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Generation of charge-density-wave conduction noise by moving phase vortices
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A moving phase vortex at the end of a charge-density-wave conductor plays an essential role in
the conversion of condensed carriers to free carriers. Under sliding conditions the periodic nu-
cleation and destruction of these vortices generates the voltage oscillations (narrow-band noise) ob-
served in these conductors. The role of free carriers in the noise generation is emphasized and the
calculated ac voltage amplitude is compared with experiment. The exponential decay of the ac elec-
tric field away from the contact is determined by the "phase-slip" length which also determines the
"rigidity" of the sliding current. A general discussion of the role of phase slips and dislocations in
inhomogeneous geometries is given. Results from sample-length-dependence studies and thermal-
gradient experiments are discussed. Competing theories for the noise based on interaction with ran-
dom impurities are surveyed and their predictions compared with known experiments.

I. INTRODUCTION

A growing number of inorganic quasi-one-dimensional
compounds has been shown to possess very interesting
transport properties related to the depinning of the
charge-density wave (CDW) by an applied dc electric field
E. ' One of these properties is the appearance of well-
defined spontaneous voltage oscillations ("narrow-band
noise") when E exceeds the threshold ET for depinning of
the CDW. Fleming and Grimes first observed the oscil-
lations in NbSe3. Aside from this compound narrow-band
noise has been reported in TaS3 (both orthorhombic and
monoclinic polytypes), in (TaSeq)2I, and (NbSe4)3 33I, and
in blue bronze, Ko 3Mo03.

Early models ' of the noise regarded the oscillations as
arising from periodic modulation of the bulk CDW velo-
city by its interaction with the impurities. (A survey of
these models is given in Sec. VI.) Some recent experi-
ments, however, have shown that the origin of the noise is
localized at the ends of the sample rather than in the bulk.
In particular, Verma and Ong (VO) showed that in a
thermal gradient the fundamental frequency in the noise
spectrum splits into two sets which change in frequency
in accordance with the local temperature at each end. In
an earlier experiment it was also shown that the silver
paint contacts which normally envelop a large portion of
the sample divide the uncovered portions into indepen-
dently oscillating segments. In the region under the paint
the CDW is pinned because of the reduction of the field
strength along the chain direction. At the interface be-
tween the pinned and depinned CDW segments phase
slippage accompanied by conversion of condensed to free
carriers occurs. In this paper we propose a mechanism
for this conversion process and discuss how voltage oscil-
lations arise naturally from such phase-slip processes. To
relieve the conflict of different phase-winding rates on the
two sides of this interface we propose that a train of vor-
tices moves perpendicular to the CDW current. (The vor-
tices are equivalent to edge dislocations in the superlattice.
The motion of the dislocations along the CDW wave front

corresponds to "climb". ) We emphasize the role of the
moving vortices in converting condensed electrons to free
carriers, and describe how the nucleation or annihilation
of these vortices at the sides of the sample induces abrupt
changes in the ratio of CDW current to free carrier
current. The changes in the free carrier current in turn
cause jumps in the electric field near the contacts which
are observed as voltage oscillations. Our model is a par-
ticular realization of Anderson's general considerations
on phase slippage in condensed systems when different
phase-winding rates of the order parameter N& and Nq are
imposed in two regions 1 and 2 of a sample. To relieve
the phase conflict a train of vortices crosses a line joining
l and 2 at a rate X, given by 2', =@&—+2. A related
model on CDW noise generation by phase slippage intro-
duced by Gor'kov' will be compared with our model in
Sec. VI. Recently, Fisher" has discussed length scales in
the CDW conduction problem. Our discussion which
focuses on the role of moving dislocations and phase slip-
page in noise generation may be viewed as complementary
to Fisher s description, which neglects the effect of dislo-
cations or other mobile defects in the superlattice.

II. PHASE SLIPPAGE AND CURRENT CONVERSION

First, we assume that the sample extends infinitely in
the x-y plane and is of thickness b along z. Variations
along z will be suppressed. The highly conducting axis of
the sample is oriented along x so that the CDW conden-
sate when depinned moves only in the +x direction re-
gardless of the orientation of the local electric field E.
For simplicity we consider the antisymmetric case in
which CDW current I, is approaching the y-z plane (S)
at the origin from both the x ~0 and x &0 directions
(Fig. 1, upper figure). Since the total current is zero in
both x & 0 and x &0 regions a net current of free carriers
I„must Aow away from S along both x directions. Thus
S is a sink for condensed charge and a source for free car-
riers. In the vortex model, charge conversion proceeds by
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tal CDW current

I, =b f dy J, =(n, e/Q)buvm. . (4)

((= ~

FIG. 1. (Upper figure) A phase vortex (cross-hatched circle)
moving with velocity U& represented as an edge dislocation in
the superlattice. Solid lines are the phase contours of the
charge-density-wave (CDW) order parameter. In this hypotheti-
cal situation CDW current (open arrows) Aows towards the sur-
face S while free carriers flow (solid arrows) away from S.
(Lower figure) The idealized geometry used in the calculation.
The lines y =0, y =a represent the sample sides. The sample is
covered with conductive paint for x &c. In the region x &0
(x &0) the CDW is pinned (moves to the right. ) At S the CDW
current is converted to free carriers which are swept into the
covered region x & c.

n, e y —U~t
ps= 2Q X + (y —Uyt)

n, e

Q X + (y —Uvt)

Uyx

(2)

(3)

The interpretation of Eqs. (2) and (3) is straightforward.
As the vortex moves along the y axis it piles up condensed
charge ahead of it, while leaving a region of depleted
charge behind so that the charge distribution is dipolar.
Condensed charge flows towards S to fill in the channel
dug out by the passage of the vortex in such a way that
the continuity equation is satisfied. For the infinite
geometry J, is symmetric (antisymmetric) about the x (y)
axis. Integrating Eq. (3) over all y and z we obtain the to-

the motion of a vortex (or an edge dislocation in the su-
perlattice) moving perpendicular to the direction of I, .
For definiteness we describe the sole vortex (which is
oriented along z and moving with velocity Uz along y) as
the phase singularity

N„=tan '[(Up t —y)/x] .

Using the relation for the condensed charge density

p, = ( n, e /Q) BN„/Bx and the CDW current density
J, = —(n, e/Q)B@„/Bt (where n, e is the condensed charge
density, n, e the uniform condensate density, and Q is the
CDW wave vector) we calculate the charge and current
distribution around the vortex

In a time t the vortex moves a distance Uzt and converts
an amount of condensed charge equal to U~tbk, n, e(where
A. is the CDW wavelength). It is readily verified that this
equals the amount of condensed charge transported to-
wards Sin time t by the currents I, in the x &0 and x &0
regions. At steady state the normal current I„which re-
moves the free carriers from S to equal and opposite in
sign to Eq. (4). [Because of the extreme anisotropy of the
CDW conductance tensor the two quantities J, and J„
(the free current density) cannot be equal. Near S J, is
sharply peaked at the vortex position whereas the J„and
p„(the free carrier density) are rather more uniform be-
cause of the finite transverse conductivity for the free car-
riers. ]

Returning to a more realistic geometry we now let the
sample boundaries be at y =0 and y =a (Fig. 1, lower fig-
ure). The paint contact covers the region x & c. [For con-
venience we keep S (defined as the surface x =0) distinct
from the paint boundary x =c. This distinction is not
essential to the argument. ] Due to the shunting effect of
the conductive paint E in the region x &c is much re-
duced from its value in the uncovered regions. The CDW
is pinned in the region x & 0 while in the region x ~0 it
slides towards S with a drift velocity UD. Therefore S
again serves as a sink for condensed charge and a source
for free carriers. In contrast to the previous symmetric
case all the free carriers are swept into the contact by the
applied field. Since in all systems studied as yet the CDW
current in the bulk is accompanied by a current of free
carriers (either thermally activated as in TaS3 and
Ko 3Mo03, or arising from unnested portions of the Fermi
surface as in NbSe3) we assume there is a finite bulk free
carrier current I„b. Then, by current conservation we
have I =I„b+I,=I«, where I is the current under the
contacts and I„, is the total current in the sample, i.e., at
S the free carrier current undergoes a jump in magnitude
to compensate for the vanishing of I, [Fig. 2(a)]. For
small I, a single vortex moving along x =0 converts the
condensed charge into free carriers at a rate determined by
the vortex velocity U~. Although at steady state the total
current flowing into S matches the outflow, there exists a
charge buildup qT at S which is determined by balancing
the conversion rate against the ohmic conductance near S.
(We shall call the charge buildup a conversion bottleneck. )

As E is increased, condensed charge is carried to S at a
higher rate which can be accommodated only to a limited
extent by an increase in the vortex velocity u~. Eventual-
ly the system finds it more favorable to spontaneously nu-
cleate a new vortex at y =0. The (nonlinear) I- V curve
with N vortices inside the sample is clearly different from
that with %+1 vortices because of the different conver-
sion rates. The different I Vcurves are shown-as parallel
branches in Fig. 2(b). As a vortex is injected or removed
from the sample the system jumps from one intersection
of the "load line" with the family of I Vcurves to anoth--
er. [If the total current is held constant the load line is
horizontal as shown in Fig. 2(b).] The steady state voltage-
undergoes discrete jumps of magnitude proportional to
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FIG. 2. (a) Schematic plots of the magnitude of the (steady-
state) charge-density-wave current I, (bold line} and the free car-
rier current I„(thin line) versus distance along the sample axis x
when the number of moving vortices in the sample equals N.
At S, I, vanishes and I„ increases to keep the total current con-
stant. The dashed lines are the values of I, and I„when N in-
creases by 1. (b) The family of nonlinear I- V (current-voltage)
curves of the CDW, with each branch corresponding to a dif-
ferent number of vortices in the sample. A background free car-
rier current is also present. The intersection of the load line
(which is horizontal when the total current is constant) with the
I- V curves determines the observed V. At high field the inter-
section point jumps back and forth between two adjacent
branches.

the normal resistivity.
The simple expressions in Eqs. (1)—(4) are no longer

valid due to the distortions at the boundaries y =0 and

y =a. However, the charge conservation arguments still
apply and one may conclude quite generally that Eq. (4)
holds in the region x & 0 with an extra factor of 2 (due to
the fact that the charge flow previously carried by I, no
longer exists in the region x &0). Thus,

I,=2(n, e/Q)burm=n, ekbvr. (5)

and in general the change in the CDW current caused by
the nucleation of one vortex is

I, =2(n, e/Q)bvr M&„,

where in Eq. (6) we have introduced the phase jump

b&„=C&„(y=a) —@„(y=0) .

(6)

Equation (6) may also be obtained by integrating Eq. (3)
over y. It implies that when a vortex nucleates at the site
(x,y)=(0,0) at time t =0 the phase difference jumps by
m., inducing a corresponding surge in the CDW current
given by Eq. (6) (Fig. 3). After a time a/ur the exit of
this vortex at (O, a) causes a corresponding drop in I, .
The nucleation of a vortex generates free carriers at the
rate given by Eq. (5) until it leaves the sample. This free
charge is immediately swept into the contacts by an
enhanced free current at x & 0. However, at steady state a

FIG. 3. (a) Schematic variation of the order-parameter phase
N vs y along x =0. The stepwise increase in 4 represents a vor-
tex moving along y. In the figure on the left-hand side,
snapshots of 4 vs y at succeeding times t

&
and t2 are drawn for

applied fields E close to the threshold. At t& (t2), a vortex
enters (leaves) the sample at y =0 (y =a). In the figure on the
right-hand side (for large E), the high phase-winding rate in the
bulk forces the vortices to be densely packed in the sample. (b)
Variation of AN=&(a) —4(0) with respect to time for the two
situations in panel (a). In the figure on the left-hand side, the
entry (exit) of a vortex at time t& ( tz) causes 6+ to increase (de-
crease) abruptly. The sample voltage is proportional to hN. If
the density of vortices is high (right-hand-side figure) the jumps
in A4 become spikes which point up (down) if the entry of a
vortex at y =0 immediately precedes (follows) the exit of anoth-
er at y =a.

free charge accumulation exists at S due to the conversion
bottleneck.

[The process of integrating over y to derive Eqs. (5) and
(6) implies that the strong variation in J, relative to y is

unimportant. This needs some justification. In the exper-
iment J, is strictly one-dimensional (J, y=O) whereas the
free carrier conductivity has a finite anisotropy (-20 in
NbSe3, 100 in TaS3). Therefore the flow of free carriers
along y is not prohibited. Furthermore, the presence of
the equipotential plane at x =c due to the high isotropic
conductivity of the silver paint tends to force the equipo-
tential lines to lie parallel to the y axis. (We assume that
the paint boundary is flat. If it is curved the argument is
the same with S parallel to the paint boundary. ) There-
fore the y variations in the free carrier current density J„
arid E are strongly suppressed; despite the strong y varia-
tion of J, in the vicinity of a vortex the y variation of J„
is rather more uniform. It is J„which generates the ob-
served voltage oscillations. ]

III. SCREENING OF VORTEX ARRAY
AND THE PHASE-SLIP LENGTH

In applying the above model to physical systems we
should introduce a length scale which describes the
screening of the vortex array from the bulk of the CDW.
This length scale arises quite naturally when one considers
the "rigidity" of the CDW current. As we emphasized
above, the drift velocity of the CDW must vanish near a
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contact (or some other strong pinning center). The extent
to which information on this blockage propagates into the
bulk depends primarily on the ease with which local
changes in the drift velocity uD can be accommodated in
the moving condensate. We assume that in the bulk of
the drifting condensate there already exists a finite density
N@ of mobile dislocations. Further creation of disloca-
tions as necessitated by phase slippage at the contacts will
lead to dramatic changes in vD near the contacts on a time
scale of the period of the voltage oscillations. However,
these changes will be screened from the bulk by local
motion of the preexisting dislocations. Thus, the nu-
cleation of a new vortex near the interface S will cause vD

to increase near S. The drift velocity is sustained at this
value as long as the vortex stays in the sample. However,
collective motion of dislocations already present in the
bulk will tend to compensate for this transitory increase,
thereby screening out the perturbation in va from the in-
terior of the condensate. On the average fluctuations in
va decay exponentially into the bulk in a distance which
we call (in the static limit co~0) the phase-slip length l@.
In the geometry of Sec. II we have

(5uD(x) ), = (5vD(0) ), exp( —
~

x
~

/lq, ),
where ( ), denotes time-averaged and 5uD is the fiuctua-

It may be useful to compare i@ with other length scales
in the CDW problem. In the pinned state the CDW
breaks up into Lee-Rice' domains roughly of size go.
Thus, the static phase-phase correlation decays with the
Lee-Rice length go as

(@(x)@(0))—exp( —x/go) .

From perturbation-calculations and scaling arguments
Fisher" has proposed that in the sliding state the local ve-
locities are semicoherent in regions of size g which may
greatly exceed go. Near threshold the velocity coherence
may extend over very large regions of the sample with g
diverging as

where I+ is the phase-slip length and I is parallel to the
drift velocity. In the absence of inhomogeneous fields or
conversion processes such as the phase slippage discussed
above the dc velocity correlation length may become com-
parable to the sample length L. However, when these
processes are allowed Eq. (11) restricts the dc velocity
coherence to the shorter length I@. These considerations
apply in the dc limit. When vortices are created at the
contacts at a finite frequency co the effective screening
length is further reduced to the coherence length g(co) of
the ac component of the drift velocity, given by

(5uu(x, co)5vD(O, co) ) -exp[ —
~

x
~
/g(co)], (1 la)

where 5vD(x, co) is the Fourier component of the drift
velocity at x and g(co) is the magnitude of the length g in
Eq. (10) when the spontaneous voltage oscillation frequen-
cy is co. Allowing co to approach 0 we must have the rela-
tionship

In Fisher s model, g diverges without limit as co —+0 [Eq.
(10)]. If our assumption that vortices are freely created is
valid then this divergence is cut off at the length lz, . In
general we have l@&g(co). According to Fisher g(co)
must also exceed go.

In the usual experiment the total current is held con-
stant while the noise is monitored as voltage fluctuations.
When a single vortex enters the sample it induces a finite
jump in the local winding rate. The corresponding jump
in I, given in Eq. (6) is opposed by an equal and opposite
free carrier current fluctuation b,I„=—M, . The local
electric field E(x) which is rigorously equal to J„(x)p
(where p is the normal resistivity) will thus display a jump
b,E of magnitude EI„p/(ab) at S, as shown in Fig. 2(b).
From the foregoing discussion these changes in J, and E
are screened in a distance l@ (in the static limit) so that
the amplitude of the ac electric field decays into the bulk
as

g( E)=go(E —ET ) (10)
AE(x) =n, e (Xuv/a)(bA&„/~)p exp( —

~

x /l@), (12)

where v= —,
' in mean-field theory.

Confining our attention to the sliding state far from
threshold we examine the question of the "rigidity" of the
CDW current. Clearly, in the absence of moving disloca-
tions (or other means of carrier conversion) charge conser-
vation requires very long-range correlation in the drift ve-
locities va along the chain direction x, i.e., changes in the
drift velocity in one region of the sample will be transmit-
ted to a distant region unless the condensate is allowed to
convert to free carriers somewhere in the middle. This
long-range correlation is especially sensitive to phase slip-
page in general. We adopt the point of view that the gen-
eration of phase vortices is in fact the most important
mechanism for disrupting the phase coherence and for ad-
justing the drift velocity in inhomogeneous geometries.
The time averaged (dc) velocity-velocity correlation is
thus given by

( u~(x)uD(0) ) —exp( —
~

x
~
/lc, ),

where Eq. (6) has been used. Thus, the observed voltage
fiuctuation is given by

aV=n, e(zvv/a)pl~(b, a „/~), co 0. (13)

Equation (13) gives the voltage jump magnitude expect-
ed from the nucleation or annihilation of a vortex when
the time scale is of the order of milliseconds. Note that it
is proportional to n„p, and v~ and inversely proportional
to a. The factor (A,ur/a) =uD may be seen to be the drift
velocity of the CDW in the bulk far from S. The phase
jump 5@„ is +m if a vortex enters at (0,0) and n if it-
exits at (O, a) [see Eq. (7) and Fig. 3]. If in a time t, N
vortices traverse the sample, the total phase change equals
2vrX.

Typical numbers for the voltage amplitude are 10 to 50
pV in NbSe3 and 100 pV to 1 mV for TaS3 above 90 K.
The noise amplitude for a typical sample is affected by
factors which can be experimentally controlled as well as
by factors which cannot. Thus, tests of various models
based on amplitude measurements alone are difficult and
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V-V~-- 26 mV TOS& T= llO K the noise. ) The dependence on p is also consistent with
experiment. (For example, in impurity driven models the
free carriers play no essential role in the ac generation. )
In NbSe3 there is some evidence that hV at saturation
varies with T approximately as p over the temperature
range 90 to 140 K. In orthorhombic TaS3 5V initially in-
creases as T decreases below 210 K, suggesting a parallel
trend between hV and p. The maximum ratio of AV in
TaSq to that in NbSei (approximately 100) is somewhat
smaller than calculated from the resistivity ratio alone
(1000). Nonetheless there is some evidence that 5V
changes qualitatively as p in the two systems. More sys-

FIG. 4. Time variation 'of the voltage across a sample of
orthorhombic TaS3 for several values of the electric field. Near
threshold (upper traces) voltage jumps occur stochastically. The
jumps evolve into sharp spikes which are observed as quasi-
periodic noise at higher field values. The data are from Ref. 13.

conflicting results exist in the literature. (See below. )

Equation (13) gives an expression for the amplitude
which can Qe compared with experiment rather directly.
In recent experiments Ong, Kalem, and Eckert' (OKE)
report that near threshold in TaS3 the periodic voltage
spikes constituting the observed narrow-band noise degen-
erate into stochastic voltage jumps (in both directions)
quite suggestive of the vortex creation and destruction
events discussed above (Fig. 4). In the range of E—Ez
where individual steps are seen in isolation OKE show
that the step heights are quantized in units which are E
dependent. Using the data a = 10 p,m, b =3 pm, L (total
sample length) =50 pm, lq, ——30 pm, A, = 1.2 nm, n, = 10 i

cm, p=1.4 Qcm (at 110 K), b, V=100 pV, we calculate
from Eq. (13) that vi ——1.2 cm/s. Therefore, the vortex
takes 0.8 ms to traverse the sample width, in reasonable
agreement with the data of OKE in which voltage jumps
occur approximately 0.5 to 1 ms apart when the jump
magnitude is 100 pV. One may argue in another way, us-
ing the phase-slip frequency f. A value off of 1 kHz (ap-
proximately when periodicity is lost) implies that uD

(CDW drift velocity) equals 1.2 pm/s. This implies that
vi (=a/uric. ) is of the order of 1 cm/s, consistent with
the value estimated from the observed b. V.

IV. EXPERIMENTAL CHECKS

Other qualitative predictions of Eq. (13) are
noteworthy. The magnitude of AV is expected to scale
with p, n„and to be independent of L (when L & lq, ). In
both TaS3 and NbSe3 6V increases approximately linearly
with I, very near threshold before saturating to a field in-
dependent value. The saturated 6V decreases with the or-
der parameter' as [(T, —T)]'~ near the CDW transition
in both systems in accordance with the factor n, in Eq.
(13). (However, this appears to be true of all models of

tematic comparisons of b V with p are desirable. In par-
ticular, high-field magnetoresistance can be used to tune p
in NbSe& while keeping all other parameters fixed. How-
ever, since any model that involves the free carriers will
satisfy this test it is not discriminating.

Next, we consider the sample length dependence of the
ac voltage amplitude. Since experimental studies are usu-
ally performed on the Fourier components of the ac volt-
age at frequencies 1 to 30 MHz we replace l@ by g(co) in
Eq. (12) and write for the ac voltage amplitude

5 V(L) =n, E(Aui /a)(h@„/m )pg(co) I 1 —exp[ L/g(co)]—I.
(14)

Recalling that b,4„/m is the number of vortices inside the
sample and a/ui is the time for each vortex to traverse
the sample width we may write Eq. (14) in the more trans-
parent form

b V(L) =n~E(Ari q, )pg(co) I 1 —exp[ L /g(ro)] J, (—15)

where ri c, is the number of vortices that cross a line paral-
lel to the CDW drift velocity per second. When
L »g(ro) as is usually the case, hV is independent of L
as found by Verma er al. ' For very short lengths b, V
varies linearly with L, . In that case the phase-slip mecha-
nisms at the two ends will be strongly synchronized. (See
Sec. VII.) The CDW current will be phase coherent
throughout the length of the sample, even in a thermal
gradient, and one expects AV to scale linearly with the
sample resistance or L.

The sample size dependence of b, V has been studied by
two groups who get different results. Mozurkewich and
Gruner' (MG) find that hV scales as v L in NbSei and
as 1/(cross section)' in both NbSe3 and (TaSe&)zl
whereas Verma, Ong, and Eckert' (VOE) find hV to be
independent of L over a factor of 60 in length variation in
NbSe3. VOE discuss the importance of thermal stability,
large I. variation and signal averaging in such measure-
ments. There appear to be several other factors that
strongly affect the magnitude and quality of the ac volt-
age although they are not amenable to experimental con-
trol. VOE found in length-dependent studies' that the
spectral linewidths can be sharp (10 kHz) for an initial set
of contacts. On warming up to room temperature and at-
taching new contacts the linewidths can broaden to 200
kHz. Finally when a third set of contacts are used the
linewidths can sharpen up again to 10 kHz. Grimes' has
found that in a pure sample of NbSe3 on which several
high quality gold film contacts had been evaporated no
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noise was observed in all but one contact (i.e., no ac signal
is observed unless one of, the preamplifier leads touches
the noise generating contact). Fleming and Schneemeyer'
have searched for voltage oscillations in Ko 3Mo03 and
found that only 1 out of 20 crystals display narrow-band
noise. Recently Fisher' reported that voltage osci11ations
in TaS3 could only be observed in the time domain only
after the samples had been subjected to a 300 V/cm con-
ditioning pulse. Fisher also conc1uded that contacts play
a dominant role in generating the oscillations. All these
observations suggest that the quality of the contacts (not
easily defined) affect the noise amplitude.

An important consideration in the analysis of voltage
noise in a conductor involves the screening of current
transients inside the conducting medium. As derived by
Schockley, and more recently by Landauer, ' the elec-
trons in the electrodes effectively screen out transients in
charge patterns. The motion of a charge q over a distance
d inside the sample appears as a much reduced charge
q'=q(d/I. ) flowing in the external wires, where I. is the
sample length. A naive scheme in which periodic shot
noise is generated by succeeding charged waves (or soli-
tons, etc.) impinging on an electrode would certainly not
work because of the foregoing objection. In our model the
appearance of the vortices causes changes in the voltage
drop aIong the sample. Insofar as these jumps are be-
tween steady-state solutions of the nonlinear circuit equa-
tions [see Fig. 2(b)] they represent changes in the eonduc

- tive voltage (as opposed to transient electrostatic voltages).
Therefore the arguments of Schockley and Landauer al-
though correct are not pertinent to our model.

V. EFFECT OF A THERMAL GRADIENT

A different and experimentally more clear cut test of
the phase-slip model is provided by thermal gradient ex-
periments. * For as yet unknown reasons the threshold
E~ varies dramatically with T in all CDW conductors
with the exception of Ko &MoO& below 60 K. In NbSe3,
Er attains a minimum near 50 K. By holding the total
current constant and uniformly heating the sample from
30 K to above the transition T, at 59 K one observes that
the phase-slip frequency f increases to a maximum value
near 52 K before decreasing to zero a few degrees below
T, [Fig. 5(a)]. If different temperatures T~ and T~ are
maintained at the two ends (A and 8, respectively) of the
sample different phase-slip rates occur at the two ends
and one should expect to see the fundamental frequency
split into two peaks (f„and fbi) of equal amplitude in a
spectrum analyzer. Such behavior was observed by Ver-
ma and Ong, who further verified that if Tz is held con-
stant while Tti is varied fz stays fixed while f~ follows
Tti. In particular fz vanishes when T~ approaches T, .
Zhang and Ong (ZO) have performed an experiment in
which both ends of a NbSe3 sample are heated while the
middle is kept at 40 K. As the end temperatures ap-
proach T, all frequency components in the spectrum van-
ish. ZO also observe that in very short samples (less than
0.8 mm) frequency locking between fz and fthm obtains
over a temperature difference of 10 K. These experiments
provide unambiguous evidence that the source of the os-
cillations is located at the sample ends.

(a)

{b)

X

FIG. 5. (a) The variation of the narrow-band frequency f
(bold line, at fixed current) and the threshold electric field (thin
line) with respect to temperature in NbSe3. (b) Velocity profile
( uz vs x) of the sliding charge density wave and the predicted
frequency spectrum in three models. The sample is maintained
in a thermal gradient with end A (8) at T~ ( Ts). [See panel
(a).j In all of the models f is proportional to vv. In the in-
coherent impurity model (1) a continuous band is predicted in a
gradient while the phase-slip model (2) predicts two lines of
equal intensity, which is in fact observed. The observed spec-
trum can be fitted, a posteriori, to the coherent impurity model
(3), but only by assuming a step-function profile.

The velocity profile (vD versus x) of the sliding CDW
in a thermal gradient assumes a trapezoidal shape [Fig.
5(b)]. At end A (8) the sliding velocity increases abruptly
from zero and assumes the value appropriate to the local
temperature T~ ( T~) while the velocity in the bulk varies
linear1y between the two extreme values. At steady-state
dislocations will have to be created throughout the bulk of
the samp1e to accommodate the continuously varying
phase winding rates along the sample length. However,
because the rate of creation of these bulk dislocations is
rather low (i.e., not proportional to I, ) they play no role
in the generation of the ac signal at the phase-slip fre-
quency f (although their role in the broadband 1/f noise
may be important). At the sample ends the relatively
sharp change of vD (from a finite value to zero over a dis-
tance lc, ) leads to vortex creation at a rate directly pro-
portional to the CD%' current density existing at that end.
It is this well-defined oscillation that is observed in spec-
trum analyzers.

VI. OTHER MODELS

In contrast to the phase-slip model discussed here (and
the similar model by Gor'kov) there exists a class of
models which ascribe the voltage oscillations to interac-
tions between the sliding CDW and random impurities in
the bulk. In the simplest models ' the impurities are as-
sumed to present a coherent periodic potential to the rnov-
ing condensate which is regarded as rigid. The narrow-
band noise is generated by modulations of the CDW velo-
city by the periodic impurity potential. However, the
problem of how randomly distributed impurities can
present a coherent periodic potential to a rigidly moving
periodic structure has not been satisfactorily addressed.



32

Numerical simulations of such classical models with the
additional ingI'cdicnt of dcfoI'Inability show that thc oscil-
lations are phase incoherent from one impurity to the
next, and vanish for large'samples. Sneddon, Cross, and
Fisher, ' and others, have emphasized that the ob-
served voltage oscillations cannot be a true bulk
phenomenon. Sneddon has shown this to be valid to all
orders in perturbation theory. The phase of the oscillating
CDW current (or ac velocity U ) due to periodic interac-
tions with impurities will be coherent only in a region of
size go (or at best g). Because of the uncorrelated phase
the oscillations add with random phase and in the large-
volume limit the amplitude is expected to decrease as
(1/volume)'~ . Klemm and Schrieffer have also suggest-
ed a similar result for the ac amplitude. MG' have in
fact interpreted their data along these lines. Barnes and
Zawadow ski have suggested a quantum-mechanical
mechanism for noise generation based on 2k+ scattering
of electron pairs by impurities, in analogy with the
Josephson effect. This quantum mechanical model has
not been generalized to a system with Inany domains.

In these impurity models (suitably embellished with
domains) we should distinguish the question of frequency
coherence from that of phase coherence. The phase
coherence of the ac component of the CDW current is re-
stricted to a distance of the order of the correlation length

The frequency coherence on the other hand is deter-
rnined by the dc velocity correlation length which may ex-
tend over macroscopic distances, in the absence of conver-
sion or phase-slip processes (as we discussed in Sec. III).
Allowing the existence of phase vortices the frequency
coherence distance is cut off at l@. The experiments
which study the noise amplitude 6V vs L dependence are
relevant to the quantity g whereas studies of the noise

spectrum with the sample in a thermal gradient are more
relevant to the frequency coherence length. Since no ex-
periment shows AV scaling linearly with L, we c1early
have g«L for L as short as 200 pm. The surprisingly
narrow linewidth of the oscillation spectrum implies that
(if the noise originates from the bulk of the sample) the
frequency coherence length lq, is comparable to L. Con-
sequently, viable theories for the noise based on interac-
tion with the impurities must have ic, -L while g «L.

However, no satisfactory mechanism has been proposed
whereby frequency coherence can be maintained over such
macroscopic distances. Nominally, in the absence of any
locking mechanism the washboard frequency co is equal to
Qn, eE/I where I is a relaxation rate for the phase of the
CDW. In a uniform situation it is plausible that ~ is uni-
form throughout the length of the sample. However, in
the presence of "detuning" fields such as a thermal gra-
dient the quantities n, and E become dependent on the
position x along the sample. A successful bulk model
would have to incorporate a frequency-locking Inecha-
nism which effectively counters the divergent influence of
the gradient, even for gradients as large as 150 K/cm.
For example, with one end of a sample of NbSe3 held
above the critical temperature 59 K and the other at 50 K
both n, and E (which is proportional to the ohmic resis-
tivity) decrease rapidly from one sample end to the other;
yet the noise spectrum is observed to consist of one skag

fundamental frequency line close to the 50-K value. To
be consistent with experiment the frequency-locking
mechanism should lock the frequency of oscillation
throughout the sample length to a value close to that of
the cold end, thus compelling the sliding velocity vD

everywhere to maintain the cold-end value despite the ra-
pid decrease in the force exerted by the field as we move
towards the hot end. Such a mechanism is highly nonlo-
cal indeed. It should also be noted that frequency coher-
ence in this situation further requires the CDW current
density Js -nova to decrease rapidly with x.

Assuming that the nonlocal mechanism discussed above
exists, one can in principle force the observation of two
lines f'z and fz in a gradient to be consistent with the
bulk impurity model by adopting the ad hoc assumption
that the va vs x profile assumes a step function. One-half
of the sample oscillates at the frequency f~ while the oth-
er half oscillates at fs [Fig. 5(b), model (3)]. The difficul-
ties inherent in this picture are discussed at length by
ZO, who find that the values of fz and f~ are those that
would be observed if the sample was uniformly at T~ or
Ts, respectively (as opposed to some average value). (See
Fig. 4.) ZO argue that the rigid requirement of a step
function vD vs x profile would lead to unphysical results.

The role of phase slippage at the ends of the sample has
been studied by Gor'kov. ' In his (one-dimensional)
model the phase winds rapidly in the bulk while it is
pinned at one end of the sample. To achieve phase slip-

page the system drives the order parameter to zero in a
narrow region a distance xo from the pinning end. The
value of xo ( = T, /E) which computes out to be 0.5 cm in

NbSc3 when E—10 mV/cm is rather too large compared
to the sample lengths normally used (L =2 mm).
Gor'kov's model may be more applicable to samples with
transverse dimensions close to the BCS coherence length
(10 nm). It is likely that wider samples will choose to
generate dislocations to relieve the phase conflict (as
described here) before resorting to driving the order pa-
rameter to zero over its entire cross section.

The phenomenon of phase slippage is more familiar in
the context of superconducting whiskers and weak links.
In superconducting whiskers very near the transition tem-
perature the occurrence of a finite voltage drop along the
sample length leads to a difference in winding rates of the
Josephson phase at the two ends. The difference in wind-

ing rates is relieved by the spontaneous occurrence of
phase-slip events along the sample length. Each event
corresponds to the order parameter being driven to zero at
a localized spot so that an extra rotation of the phd, se
costs little energy. In weak links or large area Josephson
Junctions phase slippage is accomplished by the periodic
nucleation of Aux quanta at the junction. Gor'kov's
model for the voltage oscillations in CDW systems may
be considered analogous to the one-dimensional supercon-
ducting whisker whereas the vortex model described here
is the analog of the large Josephson junction.

VII. DISCUSSION

Just as mobile dislocations play an essential role in the
response of ordinary crystals to strain we expect that
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phase vortices will be equally important in the dynamics
of the CDW superlattice. We have focussed here on their
role in generating the voltage oscillations, but it is in-
teresting to speculate on the role they may play in bulk
phenomena such as depinning of the CD& and the oc-
currence of hysteretic I- V curves when the CDW is re-
peatedly pinned and depinned. In this paper no attempt
has been made to study how the nucleation of the vortices
influences the threshold field value Er. A better under-
standing of the vortex creation energy may elucidate some
of the questions surrounding the depinning process.

The phenomenological model described here clearly can
be improved in several directions. An important missing
ingredient is a mechanism for coherence of the oscilla-
tions over the cross section of the sample. In pure NbSe3
and TaS3 the linewidth of the fundamental can be quite
sharp (10 kHz). Upon recycling the sample to room tem-
perature and back the single fundamental frequency often
splits into a finite number (usually 3 or 4) of equally nar-
row lines rather than a single broad line. This suggests a
domain structure in the transverse direction whereby the
oscillating centers (vortex arrays) at the sample ends are
mode locked within each domain to accommodate the dis-
order caused by strains in the contacts. Such mode lock-
ing is already seen in the studies of ZO which demon-
strate that in short samples ( &0.8 mm) the phase-slip fre-
quency at one end may be locked to that at the other
despite a thermal gradient of 150 Kjcm (provided the or-
der parameter everywhere is fully developed, i.e., both Tq
and Tz are below 50 K). Since the mode-locking mecha-
nism extends lengthwise over 0.8 mm we expect it to ex-
tend over the sample cross section as well, thereby ex-
plaining the single sharp line seen in. some unstrained

'

samples. The source of the nonlinear field which gen-
erates the mode locking is not obvious. ZO suggest that
the CDW strain field may be operative. A calculation in-

corporating the effects of superlattice strain into the vor-
tex model is desirable.

The observation' by OKE (Fig. 4) of a smooth transi-
tion from stochastic voltage jumps to a periodic behavior
(as E Ez—is increased) in orthorhombic TaS3 is also per-
tinent to this discussion. When E—E~ is small the nu-
cleation of vortices is stochastic and large fluctuations of
the CDW current about the time averaged mean is ob-
served. In OKE's data individual events (voltage jumps
spaced 0.1 to 1 ms apart) which we interpret as the nu-
cleation or annihilation of vortices at the sample sides are
clearly observed in this regime. As E increases the events
are more closely spaced until the interaction between vor-
tices in the array enforces a periodicity which one ob-
serves as the narrow-band noise. (The mode-locking
mechanism in the previous paragraph enforces the same
frequency over macroscopic fractions of the cross section. )
In the crossover from stochastic to periodic behavior one
often sees intermittent behavior with random jumps inter-
spersed between bursts of periodic spikes (3 to 10 periods
long).
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