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Time evolution of the dielectric function in a three-level system under pulsed excitation
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We calculate the dielectric function of three-level systems like CuCl under high pulsed excitation

in the rianosecond time scale. We find a memory effect of the crystal absorption and dispersion

which is mainly due to the radiative lifetimes of the biexcitons created during the pulse.

I. INTRODUCTION

The interaction between light and matter varies strong-
ly with excitation intensity when photon energy of the ex-
citing laser is close to electronic resonances. These non-
linearities give rise to anomalies in the dispersion and ab-
sorption of the samples and may, e.g. , be used to obtain
information about optical bistability. ' " In this context,
semiconductors are of special interest since they are trans-
parent below the exciton absorption line. In addition,
their density is so high that the anomalies mentioned
above may be studied with samples having a thickness of
about 1 pm or even less. Then, the time a light pulse
takes to pass through the sample is in the picosecond time
scale. We are especially interested in systems like CuC1,
where it was argued that a dispersive nonlinearity related
to virtual biexciton formation could give rise to optical bi-
stability. If the sample is inside a Fabry-Perot resonator,
such a system may switch between two stable states on a
time scale determined by the time required to change the
intensity in the sample. This time is related to the
round-trip time and the reflection coefficient but does not
depend on the lifetime of the elementary excitations (exci-
tons and biexcitons) and therefore on the energy dissipa-
tion inside the sample.

Experimentally, dispersive optical bistability has been
observed in CuC1, ' and the switching times have been
measured to be 260 and 450 ps for the off-to-on and on-

to-off switchings, respectively. " Depending on the sam-

ple, however, switching times could be longer' or even

hindered due to strong nonlinear absorption, which im-

plied that the Fabry-Perot resonator could no longer pro-
vide sufficient feedback. ' In this context, we have ob-
served" that the nonlinear transmission of CuC1 without
a Fabry-Perot cavity shows hysteresis of the absorptive or
dispersive type if the sample is excited by dye-laser pulses
having about 8 ns duration [full width at half maximum
(FWHM)]. Since the hysteresis observed in this case is of
transient nature, we study the time evolution of the dielec-
tric function in three-level systems under pulsed excita-
tion. It is the aim of this publication to get information
on the influence of the exciton and the biexciton dynamics
and to discuss whether switching may happen with or
without energy dissipation in these systems.

II. MODEL CALCULATION OF THE
TRANSIENT DIELECTRIC FUNCTION

In the nonstationary regime, the polarization induced

by a light field ean be determined in the density matrix

H =Ho pA(t) —.

Ho is the Hamiltonian of the noninteracting system and p
is the dipole operator. A (t). is the time-dependent electric
field for which we assume the following form:

A (r) = A (t)cos(cot), (2)

where the envelope function A(t) of the pulse is slowly
varying when compared to cos (cot).

The polarization P(t) may be expressed in terms of the
density matrix p(t) by' '

P(t) =¹r[p(t)p], (3)

formalism from the self-consistent solution of the
Maxwell and Bloch equations. ' ' Since the numerical
solution of the full system is quite complicated, a mean-

field treatment of the Maxwell equations was adopted,
neglecting the exciton and biexciton dynamics.

We will follow in this work a different approach in
which the population dynamics is included and only spa-
tial propagation effects are neglected, assuming a homo-
geneous mean field inside the sample. We will extend
here an approach discussed for the stationary regime in
Refs. 17 and 18.

Let us consider a three-level system, corresponding to
the crystal ground state (index 1), the exciton state

~
2),

and the biexciton state
~
3), having energies 0, E,„, and

Eb;, respectively. All these states are assumed to have no
spatial dispersion. This assumption is made in order to
simplify the calculation of the dielectric function. In the
presence of spatial dispersion, a self-consistent calculation
would be required which does not lead to a better qualita-
tive understanding of transient effects. This is also the
case of inter- and intraband scattering processes which
would lead to energy- and wave-vector-dependent damp-
ing functions. In addition, the quantum-statistical nature
of the quasiparticles is neglected. This becomes important
only at very high excitation intensities which we do not
treat in this publication. At such high intensities the fer-
mion character of the electronic excitations (excitons,
biexcitons) leads to a formulation in terms of an interact-
ing boson system, obeying neither pure boson nor fermion
statistics.

A light field A (r) induces transitions between the states

~

I ) and
~

2) or
~

2) and
~
3), the transition between

~
1)

and
~
3) being forbidden for one-photon processes. The

Hamiltonian 0 then reads in the dipole approximation:
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where N is the density of molecules in the crystal. The
matrix representation of the dipole operator p is

0 p,„0
We now develop the density matrix elements p;~(t) into

a series in order to separate fast and slowly varying contri-
butions

p = Rex 0 phd ~

0 pb; 0
(4) p;, (t) = g p,";(t)e'""' . (10)

The elements p,„and p~; are given by
Equation (10) becomes a Fourier series in the stationary
regime, i.e., if the p;z are independent of time. Inserting
Eq. (10) into Eq. (6), we obtain

and (5) N y I [P12(t) +P21( t) ]Pe

We find from Eqs. (3)—(5)

P(t) =N I [P12(t)+P21(t)]iCCex+ [P23(t)+P32(t)]PbiI ~

(6)

+ [P23( t) +P32( t)]fbi I e

Qn the other hand, P(t) is given in the nonstationary
regime in terms of susceptibility (neglecting spatial disper-
sion),

The time dependence of the elements of the density ma-
trix follows from the Schrodinger equation to'

C)pq'J. ( t ) I'

[p(t),—H];J—p;1 (t)I;1Bt

I (t) =EpRe 'f X(t, t')A '(t')dt'

where A '(t') is the complex electric field of the form

A'(t')=A'(t')e'"' .

(12)

(13)
[i,jE(1,2,3)], where the damping constants I,J account
for coherence relaxation (j&i) and for population life-
times (i =j).

Equation (7) gives rise to a set of coupled differential
equations. We obtain for the off-diagonal elements

~p~~
[ 9' xA (t)(Pl 1 P22)+P12Ee

Bt A'

—P131MbiA (t)]—P12P12 ~

If A'(t') were constant, X(t, t') would depend only on the
time difference t t'=r. In—troducing t'=t —w in Eq.
(13), we obtain

P(t) =epRe f X(t,r)A'(t —w)e' " 'dv (14)

If the field amplitude is "slowly" varying during the
response time of the system [i.e., X(t,r) is large during this
time interval and small outside], we may approximate

Bt
[A (t)(Pexp23 Pbip12)+P13Ebi] ~13P13 ~

~Pz3 s

g [ 1CCbiA (t)(P22 P33)+P23(Ebi

+iCC,„A (t)P„]—r23P23 .

P(t) =epRe A'(t)e' ' X(t,~)e '"'dr
0

=epRe A'(t)X(t, co)e'"'

This may be rewritten' as

P(t)=EpA(t')[X (t,co)cos(cot) —X (t,co)slil(cot)],

(15)

(16)

[(Pl 1 P22) (Pl 1 P22)p]~1

~(P22 —P33)

Bt
( t) [Pex(P12 P21) @bi(P23 P32) l

(9)

—[(P22 P33) (P22 P33)p]1 I,
where (p;; —pjj)p give the equilibrium distribution of the
population difference between the states

~

i ) and
~ j) in

the absence of the external field A (t), (p;; —pJJ ) their ac-
tual time-dependent values, and 1/I 1 and 1/I"1 are their
respective lifetimes.

The difference of population between two states i and j
and their corresponding time evolution are derived from
equation (7) to

C)(pl 1 P22) I

Bt
= ——A (t) [21CCex(P12 —P21) —iCCbi(P23 —P32) ]

where 7'=I™Reg and 7"= IrnX.
When comparing with Eq. (11), we find the time-

dependent susceptibility at frequency co in the above ap-
proximation:

X(t,CO) = I [p12(t)+p21(t)]p,,„2X

EpA (t)

+ [P23( t) +P32( t) ]Pbi I

Since X(t,co) is expressed by the nondiagonal elements

p,j(t), the important time constants relevant in our slowly
varying envelope approximation are the dephasing times
1/I 12 and 1/I 23, which are in the picosecond time scale
in CuCl. ' ' They determine the time i.nterval considered
in the approximation of Eq. (15). Inserting Eq. (10) into
(8) and (9), we obtain a set of recurrence relations involv-
ing the different functions p"; (t):
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BPi2(t) „Pb;A(t) „, „, P,„(t) n+1i' = (E—,„n—%co+i AI , )p", (t)+ [p", (t)+p", + (t)]+ [(p, —p )" (t)+(p —p )" (t)],Bt 2 2

BP13(t) .+i &-"(') .-i .+ii' = —(Eb; —nirico+t'iril 13)p13(t)+pb;A(t)[p12 (t)+p12+ (t)]— [p23 (t)+p23 (t)]Bt 2

BP23(t) p,„A (t)= —(Eb; E,„——nkco+iAI 23)p23(t) — [p13 (t)+p13+ (t)]

Pb;A(t) n —1 n+1+ [(P22 —P33)" ( )+(P22 —P33)"+ (t)],
2

b;A(t)—i' (p„—p22)"(t) = —iA'l, 5„—(nACO —iiiil 1)(pii —p22)"(t)+ [p23 '(t) —p32 '(t)+p23+'(t) —p32+'(t)]
a 2

(18)

—P,„A(t)[P12 '(t) —P21 '(t)+P12+'(t) —P21+'(t)],

,„A (t)
(P22 P33) (t) (+ t~o i~~1 )(P22 P33) + IP12 (t) P21 (t)+P12 '(t) —P21+'(t)]

2

Pbi~(t)[P23 (t) P32 (t)+P23 (t) P32 (t)]

In Eq. (18), we have assumed that the system is in its
ground state before it is excited by the external field A (t).
We thus obtain an infinite set of coupled linear differen-
tial equations which we restrict to the functions
(Pii P2() (t)i (P22 P33) (t)i P12(t)i P21(t)» P13(t)i P31(t)i
p23(t), p32(t), and their complex-conjugate expressions. In
Ref. 18, we have included all the terms p,"J and we could
show that the choice given above describes the dielectric
function in the steady-state regime within a very good ap-
proximation. The system of coupled equations is now
solved numerically, and Eq. (17) gives the dielectric sus-
ceptibility P(t). It is applied to CuC1, where the relevant
exciton and biexciton parameters are well known for
small values of excitation energy . As discussed in more
detail in Refs. 17 and 18, the dipole matrix elements p,„
and pb; are given by

Q = IReb+[(Re@) +(Ime) ]'~ I'
v2c

a =
t
—Re@+[(Re@) + (Ime) ]'~

I
'~

v2c

(20)

Q and a are related to the real (n') and imaginary (n")
part of the refractive index by

and (21)

6/Ep= Eb +X .

Now, we define as in the stationary case the polariton
wave vector Q, the absorption coefficient a, and the re-
flection coefficient R by the relations

and

Np =EOEt» (EL —'E') /2/E

(19)
» ca

n
CO

Pb;A (t) =4M nZ(t),

respectively. e~ ——5 is the background dielectric constant,
EL ——3.208 eV and E,„=3.2025 eV are the energies of the
longitudinal and transverse exciton. M =2.1)& 10
eV cm is the exciton-biexciton transition matrix ele-
ment and nz(t) the density of polaritons in the sample.
The biexciton energy Eb; ——6.372 eV is well known from
two-photon absorption studies and the relaxation times
are assumed to be such that Ar ~

——10 eV and
Ar» —Arg3 —10 ev. concerning the pulse en-
velope

~
A(t) ~, we assume a Cxaussian pulse of 600 ps

half-width and a maximum photon density of
n&

——4&10' cm superimposed on a constant amplitude
of nz ——10 cm because of numerical reasons. As shown
in Fig. 1,

~

A(t)
~

is maximum at a time t =800 ps.
Using these parameters, we may now calculate the

dielectric function given by

E

C3 2—

0

t(ns)

FIG. 1. Time dependence of the incident pulse.
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FIG. 2. (a) Wave vector Q; (b) absorption coefficient a; (c) reflection coefficient R; and (d) population inversion p22 —p33 as func-

tions of time under pulsed excitation, using Ace=3. 1865 eV and fiI ~3
——4&&10 eV. V (solid line) and AI ~3

——2.5X10 ' eV (dashed

line). The maximum of the incident pulse is indicated by the arrow.

and the reflection coefficient R is defined by

R =[(n' —1) +n" ]/[(n' +1) +n" ] . (22)

III. NUMERICAL RESULTS AND DISCUSSION

Figure 2 gives the variation of Q, a, and R, defined in
Eqs. (20) to (22) as functions of time during the pulse
given in Fig. 1. The arrow indicates in all figures the
maximum of the pulse intensity. The energy of the excit-
ing photons is at 3.1865 eV (i.e., above half the biexciton
energy). Qne should be reminded here that the order of
magnitude of the different damping constants is known at
low intensities of excitation; a detailed analysis shows,
however, that the dampings depend on the intensity of ex-

citation and on the photon energy. Since we are mainly
interested in the spectral region around half the biexciton
energy, we have varied I » and 1 ', . The other damping
parameters were found to be of minor influence. Con-
cerning the solid lines in Fig. 2, the damping constants
Xr» —4X 10 eV and Ar& ——5& 10 eV are chosen. %'e
clearly see that the plots of all physical quantities are
asymmetrical with respect to the maximum value of the
exciting pulse. This asymmetry decreases if the biexciton
relaxation constant r& is increased, indicating that the
system returns to its equilibrium value more quickly, and
the asymmetry vanishes for Ar'»10 eV. The exciton

E

2

'o 1

t (ns)

FIG. 3. Transmitted pulse when calculated from Figs. 1 and
2. The maximum of the incident pulse is indicated by the ar-
row.

relaxation constant I ~, however, has no influence on the
' asymmetry when it is increased up to a value of
A'r~ ——10 eV. The damping constants r&2 and I 23 have
minor influence on the asymmetry near the biexciton reso-
nance. In order to discuss the physical origin of the
asymmetry of Q, a, and R, we give in Fig. 2(d), the time
dependence of the exciton-biexciton population difference
(pp2 p33)(t). If this quantity is constant or follows the
pulse shape instantaneously, Q or a (and therefore R) also
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FIG. 4. Absorption coefficient o: as function of the excitation
intensity during the pulse, with AI &3

——4&&10 eV and for dif-
ferent energies of excitation near half the biexciton energy. The
arrows denote the sense of the hysteresis for increasing and de-
creasing intensity of excitation: (a) fico =3.184 eV; (b)
Ace=3. 1855 eV; (c) %co =3.186 eV. Above half the biexciton en-

ergy, for Acu =3.1865 and 3.188 eV, the hysteresis loops are simi-
lar to those at Rco =3.1855 and 3.184 eV, respectively.

follow the shape of the pulse.
Although the constant 1/I']3 (defining the biexciton de-

phasing time) is small with respect to the envelope varia-
tion during the pulse, it has nevertheless an important in-
fluence on the variation of Q, a, and R. This is indicated
in Fig. 2 by choosing ]]]I ]3——2.5X 10 eV (dashed lines).

FIG. 5. The same parameters as in Fig. 4, but with
fiI )3——2.5)& 10 eV.

Q and R diminish during the pulse with increasing inten-
sity while for ]r]I ]3=4X 10 eV they increase (solid line).
The absorption a reaches a higher value than the equili-
brium value (330 cm ') at the end of the pulse, while in
the first case (solid line) it is below this value. Comparing
dashed and dotted lines in Figs. 2(b) and 2(d), we note
that, for smaller values of I ]3, the nonlinear absorption is
much smaller, which is due to the fact that the population
difference (p22 —p33) is positive (dashed line) while we ob-
tain an inversion of the population [(p22 —]I]33)&0] for
I ]3 ——4 X 10 eV (solid line). This can be explained by
the fact that if I $3 is large, biexcitons are more easily
created if the exciting source is detuned from the biexci-
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ton resonance, since I » increases the biexciton linewidth.
The biexciton density becomes higher than that of exci-
tons and their dynamics then governs the "memory ef-
fect" of Q, a, and R. As shown in Fig. 3, this memory
effect may lead to an asymmetric pulse deformation. " In
this case, we have calculated the transmitted intensity
I,(t) of the pulse of Fig. 1 with the incident intensity
I; (t), assuming a crystal of thickness l =5 pm and show-

ing the uniform absorption tx(t) given in Fig. 2(b) (solid
line):

I,(t)=I;(t)e '" [1—R(t)] (23)

If transmission experiments are analyzed and a(I;(t)) is
plotted, " the absorption shows hysteresis. As shown in
Fig. 4, for I &3

——4X10 eV, the direction of this hys-
teresis loop changes with the energy of excitation near
half the biexciton energy due to the inversion of popula-
tion p22 p33 which may occur.

As shown in Fig. 5, the hysteresis loops change their
form qualitatively if I &3

——2.5X10 eV is chosen, since
the resonance character of the biexciton creation is more
pronounced. We will not try to give here a quantitative
agreement with the results of Ref. 'll, since our mean-
field approximation will break down at very high absorp-
tion values [Figs. 4(c) and 5(c)] and propagation effects
come into play. In addition, our model calculation as-
sumes constant values for the damping; in real systems
however they also depend on the population density.
Their variation during the pulse may also give rise to hys-
teresis or even bistability as it was reported for two-level
systems. In addition, the qualitative features of Q,

a, and pzz —p33 remain the same for different pulse
shapes, while their quantitative dependence is different.

IV. CONCLUSION

We have discussed the time evolution of the dielectric
function in CuC1. The population of biexcitons gives rise
to a memory effect, which has been observed recently.
The fast dephasing time I ~s has an influence ori the non-
linear absorption and thus changes the population inver-
sion (p22 —p33) between excitons and biexcitons during the
pulse. Their dynamics, however, is governed by their life-
time and for high damping constants they follow the en-
velope of the exciting pulse, i.e., the stationary regime.
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