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A one-dimensional model of Frenkel excitons and dispersionless phorions interacting via a linear
site-diagonal coupling term is investigated. %e present a variational theory which is, for explicit
calculations, reduced to two variational parameters characterizing the excitonic coherence properties
as well as the extent of lattice distortion. It includes previous theories (phonon-dressed excitons and
adiabatic solitary solutions) as limiting cases. The theory fully accounts for the translation symme-
try and is applicable in the weak-coupling and the self-trapping regions of the physical parameter
space as well as in the crossover regime. Energetic and spectroscopic properties of the full (@-
dependent) phonon-free exciton band are calculated. Important results are the band deformation
due to the interaction with multiphonon states of the same symmetry, the exciton dispersion, and
strong variations of the intensities and the degree of localization within the exciton band.

I. INTRODUCTION

The problem of exciton-phonon interactions and their
effect on the spectra and transport properties of molecular
crystals has caught the interest of physicists and physical
chemists for many years. ' Generally, electronic excita-
tions of molecules in pure crystals tend to delocalize and
form exciton bands due to the intermolecular resonance
transfer. The interaction with phonons which modulate
the electronic energy levels of the molecules has an oppos-
ing effect. An electronic excitation on a particular mole-
cule can lower its energy by a rearrangement of the intra-
molecular and intermolecular nuclear coordinates. This
destroys the resonance with neighboring sites and tends to
stabilize the localized excitation. The competition be-
tween these two trends towards delocalization and locali-
zation leads to a substantially different behavior of the ex-
citon depending on which of the two trends dominates.
This is well manifested by the transition probabilities
from the ground state into these excited states. The delo-
calized states get large Franck-Condon factors while the
relaxed states have only small zero-phonon transition
probabilities. In molecular crystals with two molecules
per unit cell the upper band edge may get intensity.
Therefore, it is of interest to study the dispersion of the
exciton band.

To construct a simplified model let us consider an exci-
ton in a one-dimensional crystal which is coupled to a
dispersionless intramolecular vibration via a coupling
term linear in the phonon coordinates. A corresponding
Hamiltonian reads

H =g b„b„+kg(b„"+b„)a„a„—Vg a„(a„+~+a„,) .

The operators a„and b„arecreation operators of excitons
and phonons at site n, respectively. We have chosen the
energy scale such that the frequency of the phonons is un-
ity. There are two characteristic energies in the problem,
i.e., the energy of localization or Stoke's shift A, and the
energy of delocalization 2 V. Their ratio measures the rel-
ative importance of the trends towards localization and

delocalization. We shall restrict ourselves to the discus-
sion of phenomena at low density of excitons and at zero
absolute temperature.

Our approach to analyze certain properties of the in-
teracting system defined by the Hamiltonian (1) is varia-
tional. This has a long tradition for the polaron as well as
the exciton-phonon problems. ' Variational trial wave
functions discussed in the literature ' include a superposi-
tion of exciton states dressed by phonon clouds consisting
of displaced harmonic oscillators. In general, there are
many variational parameters, those describing the super-
position and those describing the lattice distortion. If
only the latter is considered one can relate the wave-
number-dependent lattice distortion to a single parameter
which has to be determined in a self-consistent way. Such
simplified models predict discontinuities in the transition
probabilities as a function of A, if the excitonic interac-
tion V exceeds a critical parameter V, . This is so even in
the one-dimensional case, where such discontinuities
should not occur as has been shown by studying the adia-
batic ground state in the continuum limit. ' '" For two
and three dimensions discontinuities are predicted depend-
ing on the range of interaction.

As one introduces proper superpositions [see Refs. 5
and 7 and Eqs. (17) and (18) of this paper] the discontinui-
ties in one dimension are removed for the parameter re-
gime of A, and V, where the simple dressed exciton theory
shows discontinuities.

We show this explicitly by introducing two trial param-
eters. One of them is related to the width of solitary solu-
tions, the other stands for the lattice distortion only. The
choice of the trial functions is motivated by an approach
to exciton-phonon systems which yields strictly localized
(solitary) states states that break the translation symmetry
of the Hamiltonian. ' ' It turns out that these states
yield a lower energy in the self-trapping regime than the
simplified dressed exciton ansatz discussed above. ' Obvi-
ously the solitary solutions represent more flexible local
wave functions than those contained in the simple dressed
exciton ansatz. Our idea is to use these local states but re-
store translation invariance by a coherent superposition of
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the degenerate states. The optimization of the variational
parameters is performed afterwards for each crystal wave
number k separately. As a result we obtain the dispersion
E(k) of the exciton band as well as the intensities of the
lowest exciton states as a function of wave number k and
in the presence of exciton-phonon coupling. We are not
aware of any theory which yields an equal amount of in-
formation on the energetic and spectroscopic properties of
the exciton band. We further stress the fact that our
theory contains the simple dressed exciton theory as well
as the solitary solutions as limiting cases. Therefore it
represents an improvement with respect to both of them
and for the whole range of coupling parameters.

The organization of this paper is as follows. Section II
introduces our variational trial function and its relation to
those used previously. Section III discusses exact proper-
ties of this ansatz, whereas Sec. IV introduces additional
restrictions on the variational parameters which reduce
the problem to the optimization of the energy with respect
to two parameters only. Section V presents selected nu-
merical results on the crossover between mobile and self-
trapped states as well as on the properties of the exciton
band as a function of the resonance transfer and interac-
tion parameters. Conclusions are given in Sec. VI.

II. VARIATIQNAL TRIAL FUNCTIQNS

In this section we briefly discuss two distinct variation-
al approaches to exciton-phonon systems used previously.
An obvious generalization which contains these theories
as special cases leads to the variational trial function this
work is based on.

The first approach uses the concept of a "dressed exci
ton. " Due to exciton phonon coupling an electronic exci-
tation carries with it a cloud of phonons or lattice distor-
tions. ' The most simple ansatz corresponding to this
picture and specialized to the Hamiltonian (1) is

(2)

where 5(k) is related to a generahzed Debye-Wailer factor
R (k) via

U'I+4VR (k)cosk —1

v'I +4 VR (k)cosk + 1

which in turn fulfills the self-consistency relation

R (k) =exp I
—A, [1+4VR (k)cosk] (7)

Thus, the problem can be reduced to the solution of a sin-
gle transcendental equation for R (k).

A different theory for the ground state of the exciton-
phonon Hamiltonian (1) may be based on Davydov's an
satz"

„exp g A,„.„(b„.b„-)a„
f
0)—

n' n"

(8)

with variational parameters cp„and A,„representing exci-
tonic amplitudes and lattice distortions, respectively.
Normalization of the wave function implies

decomposition of the Hamiltonian (1) into a sum of pure
phonon Hamiltonians acting. on the invariant subspaces of
total wave number can be performed using an appropriate
unitary transformation. Together with the solution of the
variational problem in terms of displaced oscillators this
has been described in some recent publications for disper-
sionless phonons, ' ' which is the case we exclusively
treat in this paper, and for acoustical phonons. ' We cite
the main results in a form appropriate for further refer-
ence in this paper. The optimized distortion parameters
are

with
P

I
n; IA,„(k)J ) =exp $ A,„„(k)(b„b„)a„I 0)—.

n'

The expectation value of the Hamiltonian for the states
(8) yields the energy functional

Here and in what follows
I
0) denotes the vacuum state

for the excitons as well as the phonons. Note that this
ansatz only specifies the form of the ground states with
respect to the phonons but does not imply how vibration-
ally excited states should be constructed (compare Refs. 7
and 14 for different prescriptions).

The wave functions (2) are eigenstates of the total crys-
tal wave-number operator

—Vgq*„(q„+(+%„(). (10)

It is extremal with respect to the A,
„

if

is fulfilled. This relation allows the elimination of the lat-
tice distortion parameters A,

„

to yield an energy functional
expressed in terms of the y„alone,

k =g k'ak ak +g qbqbq
k'

(4)

Since the Hamiltonian (1) is translation invariant there is
no coupling between states of different k. Therefore the
variational parameters A.„' „(k)which describe the lattice
distortion at site n around an electronic excitation at site
n can be optimized for each k separately. A systematic

For long chains the ground state based on the ansatz (8) is
a localized or "solitary" solution centered at arbitrary sites
n. The amplitudes y„„obeythe symmetry relation

'If n' —n 0n —n'
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and decay exponentially for
~

n' —n
~

—+ oo. In the contin-
uum limit, which is equivalent to the relation A, «2V,
one has the well-known solution' '

1/2

Pn —n 4y sech (n' —n) (14)

In the strong-coupling limit (k »2V) the excitonic am-
plitudes have the form of a geometric series

1 —2
~n' —n

~Pn' —n =
1+a (15)

A solution for intermediate-coupling strengths (iL &2V)
can be obtained by means of an iterative solution applied
recently to the problem of an excitation coupled to acoust-
ical phonons. '

The prominant difference between the two distinct trial
functions (2), (3), and (8) is the following: The "dressed
exciton" solution (2) is a coherent superposition of certain
local wave functions given by (3). Therefore it is an eigen-
state of the total crystal momentum operator which com-
mutes with the total Hamiltonian. The weakness of this
approach is due to the simple structure of the local wave
function (3). On the other hand, the ansatz (8) which
leads to solitary states breaks the symmetry which corre-
sponds to momentum conservation and leads to a highly
degenerate ground state. Our notation in (8) intends to
make clear that these states present a particular way to
model more sophisticated local wave functions. If„=5„„,i.e., yn n vanishes unless n'=n, Eq. (8) is
identical to the simpler local wave function (3). Coherent
superposition restores translation invariance of the wave
function and leads to our generalized trial function

Minimization of the energy functional A, Eq. (12), with
respect to e yields in lowest order

Ir

0
2g2 g4

(20)

The flexibility of the wave function in comparison with
the simple dressed exciton ansatz, Eq. (2) and (3), stems
from the fact that a sum of displaced oscillator functions
is considered instead of only one term. This includes the
possibility to account for the increased (static) fluctua-
tions ((x„—(x„&)& of the oscillator coordinates

+b„in the ~~osso~e~ ~~gimme

III. EXACT RELATIONS

The reader who is mainly interested in the method and
the results may skip over this section in which some exact
results for the trial function [Eqs. (17) and (18)] and the
corresponding variational problem are derived. We prove
an exact sum rule for the lattice distortion parameters
A,„(k)and the existence of a particular upper bound for
the energy E(k). For simplicity of notation we cease
from indicating the k dependence of the variational pa-
rameters.

For future use we first calculate the following matrix
elements:

(k
~

k &=5kk Qe' "F„gp„y„+„,
n'

(21)

( k
~ Hp„~k'& =5„kg e'""F„gy„*y„+„gA,„-A,„+„,

n"

(22a)

(k ~H;„,
~

k'& =A5kk ge'""F„gy„*p„~„(A,„+A,„+„),

This is the most general form of any one-exciton solution
to the Hamiltonian (1). The operator 4„'"'([b„,b„I) con-
tains the dressing of the exciton as well as possible vibra-
tional excitations of the crystal. The trial function corre-
sponds to the special choice

r

C"n"'([bn, bn I ) =ye' "
q n exp y~n-+n -n(bn- —bn-)

n n"

f
k&=N ' ge '"" in;[q&„(k)I,[A,„(k)I& (17) n'

(22b)
with

~
n; [y„(k)I, [A,„(k)I &

(k /H. „/k &

V5kk'g n g %n'(V n +n —1+''Pn'+n+1)

„(k)exp g A,„~„(k)(b„-b„-)a„~0& . —
n' n"

n'

(22c)

This defines the variational problem, which has been for-
mulated also by Toyozawa for a slightly different model
Hamiltonian. However, Toyozawa immediately intro-
duces the approximation cp„„=5nn which corresponds
to the ansatz equations (2) and (3). We shall consider for
explicit calculations a more general form for the excitonic
amplitudes, namely the ansatz (32) presented in Sec. IV.

In order to elucidate the relation to the dressed exciton
picture we rewrite the trial function [Eqs. (17) and (18)] in
the following way:

~k&=~ '"ge '""e'"'([b'b I)a'-~0&. -

Evidently H~h, H;„„andH„denote the individual con-
tributions to the total Hamiltonian (1). . The F„arethe
Franck-Condon factors between the phonon part of the
local wave function (18) and a corresponding state shifted
by n lattice sites. They are given by

F„=exp g(A,„k„+„—A,„) (23)

Obviously F„is an even function of n, i.e., F „=F„,and
Fo ——1. Equations (21) and (22) verify that the trial func-
tions for different k are orthogonal and not coupled by
the Hamiltonian. The relation to the two limiting cases
discussed in the preceding section is the following. As has
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been noted, the simple dressed exciton picture is obtained
for yn =6no. In this case only F] enters which is equal to
the band reduction factor R, Eq. (7). If vibrational over-
lap between shifted lattice states is neglected, i.e.,
F„=5„0,the expectation value of the Hamiltonian is iden-
tical to the energy functional (10) which leads to the soli-
tary ground-state solutions.

Next we derive the sum rule

(24)

which holds for the optimized lattice distortions A,n. It
may be guessed because it is fulfilled for the correspond-
ing quantities in the theories discussed in Sec. II, compare
eq. (5) and (11). In order to derive (24) we perform the
variation of

m(l~„j,[A,„j,q) =(k
f
H

f
k)+q((k

f
k) —1)

with respect to say A, . A Lagrange parameter g has been
included to assure normalization. The result is

O= =pe'""F„(7 +„+X „)gq„*q„+„+A(q*q+.+p' „q ) +pe"" "
[ ] . (26)

The last term in this equation is just ~ as given by (2S)
and Eqs. (19) and (20a)—(20c) if only F„is replaced by
BF„/BA, throughout. Now we sum over all m and note
that

Fn
=g(A, +„+A, „—2A, )F„=o.. aA-

(27)

The last equation follows from normalization, compare
(21). This completes the derivation of the sum rule (24).
It will be useful in the following section in order to reduce
the number of independent variational parameters.

Finally we show that the energies corresponding to the
optimized wave functions fulfill the inequality

The result is

O=2 'gX +A, 'ge'""F„gq„*p„+„=2gA, +&' .
n'

(28)

choose q&„=N '~ which constructs a bare exciton of
wave number k =0. (N is the total number of lattice
sites. ) Using Eqs. (21)—(23), we find

(k fH fk)
(k fk)

2'= —2V—

g e'""A,„k„+„expg A,„-X„.,+„
+ ',.k„.' . ' . (30)g e'k"exp 'g A,„X„+„'

g e'""X„X„+„
(H)k= —2V +2A2 n, n'

N5I, 0++ e k
A, 'A,

n, n'

(31)

If we further assume that the A,„aresufficiently small
such that the exponential may be expanded to first order,
we obtain

—2V for k =0,E'k'- —2V+1 f- k~o.
This implies the upper bound (29) in the limit of large ¹

29)
IV. APPROXIMATE SOLUTION

OF THE VARIATIONAL PROBLEM
This inequality is most easily understood in the limit of
weak coupling (A, && 1) and if the bare exciton bandwidth
4 V is greater than the phonon frequency which is unity in
our units of energy (4 V & 1). For k =0 the upper bound
is just the bare excition band bottom. For k&0 the lowest
state with a given total wave number k is approximately
given by an exciton of wave number k„=owith energy
e,„(k,„=o)= —2V plus an optical phonon with wave
number k~h

——k and energy e~h (k~h) =1. Then the total
wave number is k =k, +k„h and the total energy
E (k) =e,„(0)+e&h(k) = —2 V+ 1. The inequality (29) is,
of course, trivial for exact solutions. We find it remark-
able, however, that it is fulfilled for our variational trial
functions. For the simple dressed exciton solutions dis-
cussed in Sec. II the lower part of (29) is not fulfilled if
4V) 1 holds.

In order to prove (29), we show that for a particular
choice of our variational parameters y„and k„,the
right-hand side is obtained as the expectation value of the
Hamiltonian. Guided by the explanation given above we

' 1/2'=C' ',
1 +E'

~1—&~InI
1+5

(32)

(33)

Equation (33) is identical in form with (5) so that the

Our trial function [Eqs. (17) and (18)] contains 2N vari-
ational parameters. This number can be reduced to
2X —2 independent parameters by means of normaliza-
tion and the sum rule (24). There is no principal difficul-
ty to solve the variational problem numerically for large
but finite ¹ Nevertheless we found it more instructive
and 'sufficient for many purposes to introduce additional
approximations which reduce the number of independent
parameters to two only. Guided by the behavior of the
solutions in the dressed exciton and soliton limits dis-
cussed in Sec. II we choose an ansatz as geometric series
for y„and Xn,
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' '
as to be done numeri-

00

k
i
k) =C~ 1+2 g cos(kn)F„f„(e

n=1
(34)

k ~H „~k~=CA,
3

1 +2 icos(kn)F„.f„(e)f„(5) (35a)

(k iH;„,ik) = —2CzA, ' 1 —6'
1 —5)(1+@5)+2 g cos(kn)F„g„e5

—1

ngn &»ngn & 5 (35b)

(k iH, „

ik)= —2C V , + g cos(kn)F. [f. i(~)+f.+i ~ (35c)

Thee auxihary functions f andn aii gn are defined as F„=exp —f.( )] (38)

f„(x)=x"1—1 —x
n

1+x

0-

g„(x,y) =x"[1—x y —(1— +n]

Using f„wefind

(36)

(37)
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The continuity of the crossover between mobile and
self-trapped excitons is exhibited more sensitively by the
intensity of the transition from the exciton-free ground
state of the crystal to the one-exciton ground state.
Vhthin our theory one has

0.5

2

I(k)= g e '""y„(k) exp —g A,„(k) (39)

5
0.4- (a)

0.2-

0.4- (b)

0.2-

15

FIG. 6. Optimized variational parameters e and 6 as a func-
tion of A,

2 for V=2 and k =0. The curves correspond to the
theories explained in the text (labeling as in Figs. 4 and 5). In
the limit of vanishing coupling (A,~~O) the solid curves ap-
proach (a) 5=0.5 and (b) e=O. A jump discontinuity at A, =0.7
is not shown in the drawings since it has no effect on the observ-
able quantities like the energy and the intensity, cf. Figs. 4 and
5.

Figure 5 shows I(k =0} in comparison with the corre-
sponding result for the simple dressed exciton theory
(dashed-dotted line) and the same variation of the physical
parameters as in Fig. 4. Again, the similarity with the ex-
act results for short cyclic chains is striking. 2' To eluci-
date the situation further we include a graph of the optim-
ized variational parameters 5 [Fig. 6(a)] and e [Fig. 6(b)]
as a function of A, . The discontinuous change of the vi-
brational wave function as expressed by the jump of the
parameter 5 [dashed-dotted line in Fig. 6(a)] is replaced by
a continuous variation of 5 [solid line in Fig. 6(a)] and e
[solid line in Fig. 6(b)] in the crossover region.

A possible limitation of our theory shows up if one con-
siders larger intermolecular couplings V, e.g., V=5, and
looks at the behavior of the transition probability I (k) as
a function of A, . It turns out that the crossover between
extended and self-trapped states now exhibits a jump
discontinuity. %e believe that this is due to the particular
ansatz equations (17) and (18). It is not a result of the
simplified geometric series as shown in Eqs. (32) and (33).
If more parameters y„arevaried freely the discontinuities
which arise from crossing of states with the bare one-
phonon states are removed. However, the discontinuity in
the intensity for the k =0 state which shows up in Fig.
(12) at V=5 remains. It may be removed if the varia-
tional basis set is extended by inclusion of vibrationally
excited states.

The second class of our results is concerned with the

0 0.6 0.8
V

FIG. 7. Energies of the phononless exciton states as a func-

tion of the transfer V and for weak coupling I, =0.1. The solid

curves represent different wave numbers k within the exciton
band. The dashed line represents the energy of a bare exciton

with k =0 plus a dispersionless phonon of arbitrary wave num-
ber k.

0.40,2

energetic and spectroscopic properties of the whole exci-
ton band ( —m (k (m. ) in the presence of exciton-phonon
coupling. Physically one expects particularly interesting
effects if the lowest one-phonon state submerges into the
band of bare excitons. This occurs for V & —,

' in our units.

(Remember that the phonon frequency is unity. ) There-
fore it turns out to be most informative to study the ener-

gy E(k) and the transition probability I (k) as a function
of the intermolecular transfer V, but at a fixed magnitude
of the exciton-phonon coupling strength A, . We have
choosen A, =0.1 (Figs. 7 and 8), A, =1 (Figs. 9 and 10),
and A, =10 (Figs. 11 and 12} representing weak, inter-

mediate, and strong couplings, respectively.
Let us consider the case of weak coupling (A2=0. 1).

Figure 7 shows the energy E(k)+A, for various crystal
wave numbers k as indicated (solid lines). For small in-
termolecular couplings V the dispersion relation is rough-
ly E(k) = —2Vcosk up to corrections proportional to A, 2.

This corresponds to the bare or weakly dressed exciton.
However, k is the total wave number of the system which
is the sum of the excitonic and vibrational crystal momen-
ta. Therefore, for a given k there is an almost trivial state
with the same translation symmetry which consists of an
exciton with wave number k„=Oplus a phonon with
wave number k~h

——k and has an energy expectation value
—2 V+1 (dashed line in Fig. 7). Since both states have
the same symmetry they do not cross in the energy dia-

gram but repell each other. Because our method is varia-
tional we only obtain the lower state which correlates to
the weakly dressed exciton for small V and to the on-
phonon state for larger V. This discussion qualitatively
explains Fig. 7 and the evident compression of the bare
exciton band E(k)= —2Vcosk at the upper band edge.
The information on the corresponding transition probabil-
ities is contained in Fig. 8. The increasing one-phonon
character of the states of higher k leads to an exponential
decrease of the intensities. At particular values of the in-
termolecular transfer V the curves cease and the transition
probabilities formally jump to zero. This is an artifact of
our variational trial function which produces a discon-
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FIG. 8. Transition probabilities corresponding to the states in
Fig. 7. The intensity of a given state formally jumps to zero
whenever its energy joins the dashed line in Fig. 7.

FIG. 10. Transition probabilities corresponding to Fig. 9.

tinuity of the optimized variational parameters whenever
the energies become equal to the trivial one-phonon state.

Figures 9 and 10 present qualitatively similar results for
an intermediate-coupling strength A, =1. Note that the
repulsion due to the interaction with the one- and multi-
phonon states is much stronger than in the preceding ex-
ample. The upper band edge k =~ joins the one-phonon
state at larger V and even the energy of the ground state
k =O looses its linear dependence on V and bends down
for small V. Figure 10 shows the transition probabilities.
Two opposing effects of the transfer term V are observ-
able. On the one hand, it leads to delocalization and
therefore to an increasing overlap of the one-exciton
ground state with the total ground state (k =0 and
k =sr/4 for small V). On the other hand, the transition
probabilities tend to decrease due to the interaction with
the one-phonon state (k & vr/2 and k =n /4 but large V).

We finally consider an example of strong coupling
A, =1O in Figs. 11 and 12. We recover the crossover be-
tween self-trapped states for small V and mobile states for
V & V, =5. The bandwidth is extremely small (of the or-
der e ) in the first regime and the band is not resolved

within the accuracy of the drawing (Fig. 11). The energy
is approximately given by E(k) = —A, —V /A, . The term
proportional to V corresponds to the adiabatic approxi-
mation as contained in the soliton ansatz and is missing in
the simple dressed exciton theory. Above critical values
V, (k) which increase with k, the lower states of the band
split off while strong compression of the upper part of the
band remains. Figure 12 shows the transition probabili-
ties. The ground state exhibits the jump discontinuity
which is again found for strong coupling as discussed ear-
lier in this section. Note, however, that the "hysteresis
loop" corresponding to the coexisting minima turns out to
be much narrower than in the simple dressed exciton
theory. The crossover remains continuous for k =sr/4
and larger k. It is particularly interesting that the intensi-
ty of the upper band edge is comparitively insensitive to
the intermolecular transfer V. This implies a strong vari-
ation of the intensity within the band (nearly 3 orders of
magnitude) for V & V, . Physically the exciton at the
upper band edge remains essentially self-trapped with an
effective mass much larger than at the band bottom.

0.5
0

-2-

-1.0
+

UJ

-2.0-
-10

- 3.0
0 0.5

t

1.5 y 2.0

-12
0 8 y 10

FIG. 9. Same as Fig. 7 but for an intermediate-coupling
strength A,~= 1.

FICx. 11. Same as Fig. 7 but for strong coupling A, =10. The
solid curves represent wave numbers k =0, ~/4, ~/2, 3~/4, and

Only the lower and the upper band edge are labeled.
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FIG. 12. Transition probabilities corresponding to Fig. 11.

VI. CONCLUSIONS

In this paper we have analyzed the excitonic states of a
vibrating crystal modeled with dispersionless phonons and
a linear exciton-phonon coupling. We used a variational
principle with trial functions based on solitary
(symmetry-breaking) states which were coherently super-
imposed to yield momentum-conserving (symmetry)
states. The variation was performed for the superimposed
states and not for the solitary ansatz such that electronic
delocalization and lattice relaxation could be optimized
independently. This approach contains the simpler
dressed exciton theory and the soliton model as special
limits. It is applicable to almost arbitrary electronic inter-
molecular and vibronic coupling energies denoted by V
and A, , respectively. (Energies were measured in units of
the phonon frequency. )

Starting from weak coupling A, & 1 and 4 V & 1, it could
be seen how an anticrossing behavior between the exciton
states and the one- and multiphonon excitations lead to a
distortion of the exciton band as a function of V on the
one hand and to a small-polaron-type band for strong cou-
pling A, ~&1 on the other hand. There are, however, con-
siderable deviations from the small polaron picture if the
electronic transfer V is also strong, V»1. In this case
the lower band edge shows indication of delocalization,
that is relatively strong Franck-Condon factors, while the

upper band edge represents essentially localized states of
the polaron type. This difference does not only affect the
dispersion within the exciton band, it also leads to dif-
ferent predictions about the bandwidth. The bandwidth

—A,
2

would be 4 Ve for the small polaron limit, but can be
larger by several orders of magnitude in our model. Also,
Holstein' mentioned an increase of the bandwidth beyond
4Vexp( —A, ) for V»1. This observation may help to
understand the observed absorption spectra and effective
baridwidths in PMDA crystals. In addition, the strong
variation of the Franck-Condon factors within the exciton
band should affect the rates of radiationless interband
transitions and especially their temperature dependence.
Other applications concern transport properties which de-
pend upon the degree of delocalization of the lower band
eigenstates.

Of interest to us was also the crossover between self-
trapped and delocalized exciton states as a function of the
coupling parameters. As a measure of the degree of delo-
calization, we took the Franck-Condon factor to the lower
band edge. We found that the discontinuity as predicted
by the simplified dressed exciton model in one dimension
is removed. However, a similar discontinuity reappears
for much larger values of V and A, . To remove also these
discontinuities the basic trial functions have to be extend-
ed. Earlier arguments related to the question of the tran-
sition in one dimension were based on the analysis of the
adiabatic ground state within the continuum approxima-
tion. ' '" Our theory goes beyond the continuum approx-
imation and includes nonadiabatic effects.

The main application of our theory might lie in its
predictive power for exciton spectra of strongly anisotro-
pic (effectively one-dimensional) crystals, in particular,
singlet transitions in systems like pseudoisocyanine' or
inorganic complexes such as tetracyanoplatinates. The
intensity distribution among different states and their lo-
cation can be measured quite accurately. Of course, we
need to extend the model to include also vibrationally ex-
cited states. We finally point out that our method can
also be applied to the coupling of excitons to acoustical
phonons. This will be important for an application to
transport properties and the temperature dependence of
spectra at low temperatures.

'Present address: Corporate Laboratories for Information Tech-
nology, Siemens AG, D-8000 Munich, West Germany.
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