantized regions

In this model equipotential lines and therefore current
lines are allowed to cross the boundary between regions
anywhere along its length. The interaction between re-
gions is determined primarily by the relative values of p~z
of the contiguous regions. The model is again presented
for closed geometries (e.g. , Hall bars) for comparison.
The case of open geometries (e.g., Corbino disks) is a trivi-
al extension of the properties of the closed-geometry case.

(i) Series regions. In this model there is a potential
discontinuity across the boundary between series regions
which is equal to I(p„"»—p„»), where I is the current
through the entire device and the superscripts A and B
refer to the two contiguous regions. The "interactive"
boundary allows current and equipotential lines to cross
the boundary between regions, but some of the current is
forced to pass through a small region on one side of the
boundary. The current that passes through this narrow
region is then equal to I(1—p„"„/p„»). The rest of the

current is free to pass through the boundary. This situa-
tion is shown in the equipotential distribution depicted in
Fig. 13. Each region is still characterized by its respective
quantized Hall resistance.

(ii) Parallel regions. The behavior for this situation is
complementary to that of the series regions. Each region
of the series configuration has the same current passing
through it, with a resultant potential discontinuity across
the boundary on one side of the device. Here both regions
have the same voltage across them (source to drain) with a
current discontinuity across the boundary on one end of
the device. These properties are basically due to the fact
that the current-voltage relationship in each region must
correlate with the quantized resistance for that region.
The equipotential distribution for this case is also shown
in Fig. 13. This distribution looks very similar to that ex-
pected for a single quantized region since both regions are
quantized. The only difference is that here current is in-
jected into the sample at the boundary between regions on
one end as well as at the corners of the device. The Hall
voltage is just the Hall voltage expected of the region with
the lower-Landau-level index.

It should be noted that current enters the sample at the
boundary between regions without any accompanying lo-
cal high electric field just inside the 2D region. This is an
unexpected result and raises questions about the current
distribution in a single quantized region, since this situa-
tion allows current to enter the quantized region with al-
most no resistive loss at the 20 contact boundary.

b. A quantized and a nonquantized region

(i) Series regions. This situation requires virtually no
alteration from the results for two quantized regions. The
potential discontinuity across the boundary is always
equal to the difference between the p„» values of the
respective regions, whether quantized or nonquantized.
That part of the current which is constrained to pass
through a small region near one side of the sample is cal-
culated the same way as with two quantized regions. The
equipotential distribution for the case of a quantized re-
gion contiguous with a nonquantized region is shown in
Fig. 13.

(ii) Parallel regions. The equipotential and current dis-
tributions for this case are determined by the relative
values of the source-drain resistance as calculated
separately for each region. For the quantized region this
is just p„». For a nonquantized region RsD is a function
of both p~ and p~, which can be approximated as

RsD=p~»+p~l/w .

This is a very good approximation for long samples and
not too far off for wide samples. The situation for these
parallel regions now divides naturally into two separate
cases: (1) p„» of the quantized region is less than RsD of
the nonquantized region, and (2) p„» of the quantized re-
gion is greater than RsD of the nonquantized region.

In case (1) no current enters the device at the
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boundary between regions, and all the current from the
nonquantized region crosses the boundary into the quan-
tized region. The distance over which all the current
enters the quantized region and beyond which there are no
more equipotentials intersecting the side of the nonquan-
tized region is determined by the size of RsD of the non-
quantized region. The situation represented by this case is
shown in Fig. 13 for two values of RsD of the nonquan-

tized region.
In case (2) some current enters the device at the

boundary between regions, with the amount depending on
the difference between RsD for the nonquantized region
and p„~ for the quantized region. In this case there are
equipotentials throughout the nonquantized region, as
shown in Fig. 13.
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