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Relaxation and nonradiative decay in disordered systems.
I. One-fracton emission
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Relaxation processes are calculated for the emission and absorption of localized vibrational quan-
ta by a locahzed electronic state. Vibrational localization can be geometrical in origin (as on a frac-
tal network, with fractons being the quantized vibrational states) or as a consequence of scattering
(analogous to Anderson localization, with localized phonons being the quantized vibrational states).
The relaxation rate is characterized by a probability density which is calculated here for both classes
of localization for two extreme limits: (a) the sum of the electronic and vibrational energy widths in-

dependent of the spatial distance between the electronic and vibrational states, and (b) the sum of the
energy widths equal to the relaxation rate itself. The time profile of the initial electronic state popu-
lation is calculated for both cases. The profile for interaction with fractons for case (a) is propor-

(Dldp) —I—c I (lnt)
tional to t ', where cl is a constant, D is the fractal dimensionality, and d~ is defined

d
by the range dependence of the fracton wave function: P cc exp( r t'). This—decay is faster than
any power law but slower than exponential {or stretched exponential). The time profile for the in-

(Dld ) —l
teraction with fractons for case {b) is proportional to const+c2(1/t){lnt) ~, where c2 is another
constant. This expression shows that some sites do not relax in this limit. The average relaxation
rate is calculated for both cases, along with its frequency and temperature dependence.

I. INTRODUCTION

There are theoretical reasons to believe that the higher-
frequency vibrational modes in disordered systems are lo-
calized. ' The origin of the localization could be either
the relatively weak effect of impurity scattering, analo-
gous to Anderson localization, or the more dramatic ef-
fects one expects from a fractal description of geometric
disorder in the short-range disordered regime. ' In the
latter case, we refer to the vibrational modes as fractons.
The vibrational density of states is strongly modified from
the Debye form, and the localization length shows a
strong, power-law, dependence on frequency. ' Experi-
mental checks of these predictions are not easy, and here-
tofore have been necessarily indirect. We have shown else-
where that prominent features of the low-temperature
specific heat and of the thermal conductivity of amor-
phous materials appear to support a fractal interpretation
for the higher-energy vibrational excitations.

Our purpose in this paper is to discuss the effect of the
localization of vibrational modes on relaxation processes
involving the emission and absorption of vibrational
quanta by a localized electronic state. Such processes are,
of course, extensively encountered in electron-spin-
resonance experiments, and in the nonradiative decay or
recombination of electronic excitations.

When the vibrational modes are phonons, the theory of
these processes is standard and well understood. We
shall show that the modifications in the vibrational spec-
trum because of disorder can lead to quite dramatic
changes which have direct experimental implications.
The most striking will be the modification of the relaxa-
tion profile which we shall show to be nonexponential.

This is a direct result of vibrational localization which
breaks the equivalence between electronic sites. In addi-
tion, there are effects on the temperature and frequency
dependence of the average (integrated) relaxation rate.

Our aim in this paper is twofold. On the one hand, we
believe we provide a better and more realistic description
of relaxation phenomena in disordered materials. Experi-
mental results of the type we predict are quite common
and should be compared with a more adequate theory
than is at present available. On the other hand, the inter-
pretation of these experiments should provide a fairly sen-
sitive and detailed check into the character of the vibra-
tional spectrum.

We shall discuss in this paper the analog of the single-
phonon relaxation process: the decay of a localized exci-
tation by the emission of a single localized vibrational
quantum (a fracton). The main effect of localization is on
the relaxation time profile. Different spatial sites can
have very different relaxation rates because of their dis-
tance from the closest suitable relaxing vibration. The re-
sult is a strongly nonexponential decay. We also consider
the frequency and temperature dependence of the average
relaxation rate and the results of cross relaxation. A brief
preliminary report of our main results has appeared else-
where.

In two companion papers we shall discuss related prob-
lems. Relaxation by a two-quantum (Raman) vibrational
process is very common, and in particular usually dom-
inant at higher temperatures for electron-spin resonance.
We shall discuss the somewhat more complex effects of
vibrational localization on these processes in a forthcom-
ing publication (a brief preliminary report of our main
results has appeared elsewhere' ). A second paper will
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discuss the relaxation of extended electronic excitations
when the disorder has a large effect on the vibrations. "

Physically, the dominant effect of the localization of
the vibrational states is to introduce differences in the re-
laxation rate between one electronic site and another.
This is because single-quantum relaxation requires a local-
ized vibration of suitable energy. Different sites of the re-
laxing excitation are therefore not equivalent. At some
sites the relaxation rate is rapid because a suitable vibra-
tion is centered close by. For others, the closest energy-
conserving vibration is spatially far away, and the relaxa-
tion is very slow. The dominant effect is the distance to
the closest suitable excitation.

In Sec. II we derive an expression for the relaxation rate
due to the emission of a localized vibration centered at a
distance L from the localized electronic site. We do this
both for fractons and for (Anderson) localized phonons.
In general, there are many parallel relaxation channels
available. We calculate in Sec. III the probability distri-
bution for the largest relaxation channel, arising from the
closest resonant localized lattice vibration. We assume
that this dominates the relaxation and calculate the result-
ing time decay profile in Sec. IV. We show in the Appen-
dix that the contributions coming from relaxation rates
smaller than the largest (i.e., from localized lattice vibra-
tional modes further away from the electronic site) intro-
duce, at the most unfavorable case, logarithmic correc-
tions which have no practical import for the long-time
behavior. The statistical analysis is similar to that used in
some related problems such as spatial diffusion, '

variable-range hopping in one dimension, ' and optical
quenching on fractal structures. ' A peculiar feature of
our problem is the importance of the combined electronic
and vibrational states energy-level width (5). When the
width is independent of L, one finds a decay slower than
any exponential (or stretched exponential), but faster than
any power law. When the relaxation itself provides the
dominant broadening mechanism, one must perform a
self-consistent analysis. One finds that the line splits into
narrow and broad components. The latter decays as a
power law in time. We also calculate the average decay
rate and its frequency and temperature dependence.

The derivations contained in Secs. II—IV are carried
out for (localized) fracton vibrational states. We show
how these results can be carried over to localized phonon
vibrational states in Sec. V. There we compare the energy
dependence of the average relaxation rate for the two situ-
ations. Section VI contains our conclusions and sugges-
tions for experiments which should exhibit properties cal-
culated in this paper.

II. THE ONE FRACTON RELAXATION RATE
AT A GIVEN SITE

The dynamical interaction with a vibration is propor-
tional to the local strain (Vu). In principle, one would
need to know the details of the normalized (fracton) wave
function [P (r)],

u (r)~P (r),
where u~(r) is the amplitude at r of mode a (frequency

co~) centered at the origin. We make two assumptions:

(2)

where the numerical value of the exponent q, the energy
index, is unity for phonons, but can be different for frac-
tons. Further, we assume exponential localization

[P (L)] (l„) exp[ —(L/I ) ~], (3)

where 1„ is the localization length at frequency co=co,Ctl~

d~ is a geometrical exponent describing the fact that even
an exponential decay (in some measure) on the fractal'
will be distorted in real space, and D is the fractal dimen-
sion. In general, 1(d~ (d;„,where d;„ is defined' by

~minl ~R '", and l is the shortest path between two points
separated by a Pythagorean distance R. We are unable to
be more specific at this time, and therefore must regard
d~ as a parameter whose value can be obtained from ex-
plicit simulations on fractal networks. In the Euclidean
limit, d~ ——d;„=1. For fractons, we further assume that
1„ is the only relevant length in the problem (replacing the
wavelength for phonons), so that

—2/D
CO (4)

exp[ (L/l„) ~] . —
5g

Here coo arises from the spatial derivative of the wave
function, cop

' results from the normal-mode expansion,
1„-from the normalization of the wave function [see Eq.Alo

(3)], and coth(Pcop/2) is the fracton occupation number.
The exponential factor in Eq. (5) describes the wave-
function localization. The factor 5r represents the energy
width of the fracton state. When the vibrational state is
extended (i.e., for phonons in the usual sense), one would
find an energy-conserving delta function in place of
1/5z. The quantity 5r will be shown (below) to play a
very important role in the calculation of electronic relaxa-
tion via the electron-fracton interaction.

The fracton energy width, 6z, originates either through
vibrational anharmonic coupling, or through the
electron-fracton interaction itself. The anharmonic con-
tribution to the energy width arises from two principal
channels:

where d is the fracton dimension. Taking the gradient in
Eq. (2) and using Eq. (1) for the fracton wave function, we
find q =d(d~/D) upon using Eq. (4). We shall describe
localized phonons by setting q =d4, ——1, D=3 (the dimen-
sion of space) in Eqs. (2) and (3), and replacing l„[Eq.
(4)] by a localization length g assumed to be frequency in-
dependent.

We now use the "golden rule" to write down the transi-
tion probability per unit time for an electron to change its
state to one which differs from the initial state by an ener-
gy cop, caused by its interaction with a fracton of the same
energy centered a distance L away. A straightforward
generalization of the calculation of the direct process re-
laxation rate (as found, for example, in Ref. 7) yields

W(cop, L) ~ cop 'I „coth(Pcop/2)
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and

fracton+ phonon~fracton distance L away to be equal to 8':

5( W(cop, L)—W) . (7b)

fracton —+phonon+ phonon .

These processes have been calculated very recently in the
context of the fracton "hopping" contribution to the heat
conductivity of a fractal network. ' Their explicit values
depend upon the fracton energy, the crossover frequency
co„and other material parameters of the medium. In gen-
eral, they will not depend upon L, the distance between
the localized electron and the center of the fracton wave
function. Thus, under conditions when the anharmonic
interaction dominates the contribution to 5t, one can set
5t ——5.

When the anharmonic contribution is less than the elec-
tronic relaxation rate caused by the electron-fracton in-
teraction, one replaces the former by the latter —that is,
one replaces 5t by the relaxation rate itself. This means
that the presence of 5t in the expression for the relaxation
rate [Eq. (5)] will lead to a self-consistent determination of
the relaxation rate. In addition, the electron-fracton in-
teraction depends upon the distance L between the elec-
tronic state and the center of the fracton wave function.
This will require explicit consideration of the L depen-
dence of 5t in the calculation of W(cop, L) [Eq. (5)], and
will further complicate the evaluation of W(cop, L)

In summary, we shall consider both limiting cases in
this paper: the fracton anharmonic width larger and
smaller than W(cop, L). However, intermediate situations
can obtain wherein W(cop, L) will be smaller for large L
than the anharmonic width, but larger for smaller L.
This turns out not to complicate our calculation greatly
[see the discussion after Eq. (19)].

We rewrite Eq. (5) in the form

W(L) = Wmax(5p/5r. ) exp[ (L/l ) ~],—

where the maximum relaxation rate is defined as

W,„~co()e 'l„, coth(Pcop/2)/5p .

(6)

This is the relaxation rate for a fracton centered at the
origin.

III. THE PROBABILITY DISTRIBUTION
FOR THE LARGEST ELECTRONIC

RELAXATION RATE

We first construct the probability density P(W) for a
certain relaxation rate at a given electronic state. We then
use it to derive the probability density P ( W) that W is the
largest relaxation rate at that electronic site.

The probability P( W) consists of (i) the probability that
there is a fracton level with energy in the range coo,

cop+5t. centered on the fractal at a distance between L
and L +dL from the electronic site:

Nt, (cop)5t DL 'dL,

where Nt, (co) ( ~co ') is the fracton vibrational density
of states, ' and (ii) a delta function requiring the electronic
relaxation rate W(cop, L) caused by the fracton centered a

Integrating over all L, we obtain

P(W)= f dLL 'DNt, (cop)5t 5(W(cop, L) W)—. (8)

From Eq. (8) we can construct the probability that there is
no relaxation rate larger than W as seen from a given
electronic site:

8'( 8"(-8'

max
[1 P( W—') dW'] =exp —f d W'P( W')

Finally, the probability density P( W) that W is the larg-
est relaxation rate is

W

P(W)=P(W)exp —f dW'P(W') (10)

Note that one expects P ( W) to be normalized
( f P(W)dW=1) while P(W) counts all relaxation chan-
nels and is not normalized. We now evaluate P(W) for
the two cases described above.

(a) Leuels with a constant energy width Writi. ng
5t, =5p= 5 in Eq. (6) and inserting into Eq. (8), we find

P(,)(W) dW=c)(D/dp)[ln( W,„/W)] dW/W,

where

c((cop, 5) =Nt, (cop)(l, ) 5 . (12)

P(,)( W) =c((D/dp )[ln( W,„/W)]

Xexpj —c)[ln(W,„/W)] &[/W . (13)

This probability density is normalized to unity, exhibiting
the fact that all electronic sites relax. This will not be so
for case (b) [where the level width 5t is given by W(L)]
as shown below.

(b) Leuels with a length dependent energ-y width W(L).
We return to Eq. (6) and set 5t ——W(L) and 5p ——W,„.
Inserting these relations into Eq. (8), we obtain

P(b)( W)dW =c2(D/d~)[ln( W,„/W)]

where

(14)

c2(cop) =2 Nt, (cop)(l„, ) W,„.
In this case,

f dWP(W)=c2(D/d~)I (D/d~)

We note that the geometrical exponent d~, defined in Eq.
(3), appears only through the combination D/d~. The
value of this ratio will in general depend upon the Eu-
clidean dimensionality, but is always & 1. This will assist
us in the derivation of P( W).

Inserting Eq. (11) into Eq. (10), we obtain the probabili-
ty density for the largest W'.
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does not diverge. Here, I (g) is the gamma function.
This means that, for the self-consistent case where the
system energy width is the electronic relaxation rate itself,
vibrational states far away from the electronic site do not

contribute to the relaxation process. The total number of
relaxing channels ( W&0) remains finite.

Inserting Eq. (14) into Eq. (10), we find the probability
distribution for the largest W to equal

P,(W) dW =c2(D/d~)[ln( W~,„/W) j ~ expI cq(—D/d~)[I (D/d~) —I (D/d~, ln( W,„/W))]IdW/W, „, (16)

where I (ri,z) is the incomplete gamma function, and the
subscript r means relaxing. This notation is introduced
because the probability density Eq. (16) is not normalized.
One has

f dWP„(W) =1—exp[ c2(D—/d&)I (D/d~)],

which means that a fraction

exp[ —c2(D/d~)I'(D/d~)]

of the electronic states does not relax. This contribution
to the probability density for the largest 8' is therefore

P (W) dW=exp[ c2(D/d~—)I (D/d~)]5(W) dW, (18)

where the subscript nr signifies nonrelaxing. These are
sites for which the largest channel relaxation rate is zero.

The probability density for the largest W is the sum of
Eqs. (16) and (18):

IV. TIME PROFILE AND AVERAGE
RELAXATION RATE

We now use the probability density for the largest re-
laxation rate, P(W), to calculate the time profile of the
electronic state population and the average relaxation rate.
The latter is relevant for cases of rapid cross relaxation.
(Note that we have considered so far the probability densi-
ty only for the largest electronic relaxation rate. The
smaller rates could in principle sum to a value comparable
to or larger than the largest rate. In fact, this is not the
case, as discussed in the Appendix. Only logarithmic
corrections are found. )

The time dependence for the occupation of the initial
electronic state is given by the Laplace transform of the
probability density P ( W):

P(t)= f dWexp( —Wt)P(W) . (20)

In case (a), using Eq. (13), we can write

P(b)( W) dW=P„(W) dW+P„, (W) dW . (19)

QO
d4, /D

P(,)(t) =c( Dz expI —c,z —W,„texp[ —(z) & ]I,
(21)

Thus, within this approximation one has two distinct
populations. The reason for this behavior is clearly that
5L, decreases very fast (exponentially) with L while the
number of states in a shell of radius I. increases only to
the power D —1 of L.

In general, the fracton (or electronic) state may have an
intrinsic inverse lifetime less than 8',„. In such a case,
5L, will be given by W(L) for distances less than a certain
cutoff L, . For L larger than L„ the width W(L) is
smaller than the fracton intrinsic width, and 5L will be in-
dependent of L. This situation is a simple combination of
cases (a) and (b) treated above.

where we have substituted

z =[ln(W, „/W)] (22)

We carry out the z integration in Eq. (21) by the saddle-
point method. The saddle point z, obeys the equation

[1—(d~/D) ] d4 /Dr, =z, ~ exp[(z, ) ~ ], (23)

r, =(dp/D)(W, „t/c)) . (24)

In the large r, limit (long times) one has the iterative
solution

d~/D (D/dp )—j.

z, =inr, —in[(lnr, ) ~ ]— =ln

ln

l
Tg

(&/dp) —&

+a

(a/d&) —i

(25)

I

This form, a logarithmic generalization of a continued fraction, is convergent. Retaining only the leading order in Eq.
(25) (neglecting logarithmic corrections in the exponent), we obtain from Eq. (21)

(D/d0 ) —1

P(,)(t) —[2vr(D/dp)c)] (lnr, )
/2 (D d~)/2dg —cgEln~ ]

7 Q (26)

where ~, is given in Eq. (24). Equation (26) describes the long-time behavior of the population of the initial electronic
state. It shows that the population decays faster than a power law but slower than exponential (or stretched exponential).

For case (b), use of Eqs. (16), (18), and (19) in Eq. (20) yields
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P~b)(t)=[exp( —acz)] 1+cz f dz exp[ —(z) —W,„texp[( —z) ~ ]+cz(D/d&)I (D/d~, (z) b )I
CO dp/D d /D d /D

4

(27)

where we have used the substitution given by Eq. (22). In Eq. (27), a=(D/d~)I (D/d~) is a numerical constant. The
first term in the large parentheses represents the contribution to P~b)(t) of those electronic states which are nonrelaxing
[Eq. (18)]. The saddle point zb of the z integration in Eq. (27) obeys the equation

dp/D 1 —(d4 /D)
rb ——exp[(zb) ~ ]+(D/d~)cz(zb) (28a)

where we have defined

= Wmax~

In the large rb limit, the saddle point zb has the form

d4, /D (D/d ) —]. (D/d )—1

(zb) ~ =in(~b (D/—d~)cq I ln[rb (D/d—~)cz[ln(rb — )] ~ ] I
~ ) .

We again neglect logarithmic corrections, keeping only the leading-order term in Eq. (29). Then, Eq. (27) yields

(Dldp) —&

P~b)(t) —exp( ac2)—+ (D/dt, )c2V'2m exp[ —(acz+ 1)](1/rb )(in' )

(28b)

(29)

(30)

where ~b is defined by Eq. (28). One sees that the population decay in case (b} is slower than in case (a), and is closer to a
power law. At very long times the initial-state electronic population approaches a constant value, exp( —acz), just the
fraction of nonrelaxing electronic sites.

Another interesting feature of the relaxation rate probability density is its average value. This will be important when
the spin-spin interaction is in excess of W,„. Under these conditions of strong cross relaxation, all spins relax exponen-
tially in time at an average relaxation rate,

(W)= f dWWP(W) . (31)

For case (a), from Eq. (13),

( W~,))=w",„c)f dzexp[ —[c)z+(z) ~ ]I, (32)

where we have used the substitution dictated by Eq. (22). For small values of c) [Eq. (12)] the integral in Eq. (32)
approaches (D/d~)I'(D/dt, ), so that the average relaxation rate ( W«) ) is of order Wm, „c). For case (b), from Eqs.
(16), (18), and (19),

( W(b) ) = W','„c,f dz exp[ 2(z) —cz( D/d~—)[I (D/d~) —I ((D/d~), (z) )]I . (33)

Comparing Eq. (5) with Eq. (6), one sees that, in case (a)

W",„-coo '( 1„) coth(Pc00/2) /5, (35a)

while in the self-consistent case (b),

W','„-[coo~ '(1„) coth(Pcoo/2)]'~ (35b)

This should be substituted into Eqs. (34) to obtain the ex-
plicit form of ( W~, ) ) and ( W~» ).

The average relaxation rate can also be calculated
directly by averaging the golden-rule expression for the
transition rate. We integrate the golden-rule expression
over all fracton modes to obtain [see Eq. (5)]

( W) —Nt, (coo)coo
' coth(Pc@0/2), (36)

In the small cq [Eq. (15)] limit, the integral in Eq. (33) be-
—D/d

comes (2 b)(D/dt, )I (D/d& ). Summarizing, we have

( W(, ) ) —W",„c)= W~,„Nt,(coo)(l„) 5, (34a)

( W~b) ) —Wm,'„cz(2) =(Wm, „) Nfq(ci)o)(1„)

(34b)

where we have used the fact that the wave functions P
[Eq. (3)] are normalized. Comparing this with the result
of the substitution of Eq. (35} in Eq. (34), one notes that
all three expressions have the same functional form

( w... ) —w&b))-(w) . (37)

(38)

It is interesting to investigate the reasons for the differ-

We note that ( W) is an average of the total relaxation
rate, while (W),)) and (W~b) ) are averages of the largest
single-site rate. Thus there must be numerical factors
which cause these quantities to differ. These factors arise
from the effect of relaxation rates smaller than the largest.
Their effect upon the probability density for the relaxa-
tion rate, and the time decay profile, are explicitly calcu-
lated in the Appendix.

The dependence of the average relaxation rate upon the
magnitude of the energy transfer coo is

r
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ence in the coo dependence of W,„ for the cases (a) and
(b) [as exhibited by Eqs. (35)]. Let us assume that the
average relaxation rate consists of a fraction p of electron-
ic levels for which the relaxation is fast, and a fraction
(1—p) for which the relaxation is much slower. Then

( W) =p[ W} „,+(1—p) [ W}„,„. (39)

p =Nt, (a)p)l, 5, (40)

and the fast relaxation rate [ W}t„,is W». Other sites
relax slowly. Neglect of [ W},),„in the average gives

[ W}t„,——W,„=(W)/[Xt, (coo)(l ) 5] . (41)

To estimate p, we note that electronic states with a suit-
able fracton within a distance l„will relax rapidly. The
number of such strongly relaxing levels is Xt,((oo)l„5. If
this is small, this also represents the fraction of electronic
states which relax rapidly. Thus,

—c&(lnv )2

P(,)(t) —(inr, )r,
and that for case (b) [from Eq. (30)],

P(b)(t)-rb (lnrb)

(42a)

The second aspect pertains to the time scale, as derived
from the energy dependence of W» and the coefficients
c( and c2. Form Eqs. (35) we found for fracton-induced
relaxation

of the mode energy, we replace l„by g in the expressions

above.
As a consequence of these modifications, the relaxation

of localized electronic states by localized phonons differs
from that induced by fractons in two respects. The first
aspect is the numerical value of the power law of
ln( W „/W). This fact governs the probability distribu-
tions and consequently the time profiles. In three dimen-
sions, for example, the time profile for case (a) becomes
[from Eq. (26)]

One sees that Eq. (41) leads directly to W,„ofcase (a),
Eq. (35a). For case (b), Wm, „ is just 5. Therefore, from
Eq. (41),

W,„=[(W)/Xt, ((oo)(l„) ]'

(o()~ '+, case (a)
max

(cog+ '+ )', case (b)
(43)

which is Eq. (35b).
This argument also clarifies another point which is cru-

cial for the manner by which our calculation was per-
formed, and which terids to be obscured by the algebra.
We have assumed that p=c) [see Eqs. (12) and (40)] is
very small. It is then sufficient to evaluate the probability
for the largest single relaxation rate channel available at a
given site. Other channels will have much slower relaxa-
tion rates, and consequently will play a relatively minor
role overall (for details, see the Appendix). It is evident,
however, that p, as defined in Eq. (40), can become large
should I be sufficiently large. Most electronic states~o
would then have a large number (-p) of parallel relaxa-
tion channels available, each contributing =8',„ to the
total rate. The density of sites which would not relax at
this rate would be small [—exp( —p)].

One should note that, for either limit (small or large p),
the average ( W) does not depend upon 5 and l . How-
ever, the statistical distribution depends strongly upon p,
becoming much narrower when p is large.

V. COMPARISON OF THE CONTRIBUTION
TO THE RELAXATION TIME OF FRACTONS

AND LOCALIZED PHONONS

Localized phonon modes describe vibrations in a suffi-
ciently disordered Euclidean network. Setting d =D =d
and d~ ——1 in the expressions above transforms the frac-
ton density of states into the usual phonon density of
states. Secondly, because we shall take the localized pho-
nons to obey the usual linear dispersi. on law, the spatial
derivative of the wave function is proportional to the en-
ergy. Hence, the energy index q appearing in the golden-
rule expression for the relaxation rate [see Eq. (5)] is equal
to unity. Thirdly, because we assume the localization
length g for localized phonons is a constant independent

at zero temperature, where we have used Eq. (4). Using
the transformations described above, the analogous results
for phonon relaxation are

coop ", case (a)
~max

(oo g' ~, case (b) . (44)

The exponent in Eq. (43), -2q —1+d, is larger than zero
for most physical systems. As a consequence, W,„ in-
creases with energy in both situations. However, the coef-
ficients c) and cq [which govern the time profiles —see
Eqs. (24), (26), (28), and (30)] depend differently on energy
for fractons and localized phonons. Both c~ and c2 are
proportional to the product of the vibrational density of
states with the localization volume [see Eqs. (12) and
(15)]. For fractons, this combination is inversely propor-
tional to coo. The same quantity is proportional to ~o
for localized phonons. Thus, the principal difference be-
tween fracton and localized phonon relaxation lies in the
energy dependence of c] and c2. This is directly related
to the energy dependence of the localization length I of

0
the fractons, as compared to our assumption of an
energy-independent phonon localization length g.

VI. CONCLUSIONS

We have shown how localization of vibrational excita-
tions can profoundly affect the relaxation of localized
electronic states. We have calculated the distribution of
relaxation rates for two limiting conditions: the combined
energy widths of the electronic and vibrational states in-
dependent of the distance between them, and the com-
bined energy widths equal to the relaxation rate itself.
The former should be relevant when, for example, the vi-
brational energy width, because of anharmonicity, exceeds
the relaxation rate. The latter is relevant when the reverse
is true. Clearly, there are other limits: the anharmonic
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width of the fracton states is intermediate to the relaxa-
tion rates; cross relaxation introduces an electronic energy
width intermediate to the relaxation rates.

We have used the distributions of relaxation rates we
have derived to calculate the time dependence of the occu-
pation of the initial electronic states. We have found re-
rnarkable differences from exponential. For a combined
vibrational and electronic width independent of distance
between them, we find a time dependence which decays
faster than any power law, but slower than exponential (or
stretched exponential). For the opposite extreme, when
the combined width is taken equal to the relaxation rate
itself, the electronic states split into two groups: those
which relax as a power law in time, and those which do
not undergo relaxation at all (via the one-fracton mecha-
nism).

When rapid cross relaxation is present, one can speak of
an average relaxation rate for the entire electronic system.
This is calculated in Sec. IV for both limits considered
above. A direct "golden-rule" calculation of the average
relaxation rate is shown to have the same analytic form as
these averages, the numerical differences arising from the
effect of relaxation rates smaller than the largest.

The use of these calculations should shed light upon
electronic relaxation processes in disordered materials.
Nonexponential decays are observed extensively in the
literature on electronic relaxation in amorphous hosts.
Our results can be used as an explicit means of compar-
ison, or "in reverse" as an indication of the character of
the vibrational spectrum in such materials. Examples are
amorphous semiconductors where photoexcited electron-
hole pairs below the conduction edge decay faster than
power law, but slower than exponential with time. ' Oth-
er examples are electronic centers in glasses. The nonradi-
ative 'relaxation rate should follow the time profiles calcu-
lated in this paper when the splitting between electronic
states is less than the fracton Debye energy.

Clearly, higher-order vibrational processes may be im-
portant at high temperatures or when the change in elec-
tronic energy exceeds the fracton Debye energy. In a
separate paper, we calculate the two-fracton electronic re-
laxation rate for localized electronic centers. ' Here too
we find dramatic differences from that calculated with ex-
tended vibrational states, including stretched exponential
and time decays of the form of Eq. (26). For two-fracton
relaxation processes, the explicit temperature dependence
of the average relaxation rate differs from that calculated
for extended vibrational states, in contrast to the one-
fracton relaxation process treated here '(see the discussion
in Sec. IV).
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APPENDIX: CORRECTIONS TO THE LARGEST
RELAXATION PROBABILITY DENSITY

where P( W) is the probability density for W, Eq. (8). The
effective relaxation rate W not larger than Wt is then

W=W, + W(W, ) . (A2)

inverting this equation to obtain W, ( W), we find that the
probability density P(W) for the largest Wis

P(W)=P(W(W)) exp —f dW~ P(W~)
8 (8')

XdW, ( W)/dW . (A3)

P( W) is the probability density for W values in the range
0(8 (Rm „,where

Wmax = Wmax + W( Wmax ) (A4)

It is clear that when the contribution of the relaxation
rates smaller than W, is neglected, W=W, and P(W) is
just the probability density P(W) calculated in Sec. III
[Eq. (10)]. The procedure outlined in Eqs. (A1)—(A4) al-
lows us to calculate corrections to P( W) arising from the
sum of contributions smaller than the largest experienced
at a given electronic site.

We have derived in Sec. III the probability density
P( W) that W is the largest relaxation rate of a given elec-
tronic site. We have then used P(W) to find the time
profile for the electronic state occupation, and for the
average relaxation rate. We shall now consider the contri-
butions coming from relaxation rates smaller than the
largest, i.e., from fracton states further away from the
electronic site.

The sum of the relaxation rates up to a certain rate 8;
1S

W

W(W, )= f dW) W)P(W)),

1. Constant energy width

Inserting Eq. (11) for P~a~ into Eq. (Al), we find from Eq. (A2)

W= 8;+c&(D/d&) W,„N (D/d~), ln( W,„/W, )),
and from Eq. (A4),

W,„=W,„[1+c )(D/dp)l (D/dp)],

where c ~ is given by Eq. (12). The probability density P( W), from Eq. (A3), is

(A5)

(A6)
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(A7)P(,)(W)=c)(D/dg)[8;(W)] 'Iin[W, „/8",( W)] j
1+c)(D/d~) Iln[ Wm, „/W, ( W')] j

where W;( W) is the solution of Eq. (A5). We find the limiting behaviors of the probability density P(,)( W) by using ex-
pansions of the incomplete gamma function. We have

W,„—W, —( W,„—W')
I l —c([(W,„—W)/W, „] & j,

when W, /W, „—1, and

W,„/W~-( W,„/W) Il+c)(D/dp)[ln( W,„/W)]

(A8a)

(A8b)

when W, /W, „«1. Thus, in the limit of small relaxation rate W, the probability P(, ) contains logarithmic corrections
as compared to the probability density P(, ) [Eq. (13)], which are small when c) is small [see the discussion after Eq.
(41)].

Turning now to the Laplace transform of P(,), we find

P(,)(t)= f dWexp( —Wt)P(, )(W)

(X) 14,/D cj /D=c) f dz expI —c)z —W,„t[exp[—(z) ~ ]+c)(D/d~)I ((D/d~}, (z) ~ )]j, (A9)

where we have used Eqs. (A5)—(A7), and the substitution dictated by Eq. (22). Carrying out the z integration by the
method of saddle points yields

D/d —1

(A10}

where

7-.=W,„t+r.(lnW .„t)

r, =(dp/D)W~, „t/c) .
(A 1 1)

We see that P(,)(t) has the same functional form as P(,)(t) [Eq. (26)] but with a different time scale T;, which includes
logarithmic corrections to ~, .

2. Length-dependent energy width

Inserting Eq. (14) for P(b) into Eq. (Al), Eq. (A2) takes the form

W=W, +cz(D/d&)(1/2) ('W I ((D/d&), 21n(W, „/W, )},
and the maximum relaxation rate seen by a given site becomes [see Eq. (A4)]

Wm, „=Wm, „[1+c2(D/d~)(1/2) ~I (D/d~)],

where c2 is given in Eq. (15). The probability density P(b) is [from Eq. (A3)]

P(b)( W) =cz(D/d~) W,'„jln[ W,„/W, ( W)] j

X (1+cz(D/d~)[ W, ( W)/W, „]I ln[ W,„/W, ( W)] j )

Xexp[ cz(D/d~) I I—'(D/d~) —I'((D/d~), in[ W,„/W, ( W)]) j ]
and W, ( W) is the solution of Eq. (A12). The limiting behaviors of the solutions are

W',„—W, -(W,„—W) I 1 —c [(W,„—W)/W, „]
when 8'~/'&max 1, and

W,„/W, -(W,„/W) I 1+c2(D/2d~)( W/W, „)[ln( W,„/W)]

(A12)

(A13)

(A14)

(A15a)

(A15b)

when 8;/8', „«1. As in the case of constant energy width, only logarithmic corrections are found in the small relax-
ation rate limit, which are small when c2 is small.

The Laplace transform of Pb is
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P~&l(t) = I d W exp( —Wt)P~&l ( W)

=cz J dz expI —c2(D/d&)[I (D/d~) —I'((D/d&), (z) & )]—(z) &

—W,„t[exp[—(z) ~ ]+c2(1/2) ~(D/d&)l ((D/dL, ),2(z) ~ )]],
where we have used the substitution dictated by Eq. (22). A saddle-point integration yields

(D/LSA ) —1 (,D/d~ )—1
P~&~(&)-(D/d~)c2V2m. exp[ —(ucz+1)](1/rs)(ines) [I+c2(D/d&)(I/rs)(ines) ]

(A16)

(A17)

where r, = W,„t. Comparing Eq. (A17) with the second member of P~&j(t) [see Eq. (30)], we see that Eq. (A17) includes
only a small correction to our previous result. In this case, the time scale does not change.
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