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We present a multiple-scattering theory of low-energy electron diffraction (LEED} in which the
scattering from nonspherical atomic potentials is expressed in terms of full scattering matrices
t«(k). These scattering matrices tLI. (k} are evaluated through numerical integration and solving

coupled equations. The method of Sams and Kourie is used. We also present formulas for the rota-
tion and the temperature correction of t«(k). The atomic scattering tI.I. (k} are then incorporated
into standard multiple-scattering theories of LEED, and the method becomes suitable for calculat-

ing intensity-energy spectra of semiconductor surfaces and some open faces of metals.

I. INTRODUCTION

The multiple-scattering theory of low-energy electron
diffraction (LEED) has been used to determine the surface
structure of many clean and adsorbate-covered metal and
semiconductor surfaces. ' However, existing theories of
LEED all use the so-called muffin-tin approximation for
individual scattering potentials. In the muffin-tin approx-
imation, the potential inside a radial distance RMT from
the nucleus of an atom is spherically symmetrized, and
the potential in the interstitial region between atomic
spheres is assumed to be flat. While the muffin-tin ap-
proximation works well at LEED energies for many metal
and semiconductor surfaces, we nevertheless expect that
its use could produce large errors on some open faces of
metals and on some semiconductor surfaces. To assess
the applicability of the muffin-tin approximation and to
improve the accuracy of LEED theory, it is important to
formulate a multiple scattering theory of LEED that in-
corporates nonspherical individual scattering potentials.

In this paper, we presen~ such a multiple-scattering
theory of LEED. We first divide a crystal into layers of
periodic arrays of unit cells. Each unit cell may contain
one or more nonspherical individual potentials. %'e as-
sume that the electron scattering from a nonspherical in-
dividual potential can be expressed by a finite-
dimensioned nondiagonal t matrix t~I (k), where
L =(l,m) and L'=(l', m'), and k =[(2mlh )E]'r2. In
the muffin-tin approximation, tLL (k) simplifies to a diag-
onal matrix t~ dependent only on /. Thus, given a non-
spherical potential for example, from an all-electron full-
potential linearized augmented-plane-wave (FLAPW) cal-
culation, ' we would expand it in angular-momentum
space and solve for tLL (k). Since a self-consistent
FLAP& calculation is rather time consuming, and since a
nonspherical potential is calculated relative to a given
orientation, it would be useful to be able to transform a
tIL (k) calculated relative to one orientation into that of
another (e.g., from a [100] orientation to a [111]orienta-
tion). In Sec. II we present the steps leading to the evalua-
tion of tlL (k) of individual nonspherical potentials. The
transformation of tLL (k) under rotation and inversion

operations is presented in Sec. III. Temperature correc-
tions for nonspherical potentials are presented in Sec. IV.
In Sec. V the individual tLt (k) are incorporated into the
multiple-scattering slab method of LEED. ' Just as in
a conventional LEED calculation with spherical poten-
tials, the present theory does not itself produce the poten-
tials for the surface and deeper layer atoms. These have
to be generated independently from (self-consistent) full-
potential calculations. Also, a straight refraction condi-
tion is assumed for the electron at the vacuum-solid inter-
face, s with image-potential effects neglected Ima. ge-
potential scattering effects are important only at very low
energies (e.g., E & 10 eV)."

II. SCATTERING BY INDIVIDUAL
NONSPHERICAL POTENTIAL

Starting with an individual nonspherical scattering po-
tential

V(r)= g Vz (r)YL (r),
L

(2.1)

we can write the Lippmann-Schwinger equation as fol-
lows:

P(r) =P(r)+ I Go(r —r~) V(r~)g(r~)dr~ . (2.2)

r1 r2 r2 r2 (2.3)

We can rewrite Eq. (2.2) using the angular-momentum
representation. By substituting into it the following ex-
pressions:

(2.4)

Here P(r)=e' ' is an incident wave, k a wave vector,
Go(r —r&) a single-particle Green's function, and P(r) the
total wave function. The t matrix is defined by

32 6562 1985 The American Physical Society



32 MULTIPLE-SCATTERING THEORY OF LOW-ENERGY. . . 6563

f(r) = g 4ni t FLL (r) YL (r) YL (k), (2.5) and using the orthogonality of spherical harmonics, name-
ly,

Go(r —ri)= — g jt(kr()ht'"(kr) )YL(r)YL(ri),
L

(2.6)
I

YL rYL r 0,= LL

we obtain

(2.7)

FLL(r)=jt(kr)5LL — g CL,L, (r') dr'jt(kr()hi (kr) )V, (r')FL L(r') .
2mik

L~,L3

The Gaunt's number CL L is defined by

CL,L, ——f d Q, YL (r) YL,(r) YL,(r)

(2.8)

(2.9)

Here YL(r), YL(k) are spherical harmonics, jt(kr), ht'"(kr) are spherical Bessel and Hankel functions of the first kind,
respectively, and r &

——max(r, r'}, r ( ——min(r, r'),
~
k

~

=k, m is the electron mass, and A' is Planck's constant.
In order to simplify Eq. (2.8), let us introduce a matrix:

27tElk
ULL, (r)= —

q gCL, L r VL (r) .
L~

Then, we can write Eq. (2.8) as

FLL (r)=jt(kr)5LL + g f drj't(kr )ht'"(kr )ULL, (r')FL,L.(r') .
1.3

(2.10)

(2.11)

The integral in Eq. (2.11}contains both r & and r( and would be very difficult to treat numerically. It can be simplified
by the following scheme. First, we rewrite Eq. (2.11) as follows:

FLL (r) =j~(kr) 5LL + f dr'ht" (kr')[U(r'). F(r')]LL ~ +f dr'[j (ktr')h t(kr) —jt(kr)ht'"(kr')][U(r') F(r')]LL (2.12)

or

F(r)=J{kr). I+ f dr'H(kr'). U{r') F(r') + f dr'[J(kr') H(kr) —J(kr).H(kr')]. U(r') F(r'),
0 0

(2.12')

where we have used the matrix representation for the quantities involved, and JLL (kr) =j t(kr)5LL,
HLL {kr)= ht{kr)5LL, ILL 5LL . Since——there is the freedom to split F(r) into two parts, we can define a constant ma-
trix Cby

F(r)=f(r) C .

Substituting Eq. (2.13) into Eq. (2.12'), we have
P

f(r).C=J(kr). I+ f dr'H(kr') U(r').f(r').C '+ f dr'[J(kr'). H(kr) —J(kr).H(kr')]. U(r').f(r').C .
0 0

A judicious choice of C would eliminate it from Eq. (2.14). Thus if we set

I+ r'K r' U r' r' C=C,
0

we obtain

f(r)=J(kr)+ f dr'[J(kr'). H(kr) —J(kr) H(kr')] U(r') f(r'),
and froin Eq. (2.15) we have

C= I f dr'H(kr'). U—(r') f(r')

(2.13)

(2.14)

(2.15}

(2.16)

(2.17)

Equation (2.16) takes the form of coupled integral equations of the Voltera type. Its numerical evaluation, as pointed out
by Sams and Kourie, ' can be done by boot-strapping and is simplified by the fact that ji(kr')ht(kr) —jt(kr)ht(kr') =0 at
r =r.

The t-matrix expansion in terms of spherical harmonics is given by

t {rl r2) g tLL'(rl r2) YL(rl) YL'(r2) ~

LI.

Substituting Eqs. (2.5) and (2.18) into Eq. (2.3) and using Eq. (2.7), we obtain

(2.18)
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p
rzdrztLL'(r1rz)jl'(krz) g CL L VL (ri )FL,L (ri ) .2 L

L2,1.3
(2.19)

The t matrix as a function of wave vector k is given by
t ao 00

tLL (k) =i " ' r idri rzdrzjt(kr, )ttI (rirzj)t (krz) .
0 0 (2.20)

For the inuffin-tin potential model tLt. (k) =tt(k)5LL, and the definition given in Eq. (2.20) agrees with the standard def-
inition of the diagonal t matrix. Therefore from Eq. (2.19) we obtain

tLt (k)= i —' f dr[J(kr). U(r) F(r)]LL2mk 0 (2.21)

The numerical procedure for evaluating tLL (k) follows the following sequence: We start with a given nonspherical po-
tential and use Eqs. (2.16), (2.17), and (2.13) to solve for f(r), C, and F(r), respectively. Then tLL (k) can be obtained
from Eq. (2.21). Although the matrix inversion in Eq. (2.16) is avoided, the number of coupled equations in Eq. (2.16) is
( l~+ i), compared to l~+ i decoupled equations for the muffin-tin potential case. Here, l~ is the maximum 1 value used
in the calculation. With the use of symmetry, tLL (k) block-diagonalizes into a number of smaller square matrices, and
consequently, the computation time is substantially reduced.

III. ROTATION AND INVERSION OF t

The t, matrix of a nonspherical potential depends on the orientation of the potential. The calculation of self-consistent
nonspherical potentials is itself a lengthy numerical problem, and usually it takes more time to generate the potential
than to calculate the scattering LEED spectra. Thus it is highly desirable to be able to generate t matrices of arbitrary
orientations from one calculated for a particular orientation. For example, one may want to calculate the tIL (k) relative
to the [111]direction from that of the [100] direction. This would save the computation time of recalculating a non-
spherical V(r) relative to the [100] direction and going through the steps of Eqs. (2.16), (2.17), and (2.13).

To do this, we need to find a relation between the rotated t matrix, z'L I and the original t matrix, tL L . We start
1 2 1 2

with the real-space representation of tI L .
1 2

t (ri, rz) = V(ri)5(ri —rz)+ V(ri)Gp(ri —rz) V(rz)+ f dr3V(r&)Gp(r& —r3) V(r3)Gp(r3 z) V(rz)+ .

which can be expressed in a more convenient form:

t(ri rz) = «ri)[5(ri —rz) Gp(rl rz) «rz)]
Then, from Eq. (2.18), we have

tL, L,(rirz)= f dQri f dQr z YL(r ) iYL(r )tz(r ri)z
= f dQri f dQr z YL(r ) iYL(r ) z(Vr&)[ (5r& —rz) —Gp(ri —rz)V(rz)]

As an atom is rotated, the new t matrix becomes

L)Lz(rirz)= f dQ ri f dQ rzYLi (ri) YI z(rz)RV(ri)[5(r& —rz) —Gp(ri —rz)R V(rz)]

where R stands for the rotation operator. However, we know that

R V(r) = V(R 'r),
therefore Eq. (3.3) can be rewritten as

z'z L (rirz)= f dQri f dQrz YI' (r&)YL,(rz)V(R 'r&)[5(r& —rz) —Gp(r& rz)V(R—'rz)]

(3.1)

(3.1')

(3.2)

(3.3)

(3.4)

(3.5)

Since Gp(ri —I'z) =Gp(
~

r& —rz
~

) and 5(ri rz) =5(—
~

r& —rz
~

), the Green's function and 5 function are invariant under
rotation. Therefore Eq. (3.5) becomes

zL, ,t, (rirz)= f dQr, f dQrz YL (ri)YL, (rz)V(R 'r&)[5(R 'r, —R 'rz) —Gp(R 'ri —R 'rz)V(R 'rz)]
(3.6)

If we change variables ri, rz to Rri, Rrz, respectively, we obtain

z'L, L (rirz)= f dQri f dQrz YL (R ri)YL, ,(R rz)V(ri)[5(ri —rz) —Gp(ri —rz)V(rz)] ', (3.7)

where f dQri and f dQrz are invariant because they cover the whole solid angle. Using Eqs. (3.1') and (2.18) again,
we find
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z'z, ,L,(r ~ rz ) = f d Q r! f d Q rz YL (R r~ ) YL,,(R rz)t (r&, rz)

tL 'I ' (rlrz) dQ rl Yt (R rl) YL ' (rl) dQ rzYt. (R rz)YL ' (rz)L 2 2
L I L I

(3.8)

But since

Y! (r) = (r
~

Im &,

Y!' (r)=(lm
~

r&,

we can derive the following relations

Y!*, , (R r!) = ( I
& m!

~

R r
& & = g (I!m &

R
~
I!m '

& ( I!m '
~

r
& &

7tl

= g D', (aPy) Y!' (r, ),

(3.9)

(3.10)

and

Yt, ,(R rz) = (R rz
~
lzmz &

= g (rz
~

lzm" & (lzm"
~

R '
~
lzmz &

m"

g (rz
~

lzm" &(lzmz
I
R

I

Izm" &

e l2= g Y! (rz)D ~ (aPy) .
m"

Here, a, P, and y are the Euler angles which correspond to the rotation operator R, and

D' (aPy) = (lm
~

R
(
Im'&

is the Wigner s D function. Then using Eq. (2.7), we obtain

QI"j YL, R I') YL I
m'

and

f dQrzYt (R rz)Y~, (rz)= gD ' (alpy)5(!, 5
Nl

Therefore, we can rewrite (3.8) as

I(
~L L (rl 2). g t! '! "(rlrz)D '(aP3 )D "(al y)

m', m"

or, using Eq. (2.20), we obtain

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

~L L (k) g t! '! (k)D (aPy)D»(aPy) .
m', m"

(3.16)

Equation (3.16) is then the general relationship that connects a rotated z'L L (k) to the original tL L (k). As a specific

example, the inversion of an atomic potential can be found by means of the inversion operator I. Thus we have

ZL t (r&rz)= g t, , (r&rz) f dQr! YL (Ir&)Y, (r!)f dQrzYL (Irz)Y', (rz) .
L'1L2

If we use the relations of Y! (r) under inversion, we obtain

Yt', (I r ) ) = YL, (m 8), P!+m ) = (——1) '
YL, , (8(,P!)

and

l~
YL (I rz)= Yt, (m ez, Pz+m)=( ——1) 'YL, (0z, gz) .

Then we have
I)+l~

~L]Lg(rlrz) ( 1) tL Lz(rlrz)

(3.17)

(3.18)

(3.19)

(3.20)
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or

z~, L (k) =(—1) ' 'tL, r.,(k) . (3.21)

These simple relations are useful for a slab of the Si(111)crystal, in which the two atomic potentials within each unit cell
are inverted from one another.

IV. TEMPERATURE EFFECT ON ELASTIC SCATTERING

I.et us introduce the t matrix in momentum space in order to discuss the temperature effect:
S

t (T, k', k) = f f e 't (ri —R, r2 —R)e 'dridrq, (4.1)

where R is the position of the nucleus of an atom and k, k' are incident and scattered wave-number vectors, respectively.
After a change of variables, Eq. (4.1) becomes

~ S

t(T, k', k)=e '" "' f f e 't(pi, p2)e 'dpidpi .

Writing R as a sum of the equilibrium position Ro and the thermal displacement hR, we have

t(T, k', k)= -""'-"i'Rt(o,k,k),
where

'k' k ~ I

t(O, k', k)=e '" "' f f e
'"

't(p„p2)e 'dpidp2,

(4.3)

(4.4)

and it is independent of temperature. Therefore the temperature effect is included in the exponential factor e
In general, the thermal displacements of an atom are angularly asymmetric. Here, just as in the case of the muffin-tin
potential, we shall use the Debye model for the temperature correction of the t matrix. The Debye approximation as-
sumes isotropic displacements, and Eq. (4.3) becomes

t(T, k', k)=t(O, k', k) exp( —a
~

k —k'
~

)

where

3A' T
mkg0~

(4.5)

(4 6)

and 0,T are the Debye and the current temperatures, k~ the Boltzmann constarit, and the high-temperature limit is used
in Eq. (4.6). By expanding the t matrix and e l" "

l in terms of spherical harmonics, we obtain

(tT, k', k)= (4 i)rQ tt I. (k, T) Yt (k ') YL* (k),
L,L'

t(0, k', k) =(4ir) g tL,I,(k, O) Yr, ,(k') Yl*., (k),
L2,L3

(4.7)

(4.8)

e
—

I
—'l'

exp( 2ak ) +4irt 'Jt, ( 2iak )—YL', ( k) Yl( )k.
L4

(4.9)

Here, the definitions of tLz (k, T) and tLL (k, O) are the same as in Eq. (2.20) except for the temperature dependence (de-
tails of the expressions are given in Appendix A). Inserting Eqs. (4.7) and (4.9) into Eq. (4.5), and using the orthogonali-
ty condition Eq. (2.7) for the spherical harmonics, we obtain

tIL, (k, T)=4irexp( —2ak') g tI L, (k, O)t' 'jt ( —2iak ) f dQi, YL,,(k')YL*,, (k')YL'(k')
L2, L3,L4

X f d &i,Yl"., (k) YL,,(k) YL, (k)

=4m exp( —2ak ) g tz, ,l, (k, O)( —1) 'i jt, ( 2iak )C~ ~ CL,,'I—~,
L2,L3,L4

(4.10)

L,
where CL,L, is the Cxaunt number and L4 (l&, —m4). Equation (4.10——) can be used to obtain the temperature correction
based on the simple isotropic vibrational model.
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V. MULTIPLE SCATTERING SY A CRYSTAL SLAB

Once the t matrices tL,L, (k) for individual nonspherical potentials are calculated, it follows standard multiple scattering
theory of I.EED to incorporate them into layer-scattering matrices. The computation times for the remaining steps are
essentially the same as those of existing LEED theories. Thus we divide a crystal slab into layers parallel to the surface.
Atoms in each layer are grouped into subplanes such that all subplanes have the same two-dimensional periodic struc-
ture. Each subplane has one atom per unit cell and atoms in each subplane are of the same element. The subplane
scattering matrix rLL (k; ) is given by'

~LL (k;)=tLt (k)+ g tLL (k)GL t (k;)~L L (k) .
L)L2

Or, in matrix notation,

7-=(J t G 't') —'t . — (5.2)

In Eq. (5.1) or (5.2), the structural propagators are given by

GpL (k;)= g GLL (p)e
p+0

and

(5.3)

GLt. (p)= — gi 'a(LL'L3)ht', "(kp)FL (p) . (5.4)

The summation of p is over atomic sites within a subplane, and

a (L )L2L3)=(—1) 'C~ '~ (5.5)

The different subplanes are assembled into a slab via k-space multiple scattering techniques such as RFS or layer-
doubling. In the case of multiple atoms per unit cell or subplanes which are closely spaced, the combined-space method
can be used to assemble them into a slab. "'

Before closing this section, we wish to discuss an assumption taken in the derivation of Eq. (5.1). In deriving Eq. (5.1)
we have expanded the Green's function in terms of spherical harmonics as follows:

8mmik .l l
—l2+l3 ())Go(pf+R] p&

—R2) =—, g ~ a (L &L 2L 3 )~t, (k
I
R~ —R& I )it, (kp& )j j,(kp2)

L),Lg, L3

X YL)(pl) YL2(p2)+L3(R12) ~ (5.6)

where R& and Rz are coordinates of the center of atoms,

p& and p2 are vectors from the nucleus to points within
the potential, and R&z ——R, —R2. Equation (5.6) is valid
only if the condition Ip& —pz I

(
I

R& —R2I is satisfied.
This condition is satisfied in the case of nonoverlapping
muffin-tin potentials. It is violated in an area between
neighboring atoms for nonspherical potentials (see Fig. 1).
However, this area is usually quite small and the approxi-
mation may not be a serious one' (see discussion in Ap-
pendix 8).

VI. DISCUSSION

A multiple-scattering theory of LEED is presented
which includes the scattering from nonspherical poten-
tials. Ironically, the major position of the computation
time is in the evaluation of tLt (k). The use of the rota-
tion formula for tLz, (k) [Eq. (3.16)) saves some computa-
tion time as it allows new t matrices to be generated from
existing ones. At the surface, probably a different set of t
matrices has to be calculated, corresponding to different
surface potentials. The basic assumption used in our
scheme is that the scattering from a nonspherical poten-

tial can be expressed in terms of a t matrix expanded in
angular-momentum space, with a finite number of partial
waves (usually, /, „(7). We plan to test this scheme on
semiconductor and metal surfaces.
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APPENDIX A: PARTIAL %'AVE
EXPANSION OF ~(k, k, )

To derive the expansion given in Eq. (4.8), we use
Dirac's notation and write

& ri
I
t

I
r~& = g &ri

I

L i & &L i I
t

I
L~ & &L2

I
r2&

L),L2

or

t(r~, rq)= g tt. t. (r~, rq)I'L, (r~)I"L (rq),
L, ,L2



6568 SEIDO NAGANO AND S. Y. TONG 32

where or

t(k, k;)= f dr~ f drqe 't(r~, r2)e (A5)

and

& ~p I r2) &r2 1~2 ~ YL, (r2) (A3)

where

&r. 1k'&=e ' '

Since t(k, k;) is the Fourier transform of t (r&, r2), we have

f dr& f dr2&k

(A4)

(A6)&k
I
r, ) =&r(

I

k)"=e
Substituting Eq. (A2) into Eq. (A5) and using the expres-
sion in Eq. (2.4), we obtain

t(k, k;)= f dr~ f dr2e
' " & tl, l, (r, r2)YL (r&)YI (r2)e'"''"

L),L2

=(4m ) Q tiL(k, ') YL(k) Yl' (k(),
L,L'

which is the expansion in Eq. (4.8).

(A7)

APPENDIX B: GREEN'S-FUNCTION EXPANSION AND NONSPHERICAL POTENTIALS

The expansion in Eq. (5.6) is rigorous only for nonoverlapping potentials. As an illustration let us adopt honeycomb
unit cells shown in Fig. 1. In the figure, p~, p2, and p3 cover regions within each unit cell. The condition

I p~ —pz I
(

I
R& —Rq

I

is violated only if

(a) p& and p2 belong to nearest neighbor unit cells, and
(b) p& and pq are in (or near) the edge areas (shaded regions in Fig. 1) and that they point in essentially opposite direc-

tions.

Since tli (k) is evaluated based on integrated values over the entire unit cell, the condition Ip&
—pz I

(
I R~ —R21 is

violated only in very limited regions. When the condition is violated, we can estimate the magnitude of the error in the
expansion. Thus we expand

Go(p& P2+R& R2) g XJl(k I pl P21)"I «
I
Ri —R21)YL(P12)YL(R12)

2mik (].) (81)

for
I p& p21 (

I
Ri R21 and

Go(pi —P2+Ri —R2) =—,gaI «
I
Ri —R21)I I (k

I pi —p21) ~~(p12) Yl. (R12)
2mik (&)

$2
(82)

for
I p&

—p21 &
I

R& —R21. In Eqs. (81) and (83), p~2 ——p~ —p2 and R~2 ——R~ —R2. The difference in the two expansions
[i.e., Eq. (82) minus (81)] is

g [Jz« I

R —R21)"r""«
I pi —p21) JI(k I pi ——p21)"z "(k

I
Ri —R21)]&i(pi2) YL(R12) .

L
(83)

To estimate this difference, we note that
I p~ —p21 —

I
R~ —Rq I

and k
I

R& —Rz
I

&&1. Thus

ji(k I
R~ —R21)"~ (k

I pi —p~ I
) ji(k I pi —p—21)hi "(k

I
Ri —R21)-(&) i(

I pi Pz I

—
I
Ri —R~

I
)

k
I p, —p21 IR, —Rz

I

and the error is small. Finally, on substituting the relation

j~(k lpi —p21)YL, (pi2)=4~ g &
' ' ~(Li12Lj)i, (kpi)ji, «p2»c, (pi)YI*., (p2)

L),L2

into Eq. (Bl), we obtain the expansion in Eq. (5.6).

(84)

(85)
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(C4)

respectively. Here we have abbreviated k in the argu-
ments of J and H. It is clear that we cannot evaluate
I&(r),I2(r) without knowing f(r), which is itself the quan-
tity we try to calculate. We can rewrite Eq. (C3) to avoid
this problem,

FIG. 1. Schematic diagram of unit cells and radial vector p;. f(r& )=H(.r;) I&(r;)—J(r;) U(r;) f(r;)

APPENDIX C: NUMERICAL ALGORITHM
FOR EVALUATION OF f(r)

To evaluate Eq. (2.16) numerically, we introduce

I~(r)= f dr'J(r') U(r') f(r'),
I2(r) =I—f dr'H(r') U(r') .f(r'),

then Eqs. (2.16) and (2.21) become

f(r) =H(r).I~(r)+J(r).I2(r)

and

(Cl)

(C2)

(C3)

+J(r; ) I2(r; )+H(r; ).U(r; ) f(r;).

H(r;—) K)(r;)+K(r;) K2(r;), (C5)

where K~(r;} and K2(r;) are defined in Eq. (C5). Here
rp, r~, . . . are radial distances which start from the nu-
cleus, and b,r;=r; r;, . In —writing Eq. (C5), we have
used the trapezoidal rule for the integration of Eqs. (Cl)
and (C2). With the help of Eqs. (Cl) and (C2), the recur-
sion relations for K& and K2 are

K&(r;)=K&(y; &+br;)=I&(r; ~+dr;) J(r;) U—(r;) f(r;)

=I&(r; i)+ J(r; ~) U(r; &) f(r; &)
2

=K~(r; 1)+T(&r;+br; ~)J(r; ~) U(r; 1) f(r; i) (C6)

and

Kz(r;)=K2(r; ~) —, (br;+dr; &)H(r; —~)U(r; ~) f(; 1) . (C7)

The radial position r] is very close to the nucleus. Then

ULL, (r&) is dominated by the l=O Coulomb potential.
Thus, for Eq. (2.10) and using a Coulomb potential of
Vp(r)= Ze /r, we obta—in

we obtain

(C12)

2mik
ULI (ri)= rtZe 51.L,

If we now use

(kr, )'
Jt kryo

(C8)

(C9)

and

Kz(r&) =I —,r&[H(r). U—(r) f(r)]„

Ze m r)I .2l+1 g~
(C13)

fL,L, (0)=J'1 (0)5L,L, ,

(C 10)

(Cl 1)

Thus if we start the calculation at the center of the atom,
we can evaluate K

&
(r

& ), K2 (r ~ ), and then f(r & ) using Eq.
(C5). Iterating this process, we reach a point where the
potential vanishes. By finding I, and Iz from K~ and

K2, we obtain the t matrix from Eq. (C4).



6570 SEIDO NAGANO AND S. Y. TONG 32

tM. A. Van Hove and S. Y. Tong, Surface Crystallography by
LEED (Springer, Heidelberg, 1979).

~F. Jona, Surf. Sci. 68, 204 (1977).
3J. B. Pendry, , Loto Energy Electron Diffraction (Academic, Lon-

don, 1974).
4M. A. Van Hove and G. A. Somorjai, Surf. Sci. 114, 171

(1982).
5For a recent review, see for example, S. Y. Tong, Phys. Today

37{8),50 (1984).
E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman,

Phys. Rev. B 24, 864 (1981).
7E. Wimmer, A. J. Freeman, M. Weinert, M. Krakauer, J. R.

Hiskes, and A. M. Karo, Phys. Rev. Lett. 48, 1128 (1982).
sS. Y. Tong, in Progress in Surface Science, edited by S. G. Dav-

isson (Pergamon, London, 1975), Vol 7, p. 1.

J. L. Beeby, J. Phys. C 1, 82 {1968).
S. Y. Tong and M. A. Van Hove, Phys. Rev. B 16, 1459
(1977).
B. M. Hall, S. Y. Tong, and D. L. Mills, Phys. Rev. Lett. 50,
1277 (1983).

W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4809 (1969);
51, 4816 (1969);F. W. Lipps (private communication).
M. E. Rose, Elementary Theory of Angular Momentum (Wi-

ley, New York, 1957).
t4S. Y. Tong and M. A. Hove, The Structure of Surfaces

(Springer, Heidelberg, 1985).
'5M. A. Van Hove and S. Y. Tong, in Determination of Surface

Structure by LEED, edited by P. M. Marcus and F. Jona (Ple-
num, New York, 1985).

~ D. A. Papaconstantopoulos„Phys. Rev. B 27, 2569 (1983).


