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We have applied a numerical renormalization-group technique to study the Hubbard-Peierls
model for (CH),. The method provides accurate many-body wave functions and energies for the
ground and low-lying excited states of finite polyenes. We report tests of the method for finite
chains (N =16) which show that the technique accurately reproduces known results in the nonin-
teracting particle limit (U =0) and in the highly correlated limit (U /4t >>1) and agrees well with
Monte Carlo data where available for intermediate U. The model is applied to study correlation ef-
fects on the ground-state dimerization amplitude and to the ordering of the low-lying excited states
of the rigid-lattice spectrum. Extension of the method to even longer systems appears to be quite

practical.

Over the past several years there has been considerable
interest in the effects of the electron-electron interaction
on the ground- and excited-state properties of polyenes.
Results of mean-field theory calculations show that the
dimerization amplitude in the ground state decreases
when an on-site Coulomb interaction is introduced. How-
ever, several authors using various many-body techniques
have found that the ground-state dimerization amplitude
is enhanced when a weak Coulomb interaction is included
in the Hubbard-Peierls Hamiltonian. To reproduce the
observed spectra of short polyenes, Schulten, Ohmine, and
Karplus' found that doubly excited configurations and
higher-order configuration interaction was necessary. In
addition, these authors found that the introduction of
electron-electron interaction leads to an interchange in the
ordering of the excited states so that a lAg (dipole-
forbidden) state lies lower than the !B, (dipole-allowed)
state anticipated in a one-electron theory. The experimen-
tal evidence in support of a 'Ag first excited state has been
briefly reviewed by Hudson and Kohler.? Our previous
study® of the Hubbard-Peierls Hamiltonian on a six-atom
ring demonstrated that the excited-state ordering depends
strongly on competition between the electron-electron in-
teraction and the electron-phonon coupling. We were
therefore interested in developing a method for examining
the effects of both electron correlation and electron-
phonon coupling in the excited states of longer chains.

A number of methods have been applied to study in-
teraction effects in polyenes. Mean-field theory has been
used by Kivelson and Heim* to study the ground state of
(CH), in the limit of small electron-electron interaction.
The Monte Carlo method*® has been productively applied
to study ground-state properties of finite chains, but it is
difficult to apply this method to excited states. A
Gutzwiller ansatz for the ground state, applicable for
small electron-electron interaction has been applied by
Baeriswyl and Maki to (CH),.” Excited states have been
studied using configuration-interaction (CI) methods' and
valence-band methods,®® but are limited to about 12 or so
atoms because of the rapidly expanding size of the basis
set.

One way to get around the basis size problem is to use
scaling methods. Hirsch!® applied the renormalization
group (RG) to the ground state of the Hubbard model on
an infinite chain, keeping only the lowest energy state in
each cell.!! Here we apply a different renormalization
scheme which has been applied by Bray and Chui'? to the
one-dimensional Hubbard model. This method retains a
much larger number of states in each cell, thus allowing
more variational freedom in the basis set. It provides a
diagonalization of the many-body Hamiltonian, efficiently
providing eigenvalues and eigenvectors of the low-lying
states for long but not infinite chains. Here we present re-
sults of tests of the method on a 16-atom chain, showing
that it works well at small U /4¢, reproducing structural
relaxation energies, and at high U /4¢, reproducing the
low-lying eigenstates. At intermediate U /4t we find an
enhanced dimerization amplitude in the ground state. We
also study the rigid-lattice excitation spectrum at the
equilibrium dimerization amplitude over the range of
U /4t. We find that the dipole-allowed first excited state
is pushed up above a dipole-forbidden second excited state
as U is increased, and that the Coulomb repulsion is re-
sponsible for a significant portion of the optical gap.

In this work we use the Hubbard-Peierls Hamiltonian,
which includes the Su-Schrieffer-Heeger (SSH) Hamil-
tonian and an on-site electron-electron repulsion term,
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where c¢;, and c,J:, are the electron creation and annihila-
tion operators for site / and spin o, x; are the ion coordi-
nates away from a reference equal bond-length structure,
n;, are the electron number operators, and X is the effec-
tive spring constant.

The method of solving this Hamiltonian for the first
few electronic states on a finite chain consists of con-
structing larger generalized sites from smaller ones, where
generalized sites are several atom subsets of the full chain.
On the smaller “sites,” we diagonalize all the required
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blocks of the Hamiltonian specified by the good quantum
numbers of the problem, electron number N, spin S 2 and
the z-component of spin S;. We diagonalize as many as
15 blocks of various N and S2. There may be several dif-
ferent S,’s for a given S2, but the basis set can be con-
veniently arranged so that the eigenvalues are the same for
each, permitting the diagonalization of one representative
block of given N and S2 Then we construct product
states from neighboring “sites,” coupling to good N, S2,
and S, for the combined “site.” The Hamiltonian for the
new generalized site consists of a diagonal part containing
the sum of the left and right “site” eigenvalues from the
previous level and the off-diagonal hopping term for the
link between the left and right “sites.” It is convenient to
work in the site representation at each level, since the
Coulomb terms are already diagonal in this representation
and the hopping matrix elements are easy to identify. At
each level of the construction it is only necessary to store
¢ matrix elements between pairs of “right-” or “left-”
hand eigenfunctions, since c’c elements can be factored
into a product of ¢’ and ¢, and ¢! elements can be ob-
tained from ¢ elements. The other large storage require-
ment in the linking program is for information connecting
the basis set for each pair of levels.

This method would provide an exact diagonalization of
the Hamiltonian if all the basis states could be retained.
However, the number of basis states increases quite rapid-
ly as a function of the number of electrons. For example,
the complete singlet basis set contains 20 states for 4
atoms and 4 electrons, 1764 for 8 atoms and 8 electrons,
and about 35 million for the 16-atom chain with 16 elec-
trons. So it is necessary to restrict the number of basis
functions to be included, and this is done using an energy
cutoff. The lowest-lying 100—200 states are kept in each
manifold, and 2000 or so states are included using Lowdin
perturbation theory.!®> At high U /4t the states split into
narrow bands labeled by the number of doubly occupied
(or empty) sites. In this case, the states in the lowest band
(neutral states), are connected in second order through a
subset of the singly ionic band. Our method does not pick
out the subset automatically, so it is necessary to go
beyond 2000 states, using random sampling to capture as
many as possible of the important singly ionic states. The
method of constructing generalized sites works well be-
cause the low-lying eigenvectors at the lower levels of the
construction provide a good guide to the low-lying states
at higher levels when the added hopping terms linking the
“sites” are a small perturbation. (In one dimension there
is only one link added in going from level to level. In two
or three dimensions there are several links involved, and
unless they are weak, this method would not be expected.
to perform as well.)

It is important to know how much accuracy has been
obtained by including a particular number of states in the
basis set at each level. A convenient check can be made
by eliminating the two-body interaction term in the Ham-
iltonian by setting U =0, and comparing the results to
those obtained by directly diagonalizing the SSH Hamil-
tonian. In Fig. 1 we have plotted the electronic plus elas-
tic energy relative to the undimerized structure versus di-
merization amplitude (alternating displacement field) for
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FIG. 1. Total energy as a function of dimerization amplitude
for three values of the spring constant on a 16-atom chain. The
results from the RG method and by direct diagonalization of
the SSH Hamiltonian lie on top of each other to within the
width of the line.

three values of the spring constant. The results of our
method lie on top of the one-electron results to within the
width of the line, thus providing a good check on the en-
ergy changes during ion coordinate relaxation in the
ground state. In Fig. 2 we have plotted the first electronic
excited state relative to the ground state as a function of
dimerization amplitude. This energy corresponds to the
direct gap in the SSH model. Odd bonds on the dimer-
ized finite chain are weak compared with their neighbors
and such bonds link generalized sites. The agreement im-
proves with increasing dimerization amplitude because
these weak links between generalized sites are getting
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FIG. 2. Optical gap as a function of dimerization amplitude,
from the RG method and by direct diagonalization of the SSH
Hamiltonian, on a 16-atom chain.



32 RENORMALIZATION-GROUP STUDIES OF THE HUBBARD- . . .

weaker and are thus providing a smaller perturbation.
Each diagonalization to obtain points for Figs. 1 and 2
took about seven minutes on an IBM 3081 using 200 16-
atom basis states improved by 2000 states in perturbation
theory.

We have also compared our results for U /4t >>1 to re-
sults in the literature. Though we found no eigenvalues
on the 16-atom chain in this limit to compare with, a di-
agonalization of the spin-3 Heisenberg Hamiltonian on
an eight-atom chain exists.!* For an undimerized chain
with spin coupling J =0.1, Orbach obtained a singlet gap
of 0.206 eV compared with our 0.190 eV and a singlet-
triplet gap of 0.080 eV compared with our 0.104 eV.
Some of the discrepancy in the latter value is due to the
Lowdin perturbation method, which independently shifts
the origin of the energy scale in each manifold by a small
amount. We have calculated the nearest-neighbor spin-
spin correlation function 4(S;;S; , ;) for each pair of sites
by building up the correlation function through each level
in a similar way to the construction of the Hamiltonian.
We can compare Orbach’s value of —0.600 (Ref. 15) aver-
aged over N sites to our values of —0.708 for 4 atoms,
—0.633 for 8 atoms, and 0.605 for 16 atoms.

A good internal test of the method is to be certain that
correlation functions, such as the spin-spin correlation
function or bond order across the center link in the chain
are similar to those on other even links. This is the last
bond to be added, and if not enough degrees of freedom
are included, the correlation function across this link can
be considerably different from that of its next-nearest
neighbor. We have included a sufficient number of states
to satisfy this test to within 10%.

Having tested the accuracy of the method at both ends
of the U /4t range, we now examine the equilibrium di-
merization amplitude in the ground state as a function of
U/4t. In Fig. 3 we present data for three different values
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FIG. 3. Dimensionless dimerization amplitude versus
strength of the on-site Coulomb term for three values of dimen-
sionless electron-phonon coupling constants [K denotes Kaki-
tani (Ref. 16) and VM Vanderbilt and Mele (Ref. 17)] on a 16-
atom chain.
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of the electron-phonon coupling constant A=(2a)?/mt,K
corresponding to SSH parameters, parameters used by
Kakitani,!® and parameters used by Vanderbilt and
Mele.!” We have plotted the dimensionless dimerization
amplitude 8 =au /ty for convenience to separate the three
curves. We see that the dimerization amplitude is
enhanced with increasing U in all three cases, and that the
enhancement decreases with increasing A, in agreement
with the results of Baeriswyl and Maki, using the
Gutzwiller ansatz on an infinite chain. The maximum
enhancement occurs near U /4t =1, the canonical cross-
over point from the Peierls (U /4t << 1) limit to the spin-
Peierls (U/4t>>1) limit. We can also compare the
enhancement in the dimerization amplitude at A=0.30 to
that found by Baeriswyl and Maki’ and Hirsch® (using
Monte Carlo on a longer chain with periodic boundary
conditions). Hirsch obtains a 26% enhancement, Baer-
iswyl and Maki a 9% enhancement, and we obtain a 20%
enhancement.

It is interesting to examine the rigid-lattice excitation
spectrum at the equilibrium dimerization amplitude for
the ground state. In Fig. 4 we have plotted the first two
excited states relative to the ground state as a function of
U/4t. As small U /4t the dipole-allowed !B, state is the
first excited state and corresponds to excitation across the
Peierls gap for the infinite chain. However, as U /4t is in-
creased, the 'B, state is pushed up above the 2 4, state,
leading to a dipole-forbidden first excited state at higher
U/4t. We are currently studying the structurally relaxed
excited states to see if the ordering is maintained after re-
laxation. Another interesting observation to be made con-
cerning Fig. 4 is that the Coulomb interaction is respon-
sible for as much as 40% of the optical gap. This is much
smaller than the estimates from Monte Carlo data.’ The
Monte Carlo study follows the decay of the current-
current correlation function in imaginary time and con-
cludes that the Coulomb gap dominates the “lattice gap”
in this system for intermediate values of the repulsion
strength.

In conclusion we tested a
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FIG. 4. Energy of the first two excited states relative to the
ground state as a function of the strength of an on-site Coulomb
term on a 16-atom chain.
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renormalization-group method of obtaining low-lying
states of the Hubbard-Peierls Hamiltonian on a 16-atom
chain over the full range of on-site electron-electron corre-
lation. We have demonstrated that the method can pro-
duce information about these states quickly and accurate-
ly. In addition, we find, in agreement with other authors,
that an on-site electron-electron repulsion tends to
enhance the dimerization amplitude in the ground state.
In examining the rigid-lattice spectrum, we have found
that the !B, and 2 '4, excited states cross over at inter-
mediate U /4t, resulting in a dipole-forbidden '4, first ex-
cited state at higher U/4t. We also note that the
Coulomb contribution to the optical gap is quite signifi-
cant for the 16-atom chain in the U /4t region of physical
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interest. We are currently conducting further studies of
the excited states, examining the bond orders and spin-
spin correlation functions in structurally relaxed configu-
rations. We expect to be able to extend the method to
longer chains and rings and to be able to add off-site
Coulomb terms to the Hamiltonian.
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